import streamlit as st import urllib.request import fitz import re import numpy as np import tensorflow_hub as hub import openai from sklearn.neighbors import NearestNeighbors import os import time import csv from io import StringIO import pandas as pd from io import BytesIO import base64 import threading from queue import Queue import logging logging.basicConfig(level=logging.INFO) def download_pdf(url, output_path): try: urllib.request.urlretrieve(url, output_path) except urllib.error.HTTPError as e: if e.code == 429: time.sleep(1) # Wait for 1 second before retrying download_pdf(url, output_path) else: raise def preprocess(text): text = text.replace('\n', ' ') text = re.sub('\s+', ' ', text) return text def pdf_to_text(path, start_page=1, end_page=None): doc = fitz.open(path) total_pages = doc.page_count if end_page is None: end_page = total_pages text_list = [] for i in range(start_page-1, end_page): text = doc.load_page(i).get_text("text") text = preprocess(text) text_list.append(text) doc.close() return text_list def text_to_chunks(texts, word_length=150, start_page=1): text_toks = [t.split(' ') for t in texts] page_nums = [] chunks = [] for idx, words in enumerate(text_toks): for i in range(0, len(words), word_length): chunk = words[i:i+word_length] if (i+word_length) > len(words) and (len(chunk) < word_length) and ( len(text_toks) != (idx+1)): text_toks[idx+1] = chunk + text_toks[idx+1] continue chunk = ' '.join(chunk).strip() chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"' chunks.append(chunk) return chunks class SemanticSearch: def __init__(self): self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4') self.fitted = False def fit(self, data, batch=1000, n_neighbors=5): self.data = data self.embeddings = self.get_text_embedding(data, batch=batch) n_neighbors = min(n_neighbors, len(self.embeddings)) self.nn = NearestNeighbors(n_neighbors=n_neighbors) self.nn.fit(self.embeddings) self.fitted = True def call(self, text, return_data=True): if not self.fitted: raise Exception("The fit method must be called before the call method.") inp_emb = self.use([text]) neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0] if return_data: return [self.data[i] for i in neighbors] else: return neighbors def get_text_embedding(self, texts, batch=1000): embeddings = [] for i in range(0, len(texts), batch): text_batch = texts[i:(i+batch)] emb_batch = self.use(text_batch) embeddings.append(emb_batch) embeddings = np.vstack(embeddings) return embeddings def load_recommender(path, start_page=1): global recommender texts = pdf_to_text(path, start_page=start_page) chunks = text_to_chunks(texts, start_page=start_page) recommender.fit(chunks) return 'Corpus Loaded.' def generate_text(openAI_key,prompt, engine="text-davinci-003"): openai.api_key = openAI_key completions = openai.Completion.create( engine=engine, prompt=prompt, max_tokens=512, n=1, stop=None, temperature=0.7, ) message = completions.choices[0].text return message def generate_answer(question,openAI_key): topn_chunks = recommender.call(question) if not recommender.fitted: st.error('The recommender is not fitted yet.') return prompt = "" prompt += 'search results:\n\n' for c in topn_chunks: prompt += c + '\n\n' prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\ "Cite each reference using [Page Number] notation (every result has this number at the beginning). "\ "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\ "with the same name, create separate answers for each. Only include information found in the results and "\ "don't add any additional information. Make sure the answer is correct, and don't output false content. "\ "If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\ "search results that have nothing to do with the question. Only answer what is asked. The "\ "answer should be short and concise. \n\nQuery: {question}\nAnswer: " prompt += f"Query: {question}\nAnswer: " answer = generate_text(openAI_key, prompt,"text-davinci-003") answer = answer.strip() return answer recommender = SemanticSearch() st.title('PDF GPT Multi-Line.') description = """ PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. The