joshuadunlop's picture
Update app.py
e1fee45 verified
raw
history blame
5.47 kB
import streamlit as st
import pandas as pd
import requests
import base64
def get_backlinks(api_login, api_key, target_url, filters):
# Encoding credentials
encoded_credentials = base64.b64encode(f"{api_login}:{api_key}".encode()).decode()
# Setting headers with Basic Authentication
headers = {
'Authorization': f'Basic {encoded_credentials}'
}
# Prepare post data
post_data = {
0: {
"target": target_url,
"limit": 1000,
"mode": "as_is",
"filters": filters
}
}
# Making the API request
response = requests.post("https://api.dataforseo.com/v3/backlinks/backlinks/live", json=post_data, headers=headers)
response_json = response.json()
# Log the full response for debugging
st.text("API Response:")
st.text(f"Response Status Code: {response.status_code}")
st.text(f"Response Headers: {response.headers}")
st.text(f"Response Body: {response_json}") # Now response_json is defined
# Check if the response contains 'results' key and handle the JSON structure appropriately
if response.status_code == 200:
response_data = response.json()
# Debugging: Print out the keys of the response_data
st.text(f"Keys in response JSON: {list(response_data.keys())}")
if 'tasks' in response_data:
# Assuming there is only one task and one result within each task
task_result = response_data['tasks'][0]['result']
if task_result and 'items' in task_result[0]:
# The actual backlink items are nested within 'items'
items = task_result[0]['items']
st.text(f"First few items: {items[:5]}") # Debugging line to show the items structure
# Convert to DataFrame
df = pd.json_normalize(items)
return df
else:
st.error("Received empty 'result' from API or missing 'items'.")
return None
else:
st.error(f"No 'tasks' key in response JSON. Full response: {response_data}")
return None
else:
error_message = response.json().get('status_message', 'No specific error message provided')
st.error(f"Error: Code: {response.status_code} Message: {error_message}")
return None
def convert_df_to_csv(df):
# Convert DataFrame to CSV
return df.to_csv(index=False).encode('utf-8')
# Streamlit layout
st.sidebar.title("DataForSEO API Parameters")
api_login = st.sidebar.text_input("API Login", value="[email protected]")
api_key = st.sidebar.text_input("API Key", type="password")
# Filters input
st.sidebar.title("Filters")
url_from_not_contain = st.sidebar.text_input("URL from does not contain (comma-separated)")
backlink_spam_score = st.sidebar.number_input("Backlink Spam Score ≤", value=20)
page_from_rank_value = st.sidebar.number_input("Page From Rank Value ≥", value=0)
domain_from_rank_value = st.sidebar.number_input("Domain From Rank Value ≥", value=0)
page_from_language = st.sidebar.selectbox("Page From Language", ['en', 'other'])
is_lost = st.sidebar.checkbox("Is Lost", value=False)
dofollow = st.sidebar.checkbox("Dofollow", value=False)
is_broken = st.sidebar.checkbox("Is Broken", value=False)
filters = []
if url_from_not_contain:
for url in url_from_not_contain.split(','):
filters.append(["url_from", "not_like", f"%{url.strip()}%"])
filters.append("and")
if is_lost:
filters.append(["is_lost", "=", is_lost])
filters.append("and")
if dofollow:
filters.append(["dofollow", "=", dofollow])
filters.append("and")
if is_broken:
filters.append(["is_broken", "=", is_broken])
filters.append("and")
if page_from_rank_value != 0:
filters.append(["page_from_rank", ">=", page_from_rank_value])
filters.append("and")
if domain_from_rank_value != 0:
filters.append(["domain_from_rank", ">=", domain_from_rank_value])
filters.append("and")
filters.append(["backlink_spam_score", "<=", backlink_spam_score])
filters.append("and")
filters.append(["page_from_language", "=", page_from_language])
filters.append("and")
filters.append(["anchor", "not_like", ""]) # Assuming empty string represents empty anchor
filters.append("and")
# Filter for domain from rank being greater than or equal to 100
filters.append(["domain_from_rank", ">=", 100])
filters.append("and")
# Remove the last "and" if it's the last element
if filters and filters[-1] == "and":
filters.pop()
# Output the entire filters section
st.text("Current filters:")
for f in filters:
st.text(f)
# Main app layout
col1, col2 = st.columns(2)
with col1:
st.header("Input")
target_url = st.text_input("Enter the target URL")
generate_button = st.sidebar.button("Generate All")
reset_button = st.sidebar.button("Reset")
df = None
# Generate CSV and download button
if generate_button and target_url:
df = get_backlinks(api_login, api_key, target_url, filters)
if df is not None:
csv = convert_df_to_csv(df)
st.download_button(
label="Download data as CSV",
data=csv,
file_name='backlinks.csv',
mime='text/csv',
)
else:
st.error("Failed to generate CSV: No data returned from the API or data processing error.")
# Reset functionality
if reset_button:
st.experimental_rerun()