diff --git "a/naturalproofs_trench.json" "b/naturalproofs_trench.json"
deleted file mode 100644--- "a/naturalproofs_trench.json"
+++ /dev/null
@@ -1,21023 +0,0 @@
-{
- "dataset": {
- "theorems": [
- {
- "id": 0,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.1.1",
- "categories": [],
- "title": "The Triangle Inequality",
- "contents": [
- "If $a$ and $b$ are any two real numbers$,$ then",
- "\\begin{equation} \\label{eq:1.1.3}",
- "|a+b|\\le |a|+|b|.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "There are four possibilities:",
- "\\begin{alist}",
- "\\item % (a)",
- "If $a\\ge0$ and $b\\ge0$, then $a+b\\ge0$, so",
- "$|a+b|=a+b=|a|+|b|$.",
- "\\item % (b)",
- "If $a\\le0$ and $b\\le0$, then $a+b\\le0$, so",
- "$|a+b|=-a+(-b)=|a|+|b|$.",
- "\\item % (c)",
- " If $a \\ge 0$ and $b \\le 0$, then $a+b=|a|-|b|$.",
- "\\item % (d)",
- " If $a \\le 0$ and $b \\ge 0$, then $a+b=-|a|+|b|$.",
- "\\end{alist}",
- "Eq.~\\ref{eq:1.1.3}",
- "holds in cases {\\bf (c)} and {\\bf (d)}, since",
- "\\begin{equation}",
- "|a+b|=",
- "\\begin{cases}",
- "|a|-|b|& \\text{ if } |a| \\ge |b|,\\\\",
- "|b|-|a|& \\text{ if } |b| \\ge |a|.",
- "\\end{cases}",
- "\\tag*{"
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 1,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.1.3",
- "categories": [],
- "title": "",
- "contents": [
- "If a nonempty set $S$ of real numbers is bounded above$,$ then",
- "$\\sup S$ is the unique real number $\\beta$ such that",
- "\\begin{alist}",
- "\\item % (a)",
- " $x\\le\\beta$ for all $x$ in $S;$",
- "\\item % (b)",
- " if $\\epsilon>0$ $($no matter how small$)$$,$ there is an $x_0$ in",
- "$S$ such that",
- "$x_0>",
- "\\beta-\\epsilon.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We first show that $\\beta=\\sup S$ has properties \\part{a} and",
- "\\part{b}. Since $\\beta$ is an upper bound of $S$, it must satisfy",
- "\\part{a}. Since any real number $a$ less than $\\beta$ can be written",
- "as $\\beta-\\epsilon$ with $\\epsilon=\\beta-a>0$, \\part{b} is just",
- "another way of saying that no number less than $\\beta$ is an upper",
- "bound of $S$. Hence, $\\beta=\\sup S$ satisfies \\part{a} and \\part{b}.",
- "Now we show that there cannot be more than one real number with",
- "properties \\part{a} and \\part{b}. Suppose that $\\beta_1<\\beta_2$ and",
- "$\\beta_2$ has property \\part{b}; thus, if $\\epsilon>0$, there is an",
- "$x_0$ in $S$ such that $x_0>\\beta_2-\\epsilon$. Then, by taking",
- "$\\epsilon=\\beta_2-\\beta_1$, we see that there is an $x_0$ in $S$ such",
- "that",
- "$$",
- "x_0>\\beta_2-(\\beta_2-\\beta_1)=\\beta_1,",
- "$$",
- "so $\\beta_1$ cannot have property \\part{a}. Therefore, there cannot",
- "be more than one real number that satisfies both \\part{a} and",
- "\\part{b}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 2,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.1.4",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\rho$ and $\\epsilon$ are positive$,$ then $n\\epsilon>\\rho$ for",
- "some integer $n.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "The proof is by contradiction.",
- "If the statement is false, $\\rho$ is an upper bound of",
- "the set",
- "$$",
- "S=\\set{x}{x=n\\epsilon,\\mbox{$n$ is an integer}}.",
- "$$",
- "Therefore, $S$ has a supremum $\\beta$, by property \\part{I}.",
- "Therefore,",
- "\\begin{equation}\\label{eq:1.1.9}",
- "n\\epsilon\\le\\beta \\mbox{\\quad for all integers $n$}.",
- "\\end{equation}}",
- "\\newpage\\noindent",
- "Since $n+1$ is an integer whenever $n$ is, \\eqref{eq:1.1.9} implies that",
- "$$",
- "(n+1)\\epsilon\\le\\beta",
- "$$",
- " and therefore",
- "$$",
- "n\\epsilon\\le\\beta-\\epsilon",
- "$$",
- " for all integers $n$. Hence,",
