joshuadunlop commited on
Commit
0d5608c
·
verified ·
1 Parent(s): 834b992

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +209 -179
app.py CHANGED
@@ -6,6 +6,8 @@ from urllib.parse import urlparse
6
  import base64
7
  import requests
8
  import time
 
 
9
 
10
  def get_seo_powersuite_data(domains, api_key):
11
  url_domain_inlink_rank = "https://api.seopowersuite.com/backlinks/v1.0/get-domain-inlink-rank"
@@ -74,23 +76,65 @@ def remove_subdomain(domain):
74
  return '.'.join(parts[-2:])
75
  return domain
76
 
77
- def crawl_website(url, exclude_url_regex, page_count, concurrent_requests, depth_limit):
78
- with tempfile.NamedTemporaryFile(delete=False, suffix='.jl') as temp_file:
79
- custom_settings = {
80
- "CLOSESPIDER_PAGECOUNT": page_count,
81
- "CONCURRENT_REQUESTS_PER_DOMAIN": concurrent_requests,
82
- "DEPTH_LIMIT": depth_limit
83
- }
84
- if exclude_url_regex:
85
- adv.crawl(url, output_file=temp_file.name, follow_links=True, exclude_url_params=True, exclude_url_regex=exclude_url_regex, custom_settings=custom_settings)
86
- else:
87
- adv.crawl(url, output_file=temp_file.name, follow_links=True, exclude_url_params=True, custom_settings=custom_settings)
88
- crawl_df = pd.read_json(temp_file.name, lines=True)
89
- crawl_df['hostname'] = crawl_df['url'].apply(extract_hostname)
90
- # Select only the desired columns
91
- desired_columns = ['url', 'hostname', 'title', 'meta_desc', 'status', 'links_url', 'links_text', 'links_nofollow']
92
- crawl_df = crawl_df[desired_columns]
93
- return crawl_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
  def download_csv(df, filename):
96
  csv = df.to_csv(index=False)
@@ -101,183 +145,169 @@ def download_csv(df, filename):
101
  def main():
102
  st.title("Website Crawler")
103
 
104
- domains = st.text_area("Enter the website URLs (one per line):", value="")
105
- page_count = st.number_input("Enter the maximum number of pages to crawl:", value=5000, min_value=1, step=1)
106
- col1, col2 = st.columns(2)
107
- with col1:
108
- concurrent_requests = st.number_input("Enter the number of concurrent requests per domain:", value=8, min_value=1, step=1)
109
- with col2:
110
- depth_limit = st.number_input("Enter the depth limit for the crawl:", value=0, min_value=0, step=1)
111
-
112
  col1, col2 = st.columns(2)
113
  with col1:
114
- exclude_url_regex_input = st.text_area("Enter exclude URL regex patterns (one per line):", value="cdn\nwp-content")
115
  with col2:
116
- domain_filter_regex_input = st.text_area("Filter our unique domains with regex (one per line):", value="instagram\nfacebook\ntwitter\nlinkedin\nsnapchat\ntiktok\nreddit\npinterest\namazon\ncdn\nyoutube\nyoutu.be")
117
-
118
- col1, col2 = st.columns([2, 5])
119
- with col1:
120
- use_seo_powersuite = st.checkbox("Use SEO PowerSuite")
121
- with col2:
122
- api_key = None
123
- if use_seo_powersuite:
124
- api_key = st.text_input("Enter the SEO PowerSuite API key:", type="password", value="")
125
  download_links = st.checkbox("Show Download Links")
126
-
127
  if st.button("Crawl"):
128
- if domains:
129
- domain_list = [domain.strip() for domain in domains.split('\n') if domain.strip()]
130
- if domain_list:
131
- exclude_url_regex_patterns = exclude_url_regex_input.split('\n')
132
- exclude_url_regex = '|'.join(exclude_url_regex_patterns) if exclude_url_regex_patterns else None
 
