PDF_Chatlines / app.py
joshuadunlop's picture
Update app.py
426b438
raw
history blame
9.18 kB
import streamlit as st
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
from sklearn.neighbors import NearestNeighbors
import os
import time
import csv
from io import StringIO
import pandas as pd
from io import BytesIO
import base64
import threading
from queue import Queue
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page-1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
page_nums = []
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i:i+word_length]
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
len(text_toks) != (idx+1)):
text_toks[idx+1] = chunk + text_toks[idx+1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self):
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
self.fitted = False
def fit(self, data, batch=1000, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
def call(self, text, return_data=True):
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i:(i+batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
def load_recommender(path, start_page=1):
global recommender
texts = pdf_to_text(path, start_page=start_page)
chunks = text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return 'Corpus Loaded.'
def generate_text(openAI_key,prompt, engine="text-davinci-003"):
openai.api_key = openAI_key
completions = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = completions.choices[0].text
return message
def generate_answer(question,openAI_key):
topn_chunks = recommender.call(question)
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a simple reply to the query using the search results given. "
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "
"with the same name, create separate answers for each. Only include information found in the results and "
"don't add any additional information. Make sure the answer is correct and don't output false content. "
"If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "
"search results which has nothing to do with the question. Only answer what is asked. The "
"answer should be short and concise. \n\nQuery: {question}\nAnswer:"
prompt += f"Query: {question}\nAnswer:"
answer = generate_text(openAI_key, prompt,"text-davinci-003")
return answer
recommender = SemanticSearch()
st.title('PDF GPT')
description = """ PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. The returned response can cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""
st.markdown(description)
openAI_key = st.sidebar.text_input('API Key', value='sk-')
data_section = st.sidebar.text_area("Paste Data:")
paste_data = st.sidebar.button("Paste Data")
add_row = st.sidebar.button("Add row")
row_count = st.session_state.get("row_count", 1)
num_concurrent_calls = st.sidebar.number_input("Concurrent Calls:", min_value=1, max_value=2000, value=10, step=1)
generate_all = st.sidebar.button("Generate All")
if add_row:
row_count += 1
st.session_state.row_count = row_count
if paste_data:
data = StringIO(data_section.strip())
reader = csv.reader(data, delimiter='\t', quotechar='"') # Changed delimiter to '\t'
urls_questions = [row for row in reader]
row_count = len(urls_questions)
st.session_state.row_count = row_count
for i, url_question in enumerate(urls_questions): # Directly iterate over urls_questions
if len(url_question) >= 2:
st.session_state[f"url{i}"] = url_question[0]
st.session_state[f"question{i}"] = url_question[1]
else:
st.error(f"Row {i+1} does not have enough columns.")
for i in range(row_count):
col1, col2, col3, col4 = st.columns(4)
with col1:
url = st.text_input(f'PDF URL {i+1}', key=f'url{i}', value=st.session_state.get(f'url{i}', ''))
with col2:
question = st.text_input(f'Question {i+1}', key=f'question{i}', value=st.session_state.get(f'question{i}', ''))
with col3:
# Initialize session state for answer if not already done
if f'session_answer{i}' not in st.session_state:
st.session_state[f'session_answer{i}'] = ''
with col4:
if st.button(f'Submit {i+1}'):
if openAI_key.strip()=='':
st.error('Please enter you Open AI Key')
elif url.strip() == '':
st.error('URL field is empty')
elif question.strip() == '':
st.error('Question field is empty')
else:
glob_url = url
download_pdf(glob_url, 'corpus.pdf')
load_recommender('corpus.pdf')
answer = generate_answer(question,openAI_key)
# Store the answer in session state
st.session_state[f'session_answer{i}'] = answer
with col3:
answer_placeholder = st.empty()
answer_placeholder.text_area(f'Answer {i+1}', key=f'answer{i}', value=st.session_state[f'session_answer{i}'])
def get_table_download_link(df, filename="data.csv", text="Download CSV file"):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # some strings <-> bytes conversions necessary here
href = f'{text}'
return href
# Create a list of lists containing all URLs, questions, and answers
data = [[st.session_state.get(f'url{i}', ''), st.session_state.get(f'question{i}', ''), st.session_state.get(f'session_answer{i}', '')] for i in range(row_count)]
# Convert the data to a Pandas DataFrame
df = pd.DataFrame(data, columns=['URL', 'Question', 'Answer'])
# Generate a download link for the DataFrame
st.markdown(get_table_download_link(df), unsafe_allow_html=True)
def to_csv(data):
output = BytesIO()
writer = csv.writer(output)
writer.writerows(data)
return output.getvalue().decode('utf-8')
def get_table_download_link(df, filename="data.csv", text="Download CSV file"):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # some strings <-> bytes conversions necessary here
href = f'{text}'
return href
class WorkerThread(threading.Thread):
def __init__(self, jobs, results):
super().__init__()
self.jobs = jobs
self.results = results
def run(self):
while True:
job = self.jobs.get()
if job is None:
break
i, question = job
result = generate_answer(question, openAI_key)
self.results.put((i, result))
if generate_all:
questions = [st.session_state.get(f"question{i}", "") for i in range(row_count)]
jobs = Queue()
results = Queue()
workers = [WorkerThread(jobs, results) for _ in range(num_concurrent_calls)]
for worker in workers:
worker.start()
for i, question in enumerate(questions):
jobs.put((i, question))
for _ in range(num_concurrent_calls):
jobs.put(None)
for worker in workers:
worker.join()
while not results.empty():
i, answer = results.get()
st.session_state[f'session_answer{i}'] = answer