Joseph Spada commited on
Commit
4c98e23
·
1 Parent(s): 34fea02

revenues slider functionality

Browse files
Files changed (2) hide show
  1. app.py +22 -6
  2. graph_data.xlsx +0 -0
app.py CHANGED
@@ -24,8 +24,8 @@ data = data[[
24
  "Debt Balance",
25
  "Revenues ex SS OASDI",
26
  "Average Rate on Federal Debt",
27
- "Net Interest / Revenues (Baseline)",
28
- "Net Interest / Revenues ex SS OASDI (Baseline)"
29
  ]]
30
 
31
  print(data)
@@ -37,30 +37,46 @@ baseline_revenues = 15928.73
37
 
38
  def plot_interest_coverage(interest_rate, revenues):
39
 
40
- print(revenues)
41
-
42
  # calculate the yearly increase in the interest rate based on the projected interest rate in 2054
43
  interest_rate_yearly_increase = (interest_rate - baseline_interest_rate) / (2054 - 2025) / 100
44
  # calculate the yearly increase in revenues based on the projected interest rate in 2054
45
  revenues_yearly_increase = (revenues - baseline_revenues) / (2054 - 2025)
46
 
 
 
 
 
 
 
47
  # add a projected average rate on federal debt column
48
  data["Average Rate on Federal Debt (Projected)"] = np.where(
49
  data["Year"].astype(int) < 2026,
50
  data["Average Rate on Federal Debt"],
51
  data["Average Rate on Federal Debt"] + (interest_rate_yearly_increase * (data["Year"].astype(int) - 2025)))
52
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  # add a projected interest / revenues column
54
  data["Net Interest / Revenues (Projected)"] = np.where(
55
  data["Year"].astype(int) < 2026,
56
  data["Net Interest / Revenues (Baseline)"],
57
- data["Average Rate on Federal Debt (Projected)"] * data["Debt Balance"] / data["Total Revenues"])
58
 
59
  # add a projected interest / revenues ex SS OASDI column
60
  data["Net Interest / Revenues ex SS OASDI (Projected)"] = np.where(
61
  data["Year"].astype(int) < 2026,
62
  data["Net Interest / Revenues ex SS OASDI (Baseline)"],
63
- data["Average Rate on Federal Debt (Projected)"] * data["Debt Balance"] / data["Revenues ex SS OASDI"])
64
 
65
  # Create the plot
66
  plt.figure(figsize = (10, 4.8))
 
24
  "Debt Balance",
25
  "Revenues ex SS OASDI",
26
  "Average Rate on Federal Debt",
27
+ "GDP",
28
+ "Net Interest"
29
  ]]
30
 
31
  print(data)
 
37
 
38
  def plot_interest_coverage(interest_rate, revenues):
39
 
 
 
40
  # calculate the yearly increase in the interest rate based on the projected interest rate in 2054
41
  interest_rate_yearly_increase = (interest_rate - baseline_interest_rate) / (2054 - 2025) / 100
42
  # calculate the yearly increase in revenues based on the projected interest rate in 2054
43
  revenues_yearly_increase = (revenues - baseline_revenues) / (2054 - 2025)
44
 
45
+ # add a baseline net interest / revenues column
46
+ data["Net Interest / Revenues (Baseline)"] = data["Net Interest"] / data["Total Revenues"]
47
+
48
+ # add a baseline net interest / revenues ex SS OASDI column
49
+ data["Net Interest / Revenues ex SS OASDI (Baseline)"] = data["Net Interest"] / data["Revenues ex SS OASDI"]
50
+
51
  # add a projected average rate on federal debt column
52
  data["Average Rate on Federal Debt (Projected)"] = np.where(
53
  data["Year"].astype(int) < 2026,
54
  data["Average Rate on Federal Debt"],
55
  data["Average Rate on Federal Debt"] + (interest_rate_yearly_increase * (data["Year"].astype(int) - 2025)))
56
 
57
+ # add a projected revenues column
58
+ data["Total Revenues (Projected)"] = np.where(
59
+ data["Year"].astype(int) < 2026,
60
+ data["Revenues"],
61
+ data["Revenues"] + (revenues_yearly_increase * (data["Year"].astype(int) - 2025)))
62
+
63
+ # add a projected revenues ex SS OASDI column
64
+ data["Revenues ex SS OASDI (Projected)"] = np.where(
65
+ data["Year"].astype(int) < 2026,
66
+ data["Revenues ex SS OASDI"],
67
+ data["Revenues ex SS OASDI"] + (revenues_yearly_increase * (data["Year"].astype(int) - 2025)))
68
+
69
  # add a projected interest / revenues column
70
  data["Net Interest / Revenues (Projected)"] = np.where(
71
  data["Year"].astype(int) < 2026,
72
  data["Net Interest / Revenues (Baseline)"],
73
+ data["Average Rate on Federal Debt (Projected)"] * data["Debt Balance"] / data["Total Revenues (Projected)"])
74
 
75
  # add a projected interest / revenues ex SS OASDI column
76
  data["Net Interest / Revenues ex SS OASDI (Projected)"] = np.where(
77
  data["Year"].astype(int) < 2026,
78
  data["Net Interest / Revenues ex SS OASDI (Baseline)"],
79
+ data["Average Rate on Federal Debt (Projected)"] * data["Debt Balance"] / data["Revenues ex SS OASDI (Projected)"])
80
 
81
  # Create the plot
82
  plt.figure(figsize = (10, 4.8))
graph_data.xlsx CHANGED
Binary files a/graph_data.xlsx and b/graph_data.xlsx differ