 
133
 
134
- all_crawl_results = []
135
- all_link_df = []
136
- all_unique_links_df = []
137
- all_unique_outbound_links_df = []
138
- all_domain_df = []
139
- all_final_df = []
140
- all_analysis_df = []
141
-
142
- for domain in domain_list:
143
- with st.spinner(f"Crawling {domain}..."):
144
- crawl_results = crawl_website(domain, exclude_url_regex, page_count, concurrent_requests, depth_limit)
145
- crawl_results.insert(0, 'Originating Domain', domain)
146
- all_crawl_results.append(crawl_results)
147
-
148
- if not crawl_results.empty:
149
- link_df = adv.crawlytics.links(crawl_results, internal_url_regex=extract_hostname(domain))
150
- link_df.insert(0, 'Originating Domain', domain)
151
- all_link_df.append(link_df)
152
-
153
- unique_links_df = link_df['link'].value_counts().reset_index()
154
- unique_links_df.columns = ['Link', 'Count']
155
- unique_links_df.insert(0, 'Originating Domain', domain)
156
- all_unique_links_df.append(unique_links_df)
157
-
158
- outbound_links_df = link_df[link_df['internal'] == False]
159
- unique_outbound_links_df = outbound_links_df['link'].value_counts().reset_index()
160
- unique_outbound_links_df.columns = ['Link', 'Count']
161
- unique_outbound_links_df.insert(0, 'Originating Domain', domain)
162
- all_unique_outbound_links_df.append(unique_outbound_links_df)
163
-
164
- outbound_links_df['link'] = outbound_links_df['link'].astype(str)
165
- domain_df = outbound_links_df['link'].apply(extract_hostname).value_counts().reset_index()
166
- domain_df.columns = ['Domain', 'Count']
167
- domain_df = domain_df[domain_df['Domain'] != '']
168
- peter_lowe_domains = get_peter_lowe_domains()
169
- domain_df['In Peter Lowe List'] = domain_df['Domain'].apply(lambda x: 'Yes' if remove_subdomain(x) in peter_lowe_domains else 'No')
170
- domain_df.insert(0, 'Originating Domain', domain)
171
- all_domain_df.append(domain_df)
172
-
173
- if not domain_df.empty:
174
- if domain_filter_regex_input:
175
- domain_filter_regex_patterns = domain_filter_regex_input.split('\n')
176
- domain_filter_regex = '|'.join(domain_filter_regex_patterns)
177
- domain_df = domain_df[~domain_df['Domain'].str.contains(domain_filter_regex, case=False, regex=True)]
178
-
179
- if use_seo_powersuite and api_key:
180
- seo_powersuite_df = get_seo_powersuite_data(domain_df['Domain'].tolist(), api_key)
181
- if seo_powersuite_df is not None:
182
- domain_df = pd.merge(domain_df, seo_powersuite_df, left_on='Domain', right_on='target', how='left')
183
- domain_df.drop('target', axis=1, inplace=True)
184
 
185
- desired_columns = ['Originating Domain', 'Domain', 'Count', 'In Peter Lowe List', 'domain_inlink_rank', 'refdomains']
186
- final_df = domain_df[desired_columns]
187
- all_final_df.append(final_df)
 
 
188
 
189
- total_domains = len(final_df)
190
- peter_lowe_percentage = round((final_df['In Peter Lowe List'] == 'No').sum() / total_domains * 100, 2)
191
- avg_domain_inlink_rank = round(final_df['domain_inlink_rank'].mean(), 2)
192
- avg_domain_inlink_rank_less_than_70 = round(final_df[final_df['domain_inlink_rank'] < 70]['domain_inlink_rank'].mean(), 2)
193
- avg_refdomains = round(final_df['refdomains'].mean(), 2)
194
 
195
- analysis_data = {
196
- 'Originating Domain': [domain] * 4,
197
- 'Metric': [
198
- 'Percentage of domains not in Peter Lowe\'s list',
199
- 'Average domain inlink rank',
200
- 'Average domain inlink rank (< 70)',
201
- 'Average number of refdomains'
202
- ],
203
- 'Value': [
204
- f"{peter_lowe_percentage}%",
205
- avg_domain_inlink_rank,
206
- avg_domain_inlink_rank_less_than_70,
207
- avg_refdomains
208
- ]
209
- }
210
 
211
- analysis_df = pd.DataFrame(analysis_data)
212
- all_analysis_df.append(analysis_df)
213
 
