File size: 20,954 Bytes
f19a26d
 
 
 
 
 
 
 
 
 
c14ff59
f19a26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c14ff59
 
 
f19a26d
 
 
 
c14ff59
f19a26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c14ff59
f19a26d
c14ff59
 
 
 
f19a26d
c14ff59
f19a26d
 
 
 
 
 
 
 
 
 
 
c14ff59
 
f19a26d
 
 
c14ff59
f19a26d
c14ff59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f19a26d
 
 
 
 
 
 
 
 
 
 
 
c14ff59
 
f19a26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c14ff59
 
f19a26d
 
 
 
 
 
c14ff59
 
f19a26d
 
c14ff59
 
 
f19a26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c14ff59
 
 
 
 
 
f19a26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import advertools as adv
import streamlit as st
import tempfile
import pandas as pd
from urllib.parse import urlparse
import base64
import requests
import time
from bs4 import BeautifulSoup
import re
import concurrent.futures

def get_seo_powersuite_data(domains, api_key):
    url_domain_inlink_rank = "https://api.seopowersuite.com/backlinks/v1.0/get-domain-inlink-rank"
    url_refdomains_count = "https://api.seopowersuite.com/backlinks/v1.0/get-refdomains-count"
    headers = {"Content-Type": "application/json"}
    
    results = []
    for i in range(0, len(domains), 100):
        batch_domains = domains[i:i+100]
        
        # Get domain inlink rank
        start_time = time.time()
        payload_domain_inlink_rank = {"target": list(batch_domains)}
        params_domain_inlink_rank = {"apikey": api_key, "output": "json"}
        response_domain_inlink_rank = requests.post(url_domain_inlink_rank, json=payload_domain_inlink_rank, headers=headers, params=params_domain_inlink_rank)
        duration = time.time() - start_time
        print(f"get-domain-inlink-rank API call for {len(batch_domains)} domains took {duration:.2f} seconds")
        
        if response_domain_inlink_rank.status_code == 200:
            data_domain_inlink_rank = response_domain_inlink_rank.json()
            domain_inlink_rank_dict = {page["url"]: page["domain_inlink_rank"] for page in data_domain_inlink_rank["pages"]}
        else:
            st.error(f"Error fetching domain inlink rank data from SEO PowerSuite API: {response_domain_inlink_rank.status_code}")
            st.error("Error Response:")
            st.write(response_domain_inlink_rank.text)
            return None
        
        # Get refdomains count
        start_time = time.time()
        payload_refdomains_count = {"target": list(batch_domains), "mode": "domain"}
        params_refdomains_count = {"apikey": api_key, "output": "json"}
        response_refdomains_count = requests.post(url_refdomains_count, json=payload_refdomains_count, headers=headers, params=params_refdomains_count)
        duration = time.time() - start_time
        print(f"get-refdomains-count API call for {len(batch_domains)} domains took {duration:.2f} seconds")
        
        if response_refdomains_count.status_code == 200:
            data_refdomains_count = response_refdomains_count.json()
            for metric in data_refdomains_count["metrics"]:
                result = {
                    "target": metric["target"],
                    "domain_inlink_rank": domain_inlink_rank_dict.get(metric["target"], None),
                    "refdomains": metric["refdomains"]
                }
                results.append(result)
        else:
            st.error(f"Error fetching refdomains count data from SEO PowerSuite API: {response_refdomains_count.status_code}")
            st.error("Error Response:")
            st.write(response_refdomains_count.text)
            return None
        
    return pd.DataFrame(results)

def get_peter_lowe_domains():
    url = "https://pgl.yoyo.org/adservers/serverlist.php?hostformat=adblockplus&mimetype=plaintext"
    response = requests.get(url)
    lines = response.text.split('\n')
    domains = [line.strip('|^') for line in lines if line.startswith('||')]
    return set(domains)

def extract_hostname(url):
    return urlparse(url).netloc

def remove_subdomain(domain):
    parts = domain.split('.')
    if len(parts) > 2:
        return '.'.join(parts[-2:])
    return domain

def domain_matches_blacklist(domain, regex_patterns):
    for pattern in regex_patterns:
        if re.search(pattern, domain, re.IGNORECASE):
            return 'Yes'
    return 'No'

def find_sitemap(url):
    robots_url = f"{urlparse(url).scheme}://{urlparse(url).netloc}/robots.txt"
    try:
        robots_response = requests.get(robots_url)
        if robots_response.status_code == 200:
            for line in robots_response.text.split("\n"):
                if line.startswith("Sitemap:"):
                    sitemap_url = line.split(":", 1)[1].strip()
                    if "post" in sitemap_url.lower() or "blog" in sitemap_url.lower():
                        return sitemap_url
    except requests.exceptions.RequestException:
        pass
        