- " $\\beta-\\epsilon$ is an upper bound of $S$. Since $\\beta-\\epsilon",
- "<\\beta$, this contradicts the definition of~$\\beta$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 3,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.1.6",
- "categories": [],
- "title": "",
- "contents": [
- "The rational numbers are dense in the reals$\\,;$ that is, if $a$",
- "and",
- "$b$ are real numbers with $a1$. There is also an integer",
- "$j$ such that $j>qa$. This is obvious if $a\\le0$, and it follows from",
- "Theorem~\\ref{thmtype:1.1.4} with $\\epsilon=1$ and $\\rho=qa$ if $a>0$. Let",
- "$p$ be the smallest integer such that $p>qa$. Then $p-1\\le qa$, so",
- "$$",
- "qa
0$ $($no matter how small$\\,)$, there is an $x_0$ in $S$",
- "such that",
- "$x_0<",
- "\\alpha+\\epsilon.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "(Exercise~\\ref{exer:1.1.6})",
- "A set $S$ is {\\it bounded\\/} if",
- "there are numbers",
- "$a$ and",
- "$b$ such",
- "that $a\\le x\\le b$ for all $x$ in $S$. A bounded nonempty set has a",
- "unique supremum and a unique infimum, and",
- "\\begin{equation}\\label{eq:1.1.11}",
- "\\inf S\\le\\sup S",
- "\\end{equation}",
- "(Exercise~\\ref{exer:1.1.7})."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 6,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.2.1",
- "categories": [],
- "title": "Principle of Mathematical Induction",
- "contents": [
- " Let $P_1,$ $P_2, $\\dots$,$ $P_n,$ \\dots\\ be",
- "propositions$,$ one",
- "for each positive integer$,$ such that",
- "\\begin{alist}",
- "\\item % (a)",
- " $P_1$ is true$;$",
- "\\item % (b)",
- " for each positive integer $n,$ $P_n$ implies $P_{n+1}.$",
- "\\end{alist}",
- "Then $P_n$ is true for each positive integer $n.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let",
- "$$",
- "\\mathbb M=\\set{n}{n\\in \\mathbb N\\mbox{ and } P_n\\mbox{ is",
- "true}}.",
- "$$",
- "From \\part{a}, $1\\in \\mathbb M$, and from \\part{b}, $n+1\\in \\mathbb M$ whenever",
- "$n\\in \\mathbb M$. Therefore, $\\mathbb M=\\mathbb N$, by postulate",
- "\\part{E}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 7,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.2.2",
- "categories": [],
- "title": "",
- "contents": [
- " Let $n_0$ be any integer $($positive$,$",
- " negative$,$ or zero$)$$.$ Let",
- "$P_{n_0},$ $P_{n_0+1},$ \\dots$,$ $P_n,$ \\dots\\ be propositions$,$",
- " one for each integer $n\\ge n_0,$ such that",
- "\\begin{alist}",
- "\\item % (a)",
- " $P_{n_0}$ is true$\\,;$",
- "\\item % (b)",
- " for each integer $n\\ge n_0,$ $P_n$ implies $P_{n+1}.$",
- "\\end{alist}",
- "Then $P_n$ is true for every integer $n\\ge n_0.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "For $m\\ge1$, let $Q_m$ be the proposition defined by",
- "$Q_m=P_{m+n_0-1}$. Then $Q_1=P_{n_0}$ is true by \\part{a}.",
- "If $m\\ge1$ and $Q_m=P_{m+n_0-1}$ is true, then $Q_{m+1}=P_{m+n_0}$",
- "is true by \\part{b} with $n$ replaced by $m+n_0-1$. Therefore,",
- "$Q_m$ is true for all $m\\ge1$ by Theorem~\\ref{thmtype:1.2.1} with $P$",
- "replaced by $Q$ and $n$ replaced by $m$. This is equivalent",
- "to the statement that $P_n$ is true for all $n\\ge n_0$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:1.2.1"
- ],
- "ref_ids": [
- 6
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 8,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.2.3",
- "categories": [],
- "title": "",
- "contents": [
- " Let $n_0$ be any integer $($positive$,$",
- " negative$,$ or zero$)$$.$ Let",
- "$P_{n_0},$ $P_{n_0+1}, $\\dots$,$ $P_n,$ \\dots\\ be propositions$,$",
- " one for each integer $n\\ge n_0,$ such that",
- "\\begin{alist}",
- "\\item % (a)",
- " $P_{n_0}$ is true$\\,;$",
- "\\item % (b)",
