Spaces:
Sleeping
Sleeping
Commit
·
75e01a8
1
Parent(s):
879e393
Update app.py
Browse files
app.py
CHANGED
@@ -51,6 +51,9 @@ api_secret_key = st.sidebar.text_input("API Secret Key", "YOUR_API_SECRET_KEY",
|
|
51 |
start_date = st.sidebar.date_input("Start Date", datetime.now() - timedelta(days=30))
|
52 |
end_date = st.sidebar.date_input("End Date", datetime.now())
|
53 |
|
|
|
|
|
|
|
54 |
# Fetch data button
|
55 |
if st.sidebar.button("Fetch Data"):
|
56 |
# Fetch data from ShareASale
|
@@ -60,26 +63,29 @@ if st.sidebar.button("Fetch Data"):
|
|
60 |
# Parse the CSV data into a DataFrame
|
61 |
df = parse_csv_to_df(ledger_data)
|
62 |
|
|
|
|
|
|
|
63 |
# Filter rows where action is "Transaction Created"
|
64 |
df_filtered = df.loc[df['action'] == 'Transaction Created']
|
65 |
|
66 |
# Remove 'ledgerid' and 'transid' columns
|
67 |
-
df_filtered = df_filtered.drop(columns=['ledgerid', 'transid', 'action'])
|
68 |
|
69 |
# Display the DataFrame as a table
|
70 |
st.write("Transaction Data")
|
71 |
st.write(df_filtered)
|
72 |
|
73 |
-
# Create a second table summing the impact for each unique
|
74 |
-
df_sumif = df_filtered.groupby('
|
75 |
|
76 |
# Calculate the total impact
|
77 |
total_impact = df_sumif['impact'].sum()
|
78 |
|
79 |
# Add a total row to the DataFrame
|
80 |
-
total_row = pd.DataFrame({'
|
81 |
df_sumif = pd.concat([df_sumif, total_row], ignore_index=True)
|
82 |
|
83 |
# Display the second DataFrame as a table
|
84 |
-
st.write("Impact Summary by
|
85 |
st.write(df_sumif)
|
|
|
51 |
start_date = st.sidebar.date_input("Start Date", datetime.now() - timedelta(days=30))
|
52 |
end_date = st.sidebar.date_input("End Date", datetime.now())
|
53 |
|
54 |
+
# Load the merchantid to organisation name mapping
|
55 |
+
merchant_mapping = pd.read_csv('/mnt/data/a-599431.CSV') # Modify this path as needed
|
56 |
+
|
57 |
# Fetch data button
|
58 |
if st.sidebar.button("Fetch Data"):
|
59 |
# Fetch data from ShareASale
|
|
|
63 |
# Parse the CSV data into a DataFrame
|
64 |
df = parse_csv_to_df(ledger_data)
|
65 |
|
66 |
+
# Merge with merchant mapping
|
67 |
+
df = pd.merge(df, merchant_mapping, on='merchantid', how='left')
|
68 |
+
|
69 |
# Filter rows where action is "Transaction Created"
|
70 |
df_filtered = df.loc[df['action'] == 'Transaction Created']
|
71 |
|
72 |
# Remove 'ledgerid' and 'transid' columns
|
73 |
+
df_filtered = df_filtered.drop(columns=['ledgerid', 'transid', 'action', 'merchantid'])
|
74 |
|
75 |
# Display the DataFrame as a table
|
76 |
st.write("Transaction Data")
|
77 |
st.write(df_filtered)
|
78 |
|
79 |
+
# Create a second table summing the impact for each unique organisation name
|
80 |
+
df_sumif = df_filtered.groupby('organisation name')['impact'].sum().reset_index()
|
81 |
|
82 |
# Calculate the total impact
|
83 |
total_impact = df_sumif['impact'].sum()
|
84 |
|
85 |
# Add a total row to the DataFrame
|
86 |
+
total_row = pd.DataFrame({'organisation name': ['Total'], 'impact': [total_impact]})
|
87 |
df_sumif = pd.concat([df_sumif, total_row], ignore_index=True)
|
88 |
|
89 |
# Display the second DataFrame as a table
|
90 |
+
st.write("Impact Summary by Organisation")
|
91 |
st.write(df_sumif)
|