    sitemap_urls = [
        "/post-sitemap.xml", "/blog-sitemap.xml", "/sitemap-posts.xml",
        "/sitemap.xml", "/wp-sitemap.xml", "/?sitemap=1", "/sitemap_index/xml",
        "/sitemap-index.xml", "/sitemap.php", "/sitemap.txt", "/sitemap.xml.gz",
        "/sitemap/", "/sitemap/sitemap.xml", "/sitemapindex.xml", "/sitemap/index.xml", "/sitemap1.xml"
    ]
    
    for sitemap_url in sitemap_urls:
        try:
            sitemap_response = requests.get(f"{urlparse(url).scheme}://{urlparse(url).netloc}{sitemap_url}")
            if sitemap_response.status_code == 200:
                return f"{urlparse(url).scheme}://{urlparse(url).netloc}{sitemap_url}"
        except requests.exceptions.RequestException:
            pass
            
    return None

def crawl_posts(df, page_count, url, concurrent_scrapes):
    crawl_results = []
    crawl_status = st.empty()
    
    def crawl_page(row):
        page_url = row['loc']
        try:
            response = requests.get(page_url)
            if response.status_code == 200:
                html = response.text
                soup = BeautifulSoup(html, 'html.parser')
                title = soup.title.text if soup.title else ''
                meta_desc = soup.find('meta', attrs={'name': 'description'})['content'] if soup.find('meta', attrs={'name': 'description'}) else ''
                links = []
                for a in soup.find_all('a', href=True):
                    link_url = a['href']
                    link_text = a.text.strip()
                    link_nofollow = 'nofollow' in a.get('rel', [])
                    links.append({'url': link_url, 'text': link_text, 'nofollow': link_nofollow})
                return {
                    'url': page_url,  # Use page_url instead of url
                    'title': title,
                    'meta_desc': meta_desc,
                    'links': links
                }
        except requests.exceptions.RequestException:
            return None
        
    with concurrent.futures.ThreadPoolExecutor() as executor:
        futures = []
        for i in range(0, page_count, concurrent_scrapes):
            batch_df = df.iloc[i:i+concurrent_scrapes]
            batch_futures = [executor.submit(crawl_page, row) for _, row in batch_df.iterrows()]
            futures.extend(batch_futures)
            
        for i, future in enumerate(concurrent.futures.as_completed(futures)):
            result = future.result()
            if result is not None:
                crawl_results.append(result)
            crawl_status.text(f"Crawling {url} - Page {i+1}/{page_count}")
            
    crawl_status.empty()
    return pd.DataFrame(crawl_results)

def download_csv(df, filename):
    csv = df.to_csv(index=False)
    b64 = base64.b64encode(csv.encode()).decode()
    href = f'<a href="data:file/csv;base64,{b64}" download="{filename}.csv">Download {filename} CSV</a>'
    return href

def main():
    st.title("Website Crawler")
    
    urls = st.text_area("Enter the website URLs (one per line):", value="")
    page_count = st.number_input("Enter the number of pages to crawl:", value=1000, min_value=1, step=1)
    concurrent_scrapes = st.number_input("Enter the number of concurrent scrapes:", value=20, min_value=1, step=1)
    
    col1, col2 = st.columns(2)
    with col1:
        domain_filter_regex_input = st.text_area("Filter out Unique Outbound Domains:", help="This uses a regex filter to find domains in the unique outbound domains list. Enter one regex per line.", value="instagram\nfacebook\ntwitter\nlinkedin\nsnapchat\ntiktok\nreddit\npinterest\namazon\ncdn\nyoutube\nyoutu.be")
    with col2:
        domain_match_regex_input = st.text_area("Domain Blacklist:", help="This uses a regex filter to match domains in the Unique Outbound Domains to the blacklist entered. Enter one regex per line.", value="xyz\ncasino\ncbd\nessay")
    use_seo_powersuite = st.checkbox("Use SEO PowerSuite")
    api_key = None
    if use_seo_powersuite:
        api_key = st.text_input("Enter the SEO PowerSuite API key:", type="password")
    download_links = st.checkbox("Show Download Links")
    
