joshuadunlop's picture
Update app.py
834b992 verified
raw
history blame
16.1 kB
import advertools as adv
import streamlit as st
import tempfile
import pandas as pd
from urllib.parse import urlparse
import base64
import requests
import time
def get_seo_powersuite_data(domains, api_key):
url_domain_inlink_rank = "https://api.seopowersuite.com/backlinks/v1.0/get-domain-inlink-rank"
url_refdomains_count = "https://api.seopowersuite.com/backlinks/v1.0/get-refdomains-count"
headers = {"Content-Type": "application/json"}
results = []
for i in range(0, len(domains), 100):
batch_domains = domains[i:i+100]
# Get domain inlink rank
start_time = time.time()
payload_domain_inlink_rank = {"target": list(batch_domains)}
params_domain_inlink_rank = {"apikey": api_key, "output": "json"}
response_domain_inlink_rank = requests.post(url_domain_inlink_rank, json=payload_domain_inlink_rank, headers=headers, params=params_domain_inlink_rank)
duration = time.time() - start_time
print(f"get-domain-inlink-rank API call for {len(batch_domains)} domains took {duration:.2f} seconds")
if response_domain_inlink_rank.status_code == 200:
data_domain_inlink_rank = response_domain_inlink_rank.json()
domain_inlink_rank_dict = {page["url"]: page["domain_inlink_rank"] for page in data_domain_inlink_rank["pages"]}
else:
st.error(f"Error fetching domain inlink rank data from SEO PowerSuite API: {response_domain_inlink_rank.status_code}")
st.error("Error Response:")
st.write(response_domain_inlink_rank.text)
return None
# Get refdomains count
start_time = time.time()
payload_refdomains_count = {"target": list(batch_domains), "mode": "domain"}
params_refdomains_count = {"apikey": api_key, "output": "json"}
response_refdomains_count = requests.post(url_refdomains_count, json=payload_refdomains_count, headers=headers, params=params_refdomains_count)
duration = time.time() - start_time
print(f"get-refdomains-count API call for {len(batch_domains)} domains took {duration:.2f} seconds")
if response_refdomains_count.status_code == 200:
data_refdomains_count = response_refdomains_count.json()
for metric in data_refdomains_count["metrics"]:
result = {
"target": metric["target"],
"domain_inlink_rank": domain_inlink_rank_dict.get(metric["target"], None),
"refdomains": metric["refdomains"]
}
results.append(result)
else:
st.error(f"Error fetching refdomains count data from SEO PowerSuite API: {response_refdomains_count.status_code}")
st.error("Error Response:")
st.write(response_refdomains_count.text)
return None
return pd.DataFrame(results)
def get_peter_lowe_domains():
url = "https://pgl.yoyo.org/adservers/serverlist.php?hostformat=adblockplus&mimetype=plaintext"
response = requests.get(url)
lines = response.text.split('\n')
domains = [line.strip('|^') for line in lines if line.startswith('||')]
return set(domains)
def extract_hostname(url):
return urlparse(url).netloc
def remove_subdomain(domain):
parts = domain.split('.')