214
- else:
215
- desired_columns = ['Originating Domain', 'Domain', 'Count', 'In Peter Lowe List']
216
- final_df = domain_df[desired_columns]
217
- all_final_df.append(final_df)
218
-
219
- if all_crawl_results:
220
- st.subheader("Crawl Results")
221
- combined_crawl_results = pd.concat(all_crawl_results, ignore_index=True)
222
- if download_links:
223
- st.markdown(download_csv(combined_crawl_results, "Crawl Results"), unsafe_allow_html=True)
224
- else:
225
- st.write(combined_crawl_results)
226
-
227
- if all_link_df:
228
- st.subheader("All Links")
229
- combined_link_df = pd.concat(all_link_df, ignore_index=True)
230
- if download_links:
231
- st.markdown(download_csv(combined_link_df, "All Links"), unsafe_allow_html=True)
232
- else:
233
- st.write(combined_link_df)
234
-
235
- if all_unique_links_df:
236
- st.subheader("Unique Links")
237
- combined_unique_links_df = pd.concat(all_unique_links_df, ignore_index=True)
238
- if download_links:
239
- st.markdown(download_csv(combined_unique_links_df, "Unique Links"), unsafe_allow_html=True)
240
- else:
241
- st.write(combined_unique_links_df)
242
-
243
- if all_unique_outbound_links_df:
244
- st.subheader("Unique Outbound Links")
245
- combined_unique_outbound_links_df = pd.concat(all_unique_outbound_links_df, ignore_index=True)
246
- if download_links:
247
- st.markdown(download_csv(combined_unique_outbound_links_df, "Unique Outbound Links"), unsafe_allow_html=True)
248
- else:
249
- st.write(combined_unique_outbound_links_df)
250
-
251
- if all_final_df:
252
- st.subheader("Unique Outbound Domains")
253
- combined_final_df = pd.concat(all_final_df, ignore_index=True)
254
- if download_links:
255
- st.markdown(download_csv(combined_final_df, "Unique Outbound Domains"), unsafe_allow_html=True)
256
- else:
257
- st.write(combined_final_df)
258
-
259
- if all_analysis_df:
260
- st.subheader("Analytics")
261
- combined_analysis_df = pd.concat(all_analysis_df)
262
- combined_analysis_df = combined_analysis_df.pivot(index='Originating Domain', columns='Metric', values='Value').reset_index()
263
- combined_analysis_df.columns.name = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
  numeric_columns = ['Average domain inlink rank', 'Average domain inlink rank (< 70)', 'Average number of refdomains']
265
- combined_analysis_df[numeric_columns] = combined_analysis_df[numeric_columns].astype(int)
266
- combined_analysis_df = combined_analysis_df[[
267
- 'Originating Domain',
268
- 'Percentage of domains not in Peter Lowe\'s list',
269
- 'Average domain inlink rank',
270
- 'Average domain inlink rank (< 70)',
271
- 'Average number of refdomains'
272
- ]]
273
- if download_links:
274
- st.markdown(download_csv(combined_analysis_df, "Analytics"), unsafe_allow_html=True)
275
- else:
276
- st.table(combined_analysis_df)
277
  else:
278
  st.warning("Please enter at least one website URL.")
279
  else:
280
- st.warning("Please enter the website URLs.")
281
 
282
  if __name__ == '__main__':
283
  main()
 
6
  import base64
7
  import requests
8
  import time
9
+ from bs4 import BeautifulSoup
10
+ import re
11
 
12
  def get_seo_powersuite_data(domains, api_key):
13
  url_domain_inlink_rank = "https://api.seopowersuite.com/backlinks/v1.0/get-domain-inlink-rank"
 