    if st.button("Crawl"):
        if urls:
            url_list = [url.strip() for url in urls.split('\n') if url.strip()]
            if url_list:
                all_link_df = pd.DataFrame()
                all_unique_outbound_links_df = pd.DataFrame()
                all_final_df = pd.DataFrame()
                all_analysis_df = pd.DataFrame()
                all_crawled_pages_df = pd.DataFrame()
                #
                for url in url_list:
                    with st.spinner(f"Finding sitemap for {url}..."):
                        sitemap_url = find_sitemap(url)
                        if sitemap_url:
                            with st.spinner(f"Crawling {url}..."):
                                sitemap_df = adv.sitemap_to_df(sitemap_url)
                                sitemap_df = sitemap_df.sort_values(by="lastmod", ascending=False)  # Sort by lastmod in descending order
                                crawl_results = crawl_posts(sitemap_df, page_count, url, concurrent_scrapes)
                                
                                if not crawl_results.empty:
                                    crawled_pages_df = pd.DataFrame({'Originating Domain': url, 'Crawled Page': crawl_results['url']})
                                    all_crawled_pages_df = pd.concat([all_crawled_pages_df, crawled_pages_df], ignore_index=True)
                                    
                                    link_df = pd.DataFrame(crawl_results['links'].explode().tolist())
                                    link_df = link_df[~link_df['url'].str.startswith(('/','#'))]
                                    link_df['internal'] = link_df['url'].apply(lambda x: extract_hostname(url) in extract_hostname(x))
                                    link_df = link_df[link_df['internal'] == False]  # Filter out internal links
                                    link_df.insert(0, 'Originating Domain', url)  # Add 'Originating Domain' column
                                    link_df = link_df[['Originating Domain', 'url', 'text', 'nofollow']]  # Remove the 'internal' column
                                    
                                    outbound_links_df = link_df.copy()  # Create a copy of link_df for outbound links                            
                                    unique_links_df = link_df['url'].value_counts().reset_index()
                                    unique_links_df = unique_links_df[~unique_links_df['url'].str.startswith(('/','#'))]
                                    unique_links_df.columns = ['Link', 'Count']
                                    unique_links_df.insert(0, 'Originating Domain', url)
                                    
                                    unique_outbound_links_df = outbound_links_df['url'].value_counts().reset_index()
                                    unique_outbound_links_df = unique_outbound_links_df[~unique_outbound_links_df['url'].str.startswith(('/','#'))]
                                    unique_outbound_links_df.columns = ['Link', 'Count']
                                    unique_outbound_links_df.insert(0, 'Originating Domain', url)
                                    
                                    outbound_links_df['url'] = outbound_links_df['url'].astype(str)
                                    domain_df = outbound_links_df['url'].apply(extract_hostname).value_counts().reset_index()
                                    domain_df.columns = ['Domain', 'Count']
                                    domain_df = domain_df[domain_df['Domain'] != '']
                                    peter_lowe_domains = get_peter_lowe_domains()
                                    domain_df['In Peter Lowe List'] = domain_df['Domain'].apply(lambda x: 'Yes' if remove_subdomain(x) in peter_lowe_domains else 'No')
                                    domain_df.insert(0, 'Originating Domain', url)
                                    
                                    # Determine the 'DoFollow' value for each domain
                                    domain_df['DoFollow'] = domain_df['Domain'].apply(lambda x: any(outbound_links_df[(outbound_links_df['url'].str.contains(x)) & (outbound_links_df['nofollow'] == False)]))
                                    
                                    if not domain_df.empty:
                                        if domain_filter_regex_input:
                                            domain_filter_regex_patterns = domain_filter_regex_input.split('\n')
                                            domain_filter_regex = '|'.join(domain_filter_regex_patterns)
                                            domain_df = domain_df[~domain_df['Domain'].str.contains(domain_filter_regex, case=False, regex=True)]
                                            
                                        if not domain_df.empty:
                                            if domain_match_regex_input:
                                                domain_match_regex_patterns = domain_match_regex_input.split('\n')
                                                domain_df['Blacklist'] = domain_df['Domain'].apply(lambda x: domain_matches_blacklist(x, domain_match_regex_patterns) == 'Yes')
                                            else:
                                                domain_df['Blacklist'] = False
                                                
                                            total_domains = len(domain_df)
                                            peter_lowe_percentage = round((domain_df['In Peter Lowe List'] == 'No').sum() / total_domains * 100, 2)
                                            blacklist_percentage = round((domain_df['Blacklist'] == True).sum() / total_domains * 100, 2)
                                            
                                            analysis_data = {
                                                'Originating Domain': [url] * 2,
                                                'Metric': ['Percentage of domains not in Peter Lowe\'s list', 'Percentage of domains in the Blacklist'],
                                                'Value': [f"{peter_lowe_percentage}%", f"{blacklist_percentage}%"]
                                            }
                                            