if len(parts) > 2:
return '.'.join(parts[-2:])
return domain
def crawl_website(url, exclude_url_regex, page_count, concurrent_requests, depth_limit):
with tempfile.NamedTemporaryFile(delete=False, suffix='.jl') as temp_file:
custom_settings = {
"CLOSESPIDER_PAGECOUNT": page_count,
"CONCURRENT_REQUESTS_PER_DOMAIN": concurrent_requests,
"DEPTH_LIMIT": depth_limit
}
if exclude_url_regex:
adv.crawl(url, output_file=temp_file.name, follow_links=True, exclude_url_params=True, exclude_url_regex=exclude_url_regex, custom_settings=custom_settings)
else:
adv.crawl(url, output_file=temp_file.name, follow_links=True, exclude_url_params=True, custom_settings=custom_settings)
crawl_df = pd.read_json(temp_file.name, lines=True)
crawl_df['hostname'] = crawl_df['url'].apply(extract_hostname)
# Select only the desired columns
desired_columns = ['url', 'hostname', 'title', 'meta_desc', 'status', 'links_url', 'links_text', 'links_nofollow']
crawl_df = crawl_df[desired_columns]
return crawl_df
def download_csv(df, filename):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}.csv">Download {filename} CSV</a>'
return href
def main():
st.title("Website Crawler")
domains = st.text_area("Enter the website URLs (one per line):", value="")
page_count = st.number_input("Enter the maximum number of pages to crawl:", value=5000, min_value=1, step=1)
col1, col2 = st.columns(2)
with col1:
concurrent_requests = st.number_input("Enter the number of concurrent requests per domain:", value=8, min_value=1, step=1)
with col2:
depth_limit = st.number_input("Enter the depth limit for the crawl:", value=0, min_value=0, step=1)
col1, col2 = st.columns(2)
with col1:
exclude_url_regex_input = st.text_area("Enter exclude URL regex patterns (one per line):", value="cdn\nwp-content")
with col2:
domain_filter_regex_input = st.text_area("Filter our unique domains with regex (one per line):", value="instagram\nfacebook\ntwitter\nlinkedin\nsnapchat\ntiktok\nreddit\npinterest\namazon\ncdn\nyoutube\nyoutu.be")
col1, col2 = st.columns([2, 5])
with col1:
use_seo_powersuite = st.checkbox("Use SEO PowerSuite")
with col2:
api_key = None
if use_seo_powersuite:
api_key = st.text_input("Enter the SEO PowerSuite API key:", type="password", value="")
download_links = st.checkbox("Show Download Links")
if st.button("Crawl"):
if domains:
domain_list = [domain.strip() for domain in domains.split('\n') if domain.strip()]
if domain_list:
exclude_url_regex_patterns = exclude_url_regex_input.split('\n')
exclude_url_regex = '|'.join(exclude_url_regex_patterns) if exclude_url_regex_patterns else None
all_crawl_results = []
all_link_df = []
all_unique_links_df = []
all_unique_outbound_links_df = []
all_domain_df = []
all_final_df = []
all_analysis_df = []
for domain in domain_list:
with st.spinner(f"Crawling {domain}..."):
crawl_results = crawl_website(domain, exclude_url_regex, page_count, concurrent_requests, depth_limit)
crawl_results.insert(0, 'Originating Domain', domain)
all_crawl_results.append(crawl_results)
if not crawl_results.empty:
link_df = adv.crawlytics.links(crawl_results, internal_url_regex=extract_hostname(domain))
link_df.insert(0, 'Originating Domain', domain)
all_link_df.append(link_df)
unique_links_df = link_df['link'].value_counts().reset_index()
unique_links_df.columns = ['Link', 'Count']
unique_links_df.insert(0, 'Originating Domain', domain)
all_unique_links_df.append(unique_links_df)
outbound_links_df = link_df[link_df['internal'] == False]
unique_outbound_links_df = outbound_links_df['link'].value_counts().reset_index()
unique_outbound_links_df.columns = ['Link', 'Count']
unique_outbound_links_df.insert(0, 'Originating Domain', domain)
all_unique_outbound_links_df.append(unique_outbound_links_df)
outbound_links_df['link'] = outbound_links_df['link'].astype(str)
domain_df = outbound_links_df['link'].apply(extract_hostname).value_counts().reset_index()
domain_df.columns = ['Domain', 'Count']
domain_df = domain_df[domain_df['Domain'] != '']
peter_lowe_domains = get_peter_lowe_domains()
domain_df['In Peter Lowe List'] = domain_df['Domain'].apply(lambda x: 'Yes' if remove_subdomain(x) in peter_lowe_domains else 'No')