76
  return '.'.join(parts[-2:])
77
  return domain
78
 
79
+ def domain_matches_blacklist(domain, regex_patterns):
80
+ for pattern in regex_patterns:
81
+ if re.search(pattern, domain, re.IGNORECASE):
82
+ return 'Yes'
83
+ return 'No'
84
+
85
+ def find_sitemap(url):
86
+ robots_url = f"{urlparse(url).scheme}://{urlparse(url).netloc}/robots.txt"
87
+ try:
88
+ robots_response = requests.get(robots_url)
89
+ if robots_response.status_code == 200:
90
+ for line in robots_response.text.split("\n"):
91
+ if line.startswith("Sitemap:"):
92
+ return line.split(":", 1)[1].strip()
93
+ except requests.exceptions.RequestException:
94
+ pass
95
+
96
+ sitemap_urls = [
97
+ "/sitemap.xml", "/wp-sitemap.xml", "/?sitemap=1", "/sitemap_index/xml",
98
+ "/sitemap-index.xml", "/sitemap.php", "/sitemap.txt", "/sitemap.xml.gz",
99
+ "/sitemap/", "/sitemap/sitemap.xml", "/sitemapindex.xml", "/sitemap/index.xml", "/sitemap1.xml"
100
+ ]
101
+
102
+ for sitemap_url in sitemap_urls:
103
+ try:
104
+ sitemap_response = requests.get(f"{urlparse(url).scheme}://{urlparse(url).netloc}{sitemap_url}")
105
+ if sitemap_response.status_code == 200:
106
+ return f"{urlparse(url).scheme}://{urlparse(url).netloc}{sitemap_url}"
107
+ except requests.exceptions.RequestException:
108
+ pass
109
+
110
+ return None
111
+
112
+ def crawl_posts(df, page_count):
113
+ crawl_results = []
114
+ for i, row in df.head(page_count).iterrows():
115
+ url = row['loc']
116
+ try:
117
+ response = requests.get(url)
118
+ if response.status_code == 200:
119
+ html = response.text
120
+ soup = BeautifulSoup(html, 'html.parser')
121
+ title = soup.title.text if soup.title else ''
122
+ meta_desc = soup.find('meta', attrs={'name': 'description'})['content'] if soup.find('meta', attrs={'name': 'description'}) else ''
123
+ links = []
124
+ for a in soup.find_all('a', href=True):
125
+ link_url = a['href']
126
+ link_text = a.text.strip()
127
+ link_nofollow = 'nofollow' in a.get('rel', [])
128
+ links.append({'url': link_url, 'text': link_text, 'nofollow': link_nofollow})
129
+ crawl_results.append({
130
+ 'url': url,
131
+ 'title': title,
132
+ 'meta_desc': meta_desc,
133
+ 'links': links
134
+ })
135
+ except requests.exceptions.RequestException:
136
+ pass
137
+ return pd.DataFrame(crawl_results)
138
 
139
  def download_csv(df, filename):
140
  csv = df.to_csv(index=False)
 
145
  def main():
146
  st.title("Website Crawler")
147
 
148
+ urls = st.text_area("Enter the website URLs (one per line):", value="")
149
+ page_count = st.number_input("Enter the number of pages to crawl:", value=1000, min_value=1, step=1)
150
+
 
 
 
 
 
151
  col1, col2 = st.columns(2)
152
  with col1:
153
+ domain_filter_regex_input = st.text_area("Filter out Unique Outbound Domains:", help="This uses a regex filter to find domains in the unique outbound domains list. Enter one regex per line.", value="instagram\nfacebook\ntwitter\nlinkedin\nsnapchat\ntiktok\nreddit\npinterest\namazon\ncdn\nyoutube\nyoutu.be")
154
  with col2:
155
+ domain_match_regex_input = st.text_area("Domain Blacklist:", help="This uses a regex filter to match domains in the Unique Outbound Domains to the blacklist entered. Enter one regex per line.", value="xyz\ncasino\ncbd\nessay")
156
+ use_seo_powersuite = st.checkbox("Use SEO PowerSuite")
157
+ api_key = None
158
+ if use_seo_powersuite:
159
+ api_key = st.text_input("Enter the SEO PowerSuite API key:", type="password")
 
 
 
 
160
  download_links = st.checkbox("Show Download Links")
161
+
162
  if st.button("Crawl"):
163
+ if urls:
164
+ url_list = [url.strip() for url in urls.split('\n') if url.strip()]
165
+ if url_list:
166
+ all_link_df = pd.DataFrame()
167
+ all_unique_outbound_links_df = pd.DataFrame()
168
+ all_final_df = pd.DataFrame()
169
+ all_analysis_df = pd.DataFrame()
170
 
