File size: 6,164 Bytes
0f98abb
0be4b49
 
 
 
 
 
 
27179da
7164e51
0be4b49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4731465
0be4b49
 
 
 
 
e1c5134
0be4b49
 
 
 
 
0f98abb
 
 
 
853fad2
0f98abb
 
0be4b49
6e8b587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee12eb1
 
 
6e8b587
ee12eb1
6e8b587
 
 
 
 
 
 
 
 
 
 
 
e3e4c19
6e8b587
ee12eb1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import streamlit as st
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
from sklearn.neighbors import NearestNeighbors
import os
import time

def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)

def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text

def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list

def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []
    
    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks

class SemanticSearch:
    
    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False
    
    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True
    
    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
        
        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors
    
    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings

def load_recommender(path, start_page=1):
    global recommender
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    return 'Corpus Loaded.'

def generate_text(openAI_key,prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message

def generate_answer(question,openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'
        
    prompt += "Instructions: Compose a simple reply to the query using the search results given. "\
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
              "with the same name, create separate answers for each. Only include information found in the results and "\
              "don't add any additional information. Make sure the answer is correct and don't output false content. "\
              "If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\
              "search results which has nothing to do with the question. Only answer what is asked. The "\
              "answer should be short and concise. \n\nQuery: {question}\nAnswer:"
    
    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text(openAI_key, prompt,"text-davinci-003")
    return answer

recommender = SemanticSearch()

st.title('PDF GPT')

description = """ PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. The returned response can cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""

st.markdown(description)

openAI_key = st.sidebar.text_input('API Key', value='sk-')

add_row = st.sidebar.button("Add row")
row_count = st.session_state.get("row_count", 1)

if add_row:
    row_count += 1
    st.session_state.row_count = row_count

for i in range(row_count):
    col1, col2, col3, col4 = st.columns(4)

    with col1:
        url = st.text_input(f'PDF URL {i+1}', key=f'url{i}')
    with col2:
        question = st.text_input(f'Question {i+1}', key=f'question{i}')
    with col3:
        # Initialize session state for answer if not already done
        if f'answer{i}' not in st.session_state:
            st.session_state[f'answer{i}'] = ''
        answer_placeholder = st.empty()  
        answer_placeholder.text_area(f'Answer {i+1}', key=f'answer{i}', value=st.session_state[f'answer{i}']) 
    with col4:
        if st.button(f'Submit {i+1}'):
            if openAI_key.strip()=='':
                st.error('Please enter you Open AI Key')
            elif url.strip() == '':
                st.error('URL field is empty')
            elif question.strip() == '':
                st.error('Question field is empty')
            else:
                glob_url = url
                download_pdf(glob_url, 'corpus.pdf')
                load_recommender('corpus.pdf')
    
                answer = generate_answer(question,openAI_key)
                # Store the answer in session state
                st.session_state[f'answer{i}'] = answer
                answer_placeholder.text_area(f'Answer {i+1}', key=f'answer{i}', value=st.session_state[f'answer{i}'])