                                            analysis_df = pd.DataFrame(analysis_data)
                                            
                                            if use_seo_powersuite and api_key:
                                                seo_powersuite_df = get_seo_powersuite_data(domain_df['Domain'].tolist(), api_key)
                                                if seo_powersuite_df is not None:
                                                    domain_df = pd.merge(domain_df, seo_powersuite_df, left_on='Domain', right_on='target', how='left')
                                                    domain_df.drop('target', axis=1, inplace=True)
                                                    
                                                    avg_domain_inlink_rank = round(domain_df['domain_inlink_rank'].mean(), 2)
                                                    avg_domain_inlink_rank_less_than_70 = round(domain_df[domain_df['domain_inlink_rank'] < 70]['domain_inlink_rank'].mean(), 2)
                                                    avg_refdomains = round(domain_df['refdomains'].mean(), 2)
                                                    
                                                    additional_analysis_data = {
                                                        'Originating Domain': [url] * 3,
                                                        'Metric': [
                                                            'Average domain inlink rank',
                                                            'Average domain inlink rank (< 70)',
                                                            'Average number of refdomains'
                                                        ],
                                                        'Value': [
                                                            avg_domain_inlink_rank,
                                                            avg_domain_inlink_rank_less_than_70,
                                                            avg_refdomains
                                                        ]
                                                    }
                                                    
                                                    analysis_df = pd.concat([analysis_df, pd.DataFrame(additional_analysis_data)], ignore_index=True)
                                                    
                                                    desired_columns = ['Originating Domain', 'Domain', 'Count', 'In Peter Lowe List', 'DoFollow', 'Blacklist', 'domain_inlink_rank', 'refdomains']
                                                    final_df = domain_df[desired_columns]
                                            else:
                                                desired_columns = ['Originating Domain', 'Domain', 'Count', 'In Peter Lowe List', 'DoFollow', 'Blacklist']
                                                final_df = domain_df[desired_columns]
                                        else:
                                            st.warning(f"No unique outbound domains found for {url} after filtering.")
                                    else:
                                        st.warning(f"No unique outbound domains found for {url}.")
                                        
                                    all_link_df = pd.concat([all_link_df, link_df], ignore_index=True)
                                    all_unique_outbound_links_df = pd.concat([all_unique_outbound_links_df, unique_outbound_links_df], ignore_index=True)
                                    all_final_df = pd.concat([all_final_df, final_df], ignore_index=True)
                                    all_analysis_df = pd.concat([all_analysis_df, analysis_df], ignore_index=True)
                                else:
                                    st.warning(f"No posts found in the sitemap for {url}.")
                        else:
                            st.warning(f"Sitemap not found for {url}.")
                            
                st.subheader("Crawled Pages")
                if download_links:
                    st.markdown(download_csv(all_crawled_pages_df, "Crawled Pages"), unsafe_allow_html=True)
                else:
                    st.write(all_crawled_pages_df)
                    
                st.subheader("Outbound Links")
                if download_links:
                    st.markdown(download_csv(all_link_df, "Outbound Links"), unsafe_allow_html=True)
                else:
                    st.write(all_link_df)
                    
                st.subheader("Unique Outbound Links")
                if download_links:
                    st.markdown(download_csv(all_unique_outbound_links_df, "Unique Outbound Links"), unsafe_allow_html=True)
                else:
                    st.write(all_unique_outbound_links_df)
                    
                st.subheader("Unique Outbound Domains")
                if download_links:
                    st.markdown(download_csv(all_final_df, "Unique Outbound Domains"), unsafe_allow_html=True)
                else:
                    st.write(all_final_df)
                    
                st.subheader("Analytics")
                all_analysis_df = all_analysis_df.pivot(index='Originating Domain', columns='Metric', values='Value').reset_index()
                all_analysis_df.columns.name = None
                if use_seo_powersuite and api_key:
                    numeric_columns = ['Average domain inlink rank', 'Average domain inlink rank (< 70)', 'Average number of refdomains']
                    all_analysis_df[numeric_columns] = all_analysis_df[numeric_columns].astype(int)
                if download_links:
                    st.markdown(download_csv(all_analysis_df, "Analytics"), unsafe_allow_html=True)
                else:
                    st.table(all_analysis_df)
            else:
                st.warning("Please enter at least one website URL.")
        else:
            st.warning("Please enter website URLs.")
            
if __name__ == '__main__':
    main()