Spaces:
Sleeping
Sleeping
File size: 10,265 Bytes
0f98abb 0be4b49 27179da 7164e51 5aeea08 e5251a6 426b438 f5c78ec 0be4b49 53af5d4 0be4b49 426b438 0be4b49 426b438 0be4b49 426b438 0be4b49 426b438 77e0ca9 0be4b49 3f02ca8 0be4b49 426b438 0be4b49 665f9ef 0be4b49 3f02ca8 0be4b49 426b438 77e0ca9 d9e7c36 0be4b49 d902698 0be4b49 0f98abb b0e58e7 0f98abb 853fad2 0f98abb 0be4b49 6e8b587 5aeea08 6e8b587 426b438 f3af12d 6e8b587 5aeea08 426b438 5aeea08 426b438 bdcb7b5 5aeea08 6e8b587 f8eb477 6e8b587 f8eb477 6e8b587 e76c62c 6e8b587 e9ba6d1 6e8b587 426b438 6e8b587 e76c62c 80a626b 426b438 e5251a6 a0777f9 3f02ca8 7344a31 a0777f9 e5251a6 426b438 dff4535 f5c78ec dff4535 e9ba6d1 f5c78ec 426b438 88f86da 426b438 88f86da 07c1285 223634f d8f0a78 07c1285 426b438 f5c78ec 41866c2 426b438 dff4535 41866c2 f5c78ec 41866c2 f5c78ec f093bf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import streamlit as st
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
from sklearn.neighbors import NearestNeighbors
import os
import time
import csv
from io import StringIO
import pandas as pd
from io import BytesIO
import base64
import threading
from queue import Queue
import logging
logging.basicConfig(level=logging.INFO)
def download_pdf(url, output_path):
try:
urllib.request.urlretrieve(url, output_path)
except urllib.error.HTTPError as e:
if e.code == 429:
time.sleep(1) # Wait for 1 second before retrying
download_pdf(url, output_path)
else:
raise
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page-1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
page_nums = []
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i:i+word_length]
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
len(text_toks) != (idx+1)):
text_toks[idx+1] = chunk + text_toks[idx+1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self):
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
self.fitted = False
def fit(self, data, batch=1000, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
def call(self, text, return_data=True):
if not self.fitted:
raise Exception("The fit method must be called before the call method.")
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i:(i+batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
def load_recommender(path, start_page=1):
global recommender
texts = pdf_to_text(path, start_page=start_page)
chunks = text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return 'Corpus Loaded.'
def generate_text(openAI_key,prompt, engine="text-davinci-003"):
openai.api_key = openAI_key
completions = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = completions.choices[0].text
return message
def generate_answer(question,openAI_key):
topn_chunks = recommender.call(question)
if not recommender.fitted:
st.error('The recommender is not fitted yet.')
return
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
"Cite each reference using [Page Number] notation (every result has this number at the beginning). "\
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
"with the same name, create separate answers for each. Only include information found in the results and "\
"don't add any additional information. Make sure the answer is correct, and don't output false content. "\
"If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\
"search results that have nothing to do with the question. Only answer what is asked. The "\
"answer should be short and concise. \n\nQuery: {question}\nAnswer: "
prompt += f"Query: {question}\nAnswer: "
answer = generate_text(openAI_key, prompt,"text-davinci-003")
answer = answer.strip()
return answer
recommender = SemanticSearch()
st.title('PDF GPT Multi-Line.')