domain_df.insert(0, 'Originating Domain', domain)
all_domain_df.append(domain_df)
if not domain_df.empty:
if domain_filter_regex_input:
domain_filter_regex_patterns = domain_filter_regex_input.split('\n')
domain_filter_regex = '|'.join(domain_filter_regex_patterns)
domain_df = domain_df[~domain_df['Domain'].str.contains(domain_filter_regex, case=False, regex=True)]
if use_seo_powersuite and api_key:
seo_powersuite_df = get_seo_powersuite_data(domain_df['Domain'].tolist(), api_key)
if seo_powersuite_df is not None:
domain_df = pd.merge(domain_df, seo_powersuite_df, left_on='Domain', right_on='target', how='left')
domain_df.drop('target', axis=1, inplace=True)
desired_columns = ['Originating Domain', 'Domain', 'Count', 'In Peter Lowe List', 'domain_inlink_rank', 'refdomains']
final_df = domain_df[desired_columns]
all_final_df.append(final_df)
total_domains = len(final_df)
peter_lowe_percentage = round((final_df['In Peter Lowe List'] == 'No').sum() / total_domains * 100, 2)
avg_domain_inlink_rank = round(final_df['domain_inlink_rank'].mean(), 2)
avg_domain_inlink_rank_less_than_70 = round(final_df[final_df['domain_inlink_rank'] < 70]['domain_inlink_rank'].mean(), 2)
avg_refdomains = round(final_df['refdomains'].mean(), 2)
analysis_data = {
'Originating Domain': [domain] * 4,
'Metric': [
'Percentage of domains not in Peter Lowe\'s list',
'Average domain inlink rank',
'Average domain inlink rank (< 70)',
'Average number of refdomains'
],
'Value': [
f"{peter_lowe_percentage}%",
avg_domain_inlink_rank,
avg_domain_inlink_rank_less_than_70,
avg_refdomains
]
}
analysis_df = pd.DataFrame(analysis_data)
all_analysis_df.append(analysis_df)
else:
desired_columns = ['Originating Domain', 'Domain', 'Count', 'In Peter Lowe List']
final_df = domain_df[desired_columns]
all_final_df.append(final_df)
if all_crawl_results:
st.subheader("Crawl Results")
combined_crawl_results = pd.concat(all_crawl_results, ignore_index=True)
if download_links:
st.markdown(download_csv(combined_crawl_results, "Crawl Results"), unsafe_allow_html=True)
else:
st.write(combined_crawl_results)
if all_link_df:
st.subheader("All Links")
combined_link_df = pd.concat(all_link_df, ignore_index=True)
if download_links:
st.markdown(download_csv(combined_link_df, "All Links"), unsafe_allow_html=True)
else:
st.write(combined_link_df)
if all_unique_links_df:
st.subheader("Unique Links")
combined_unique_links_df = pd.concat(all_unique_links_df, ignore_index=True)
if download_links:
st.markdown(download_csv(combined_unique_links_df, "Unique Links"), unsafe_allow_html=True)
else:
st.write(combined_unique_links_df)
if all_unique_outbound_links_df:
st.subheader("Unique Outbound Links")
combined_unique_outbound_links_df = pd.concat(all_unique_outbound_links_df, ignore_index=True)
if download_links:
st.markdown(download_csv(combined_unique_outbound_links_df, "Unique Outbound Links"), unsafe_allow_html=True)
else:
st.write(combined_unique_outbound_links_df)
if all_final_df:
st.subheader("Unique Outbound Domains")
combined_final_df = pd.concat(all_final_df, ignore_index=True)
if download_links:
st.markdown(download_csv(combined_final_df, "Unique Outbound Domains"), unsafe_allow_html=True)
else:
st.write(combined_final_df)
if all_analysis_df:
st.subheader("Analytics")
combined_analysis_df = pd.concat(all_analysis_df)
combined_analysis_df = combined_analysis_df.pivot(index='Originating Domain', columns='Metric', values='Value').reset_index()
combined_analysis_df.columns.name = None
numeric_columns = ['Average domain inlink rank', 'Average domain inlink rank (< 70)', 'Average number of refdomains']
combined_analysis_df[numeric_columns] = combined_analysis_df[numeric_columns].astype(int)
combined_analysis_df = combined_analysis_df[[
'Originating Domain',
'Percentage of domains not in Peter Lowe\'s list',
'Average domain inlink rank',
'Average domain inlink rank (< 70)',
'Average number of refdomains'
]]
if download_links:
st.markdown(download_csv(combined_analysis_df, "Analytics"), unsafe_allow_html=True)
else:
st.table(combined_analysis_df)
else:
st.warning("Please enter at least one website URL.")
else:
st.warning("Please enter the website URLs.")
if __name__ == '__main__':
main()