returned response can cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly.""" st.markdown(description) openAI_key = st.sidebar.text_input('API Key', value='sk-') data_section = st.sidebar.text_area("Paste Data:") paste_data = st.sidebar.button("Paste Data") add_row = st.sidebar.button("Add row") row_count = st.session_state.get("row_count", 1) num_concurrent_calls = st.sidebar.number_input("Concurrent Calls:", min_value=1, max_value=2000, value=10, step=1) generate_all = st.sidebar.button("Generate All") reset = st.sidebar.button("Reset") if reset: for i in range(row_count): st.session_state[f"url{i}"] = '' st.session_state[f"question{i}"] = '' st.session_state[f'session_answer{i}'] = '' st.session_state.row_count = 1 st.experimental_rerun() if add_row: row_count += 1 st.session_state.row_count = row_count if paste_data: data = StringIO(data_section.strip()) reader = csv.reader(data, delimiter='\t', quotechar='"') # Changed delimiter to '\t' urls_questions = [row for row in reader] row_count = len(urls_questions) st.session_state.row_count = row_count for i, url_question in enumerate(urls_questions): # Directly iterate over urls_questions if len(url_question) >= 2: st.session_state[f"url{i}"] = url_question[0] st.session_state[f"question{i}"] = url_question[1] else: st.error(f"Row {i+1} does not have enough columns.") for i in range(row_count): col1, col2, col3, col4 = st.columns(4) with col1: url = st.text_input(f'PDF URL {i+1}', key=f'url{i}') with col2: question = st.text_input(f'Question {i+1}', key=f'question{i}') with col3: if f'session_answer{i}' not in st.session_state: st.session_state[f'session_answer{i}'] = '' with col4: if st.button(f'Submit {i+1}'): if openAI_key.strip()=='': st.error('Please enter you Open AI Key') elif url.strip() == '': st.error('URL field is empty') elif question.strip() == '': st.error('Question field is empty') else: glob_url = url download_pdf(glob_url, 'corpus.pdf') load_recommender('corpus.pdf') answer = generate_answer(question,openAI_key) st.session_state[f'session_answer{i}'] = answer with col3: answer_placeholder = st.empty() answer_placeholder.text_area(f'Answer {i+1}', key=f'answer{i}', value=st.session_state[f'session_answer{i}']) def get_table_download_link(df, filename="data.csv", text="Download CSV file"): csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() href = f'{text}' return href data = [[st.session_state.get(f'url{i}', ''), st.session_state.get(f'question{i}', ''), st.session_state.get(f'session_answer{i}', '')] for i in range(row_count)] df = pd.DataFrame(data, columns=['URL', 'Question', 'Answer']) st.markdown(get_table_download_link(df), unsafe_allow_html=True) class WorkerThread(threading.Thread): def __init__(self, jobs, results): super().__init__() self.jobs = jobs self.results = results def run(self): while True: job = self.jobs.get() if job is None: break try: i, question = job result = generate_answer(question, openAI_key) self.results.put((i, result)) logging.info(f"Job {i} completed successfully.") except Exception as e: self.results.put((i, str(e))) logging.error(f"Error on job {i}: {str(e)}") if generate_all: questions = [st.session_state.get(f"question{i}", "") for i in range(row_count)] urls = [st.session_state.get(f"url{i}", "") for i in range(row_count)] jobs = Queue() results = Queue() workers = [WorkerThread(jobs, results) for _ in range(num_concurrent_calls)] for i, (url, question) in enumerate(zip(urls, questions)): download_pdf(url, 'corpus.pdf') load_recommender('corpus.pdf') jobs.put((i, question)) for worker in workers: worker.start() for worker in workers: jobs.put(None) for worker in workers: worker.join() logging.info("All worker threads have finished.") answers = {} while not results.empty(): i, answer = results.get() if isinstance(answer, str) and 'Error' in answer: st.error(f"Error on row {i}: {answer}") else: answers[i] = answer logging.info(f"Collected {len(answers)} answers.") for i, answer in answers.items(): st.session_state[f'session_answer{i}'] = answer logging.info("Session state updated with answers.") # Rerun the app after all answers are generated st.experimental_rerun()