description = """ PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. The returned response can cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""
st.markdown(description)
openAI_key = st.sidebar.text_input('API Key', value='sk-')
data_section = st.sidebar.text_area("Paste Data:")
paste_data = st.sidebar.button("Paste Data")
add_row = st.sidebar.button("Add row")
row_count = st.session_state.get("row_count", 1)
num_concurrent_calls = st.sidebar.number_input("Concurrent Calls:", min_value=1, max_value=2000, value=10, step=1)
generate_all = st.sidebar.button("Generate All")
reset = st.sidebar.button("Reset")
if reset:
for i in range(row_count):
st.session_state[f"url{i}"] = ''
st.session_state[f"question{i}"] = ''
st.session_state[f'session_answer{i}'] = ''
st.session_state.row_count = 1
st.experimental_rerun()
if add_row:
row_count += 1
st.session_state.row_count = row_count
if paste_data:
data = StringIO(data_section.strip())
reader = csv.reader(data, delimiter='\t', quotechar='"') # Changed delimiter to '\t'
urls_questions = [row for row in reader]
row_count = len(urls_questions)
st.session_state.row_count = row_count
for i, url_question in enumerate(urls_questions): # Directly iterate over urls_questions
if len(url_question) >= 2:
st.session_state[f"url{i}"] = url_question[0]
st.session_state[f"question{i}"] = url_question[1]
else:
st.error(f"Row {i+1} does not have enough columns.")
for i in range(row_count):
col1, col2, col3, col4 = st.columns(4)
with col1:
url = st.text_input(f'PDF URL {i+1}', key=f'url{i}')
with col2:
question = st.text_input(f'Question {i+1}', key=f'question{i}')
with col3:
if f'session_answer{i}' not in st.session_state:
st.session_state[f'session_answer{i}'] = ''
with col4:
if st.button(f'Submit {i+1}'):
if openAI_key.strip()=='':
st.error('Please enter you Open AI Key')
elif url.strip() == '':
st.error('URL field is empty')
elif question.strip() == '':
st.error('Question field is empty')
else:
glob_url = url
download_pdf(glob_url, 'corpus.pdf')
load_recommender('corpus.pdf')
answer = generate_answer(question,openAI_key)
st.session_state[f'session_answer{i}'] = answer
with col3:
answer_placeholder = st.empty()
answer_placeholder.text_area(f'Answer {i+1}', key=f'answer{i}', value=st.session_state[f'session_answer{i}'])
def get_table_download_link(df, filename="data.csv", text="Download CSV file"):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}">{text}</a>'
return href
data = [[st.session_state.get(f'url{i}', ''), st.session_state.get(f'question{i}', ''), st.session_state.get(f'session_answer{i}', '')] for i in range(row_count)]
df = pd.DataFrame(data, columns=['URL', 'Question', 'Answer'])
st.markdown(get_table_download_link(df), unsafe_allow_html=True)
class WorkerThread(threading.Thread):
def __init__(self, jobs, results):
super().__init__()
self.jobs = jobs
self.results = results
def run(self):
while True:
job = self.jobs.get()
if job is None:
break
try:
i, question = job
result = generate_answer(question, openAI_key)
self.results.put((i, result))
logging.info(f"Job {i} completed successfully.")
except Exception as e:
self.results.put((i, str(e)))
logging.error(f"Error on job {i}: {str(e)}")
if generate_all:
questions = [st.session_state.get(f"question{i}", "") for i in range(row_count)]
urls = [st.session_state.get(f"url{i}", "") for i in range(row_count)]
jobs = Queue()
results = Queue()
workers = [WorkerThread(jobs, results) for _ in range(num_concurrent_calls)]
for i, (url, question) in enumerate(zip(urls, questions)):
download_pdf(url, 'corpus.pdf')
load_recommender('corpus.pdf')
jobs.put((i, question))
for worker in workers:
worker.start()
for worker in workers:
jobs.put(None)
for worker in workers:
worker.join()
logging.info("All worker threads have finished.")
answers = {}
while not results.empty():
i, answer = results.get()
if isinstance(answer, str) and 'Error' in answer:
st.error(f"Error on row {i}: {answer}")
else:
answers[i] = answer
logging.info(f"Collected {len(answers)} answers.")
for i, answer in answers.items():
st.session_state[f'session_answer{i}'] = answer
logging.info("Session state updated with answers.")
# Rerun the app after all answers are generated
st.experimental_rerun()
|