171
+ for url in url_list:
172
+ with st.spinner(f"Finding sitemap for {url}..."):
173
+ sitemap_url = find_sitemap(url)
174
+ if sitemap_url:
175
+ with st.spinner(f"Crawling {url}..."):
176
+ sitemap_df = adv.sitemap_to_df(sitemap_url)
177
+ crawl_results = crawl_posts(sitemap_df, page_count)
178
+
179
+ if not crawl_results.empty:
180
+ link_df = pd.DataFrame(crawl_results['links'].explode().tolist())
181
+ link_df = link_df[~link_df['url'].str.startswith(('/','#'))]
182
+ link_df['internal'] = link_df['url'].apply(lambda x: extract_hostname(url) in extract_hostname(x))
183
+ link_df = link_df[link_df['internal'] == False] # Filter out internal links
184
+ link_df.insert(0, 'Originating Domain', url) # Add 'Originating Domain' column
185
+ link_df = link_df[['Originating Domain', 'url', 'text', 'nofollow']] # Remove the 'internal' column
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
 
187
+ outbound_links_df = link_df.copy() # Create a copy of link_df for outbound links
188
+ unique_links_df = link_df['url'].value_counts().reset_index()
189
+ unique_links_df = unique_links_df[~unique_links_df['url'].str.startswith(('/','#'))]
190
+ unique_links_df.columns = ['Link', 'Count']
191
+ unique_links_df.insert(0, 'Originating Domain', url)
192
 
193
+ unique_outbound_links_df = outbound_links_df['url'].value_counts().reset_index()
194
+ unique_outbound_links_df = unique_outbound_links_df[~unique_outbound_links_df['url'].str.startswith(('/','#'))]
195
+ unique_outbound_links_df.columns = ['Link', 'Count']
196
+ unique_outbound_links_df.insert(0, 'Originating Domain', url)
 
197
 
198
+ outbound_links_df['url'] = outbound_links_df['url'].astype(str)
199
+ domain_df = outbound_links_df['url'].apply(extract_hostname).value_counts().reset_index()
200
+ domain_df.columns = ['Domain', 'Count']
201
+ domain_df = domain_df[domain_df['Domain'] != '']
202
+ peter_lowe_domains = get_peter_lowe_domains()
203
+ domain_df['In Peter Lowe List'] = domain_df['Domain'].apply(lambda x: 'Yes' if remove_subdomain(x) in peter_lowe_domains else 'No')
204
+ domain_df.insert(0, 'Originating Domain', url)
 
 
 
 
 
 
 
 
205
 
206
+ # Determine the 'DoFollow' value for each domain
207
+ domain_df['DoFollow'] = domain_df['Domain'].apply(lambda x: any(outbound_links_df[(outbound_links_df['url'].str.contains(x)) & (outbound_links_df['nofollow'] == False)]))
208
 
209
+ if not domain_df.empty:
210
+ if domain_filter_regex_input:
211
+ domain_filter_regex_patterns = domain_filter_regex_input.split('\n')
212
+ domain_filter_regex = '|'.join(domain_filter_regex_patterns)
213
+ domain_df = domain_df[~domain_df['Domain'].str.contains(domain_filter_regex, case=False, regex=True)]
214
+
215
+ if not domain_df.empty:
216
+ if domain_match_regex_input:
217
+ domain_match_regex_patterns = domain_match_regex_input.split('\n')
218
+ domain_df['Blacklist'] = domain_df['Domain'].apply(lambda x: domain_matches_blacklist(x, domain_match_regex_patterns) == 'Yes')
219
+ else:
220
+ domain_df['Blacklist'] = False
221
+
222
+ total_domains = len(domain_df)
223
+ peter_lowe_percentage = round((domain_df['In Peter Lowe List'] == 'No').sum() / total_domains * 100, 2)
224
+ blacklist_percentage = round((domain_df['Blacklist'] == True).sum() / total_domains * 100, 2)
225
+
226
+ analysis_data = {
227
+ 'Originating Domain': [url] * 2,
228
+ 'Metric': ['Percentage of domains not in Peter Lowe\'s list', 'Percentage of domains in the Blacklist'],
229
+ 'Value': [f"{peter_lowe_percentage}%", f"{blacklist_percentage}%"]
230
+ }
231
+
232
+ analysis_df = pd.DataFrame(analysis_data)
233
+
234
+ if use_seo_powersuite and api_key:
235
+ seo_powersuite_df = get_seo_powersuite_data(domain_df['Domain'].tolist(), api_key)
236
+ if seo_powersuite_df is not None:
237
+ domain_df = pd.merge(domain_df, seo_powersuite_df, left_on='Domain', right_on='target', how='left')
238
+ domain_df.drop('target', axis=1, inplace=True)
239
+
240
+ avg_domain_inlink_rank = round(domain_df['domain_inlink_rank'].mean(), 2)
241
+ avg_domain_inlink_rank_less_than_70 = round(domain_df[domain_df['domain_inlink_rank'] < 70]['domain_inlink_rank'].mean(), 2)
242
+ avg_refdomains = round(domain_df['refdomains'].mean(), 2)
243
+
244
+ additional_analysis_data = {
245
+ 'Originating Domain': [url] * 3,
246
+ 'Metric': [
247
+ 'Average domain inlink rank',
248
+ 'Average domain inlink rank (< 70)',
249
+ 'Average number of refdomains'
250
+ ],
251
+ 'Value': [
252
+ avg_domain_inlink_rank,
253
+ avg_domain_inlink_rank_less_than_70,
254
+ avg_refdomains
255
+ ]
256
+ }
257
+
258
+ analysis_df = pd.concat([analysis_df, pd.DataFrame(additional_analysis_data)], ignore_index=True)
259
+
260
+ desired_columns = ['Originating Domain', 'Domain', 'Count', 'In Peter Lowe List', 'DoFollow', 'Blacklist', 'domain_inlink_rank', 'refdomains']
261
+ final_df = domain_df[desired_columns]
262
+ else:
263
+ desired_columns = ['Originating Domain', 'Domain', 'Count', 'In Peter Lowe List', 'DoFollow', 'Blacklist']
264
+ final_df = domain_df[desired_columns]
265
+ else:
266
+ st.warning(f"No unique outbound domains found for {url} after filtering.")
267
+ else:
268
+ st.warning(f"No unique outbound domains found for {url}.")
269
+
270
+ all_link_df = pd.concat([all_link_df, link_df], ignore_index=True)
271
+ all_unique_outbound_links_df = pd.concat([all_unique_outbound_links_df, unique_outbound_links_df], ignore_index=True)
272
+ all_final_df = pd.concat([all_final_df, final_df], ignore_index=True)
273
+ all_analysis_df = pd.concat([all_analysis_df, analysis_df], ignore_index=True)
274
+ else:
275
+ st.warning(f"No posts found in the sitemap for {url}.")
276
+ else:
277
+ st.warning(f"Sitemap not found for {url}.")
278
+
279
+ st.subheader("Outbound Links")
280
+ if download_links:
281
+ st.markdown(download_csv(all_link_df, "Outbound Links"), unsafe_allow_html=True)
282
+ else:
283
+ st.write(all_link_df)
284
+
285
+ st.subheader("Unique Outbound Links")
286
+ if download_links:
287
+ st.markdown(download_csv(all_unique_outbound_links_df, "Unique Outbound Links"), unsafe_allow_html=True)
288
+ else:
289
+ st.write(all_unique_outbound_links_df)
290
+
291
+ st.subheader("Unique Outbound Domains")
292
+ if download_links:
293
+ st.markdown(download_csv(all_final_df, "Unique Outbound Domains"), unsafe_allow_html=True)
294
+ else:
295
+ st.write(all_final_df)
296
+
297
+ st.subheader("Analytics")
298
+ all_analysis_df = all_analysis_df.pivot(index='Originating Domain', columns='Metric', values='Value').reset_index()
299
+ all_analysis_df.columns.name = None
300
+ if use_seo_powersuite and api_key:
301
  numeric_columns = ['Average domain inlink rank', 'Average domain inlink rank (< 70)', 'Average number of refdomains']
302
+ all_analysis_df[numeric_columns] = all_analysis_df[numeric_columns].astype(int)
303
+ if download_links:
304
+ st.markdown(download_csv(all_analysis_df, "Analytics"), unsafe_allow_html=True)
305
+ else:
306
+ st.table(all_analysis_df)
 
 
 
 
 
 
 
307
  else:
308
  st.warning("Please enter at least one website URL.")
309
  else:
310
+ st.warning("Please enter website URLs.")
311
 
312
  if __name__ == '__main__':
313
  main()