- "for $n\\ge n_0,$ $P_{n+1}$ is true if $P_{n_0},$ $P_{n_0+1}, $\\dots$,$",
- "$P_n$ are all true.",
- "\\end{alist}",
- "Then $P_n$ is true for $n\\ge n_0.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "For $n\\ge n_0$, let $Q_n$ be the proposition that",
- " $P_{n_0}$, $P_{n_0+1}$, \\dots, $P_n$ are all true.",
- "Then $Q_{n_0}$ is true by \\part{a}. Since $Q_n$ implies $P_{n+1}$",
- "by \\part{b}, and $Q_{n+1}$ is true if $Q_n$ and $P_{n+1}$ are both true,",
- "Theorem~\\ref{thmtype:1.2.2} implies that $Q_n$ is true for all $n\\ge",
- "n_0$. Therefore, $P_n$ is true for all $n\\ge n_0$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:1.2.2"
- ],
- "ref_ids": [
- 7
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 9,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.3.3",
- "categories": [],
- "title": "",
- "contents": [
- "\\begin{alist}",
- "\\item % (a)",
- " The union of open sets is open$.$",
- "\\item % (b)",
- " The intersection of closed sets is closed$.$",
- "\\end{alist}",
- "These statements apply to",
- "arbitrary collections, finite or infinite, of open and closed",
- "sets$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "\\part{a} Let ${\\mathcal G}$ be a collection of open sets and",
- "$$",
- "S=\\cup\\set{G}{G\\in {\\mathcal G}}.",
- "$$",
- "If $x_0\\in S$, then $x_0\\in G_0$ for some $G_0$ in ${\\mathcal G}$, and",
- "since $G_0$ is open, it contains some $\\epsilon$-neighborhood of",
- "$x_0$. Since $G_0\\subset S$, this $\\epsilon$-neighborhood is in $S$,",
- "which is consequently a neighborhood of $x_0$. Thus, $S$ is a",
- "neighborhood of each of its points, and therefore open, by definition.",
- "\\part{b} Let ${\\mathcal F}$ be a collection of closed sets and $T",
- "=\\cap\\set{F}{F\\in {\\mathcal F}}$. Then $T^c=\\cup\\set{F^c}{F\\in {\\mathcal",
- "F}}$",
- "(Exercise~\\ref{exer:1.3.7}) and, since each $F^c$ is open,",
- "$T^c$ is open, from \\part{a}. Therefore, $T$ is closed, by",
- "definition."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 10,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.3.5",
- "categories": [],
- "title": "",
- "contents": [
- "no point of $S^c$ is a limit point of~$S.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $S$ is closed and $x_0\\in S^c$. Since $S^c$ is open,",
- "there is a neighborhood of $x_0$ that is contained in $S^c$ and",
- "therefore contains no points of $S$. Hence, $x_0$ cannot be a limit",
- "point of $S$. For the converse, if no point of $S^c$ is a limit point",
- "of $S$ then every point in $S^c$ must have a neighborhood contained",
- "in $S^c$. Therefore, $S^c$ is open and $S$ is closed."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 11,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.3.7",
- "categories": [],
- "title": "",
- "contents": [
- "If ${\\mathcal H}$ is an open covering of a closed and bounded subset $S$",
- "of the real line$,$ then $S$ has an open covering $\\widetilde{\\mathcal",
- "H}$ consisting of finitely many open sets belonging to ${\\mathcal H}.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $S$ is bounded, it has an infimum $\\alpha$",
- "and a supremum $\\beta$, and, since $S$ is closed, $\\alpha$",
- "and $\\beta$ belong to $S$ (Exercise~\\ref{exer:1.3.17}). Define",
- "$$",
- "S_t=S\\cap [\\alpha,t] \\mbox{\\quad for \\ } t\\ge\\alpha,",
- "$$",
- "and let",
- "$$",
- "F=\\set{t}{\\alpha\\le t\\le\\beta \\mbox{\\ and finitely many sets from",
- "${\\mathcal H}$ cover $S_t$}}.",
- "$$",
- "Since $S_\\beta=S$, the theorem will be proved if we can show that",
- "$\\beta",
- "\\in F$. To do this, we use the completeness of the reals.",
- "Since $\\alpha\\in S$, $S_\\alpha$ is the singleton set $\\{\\alpha\\}$,",
- "which is contained in some open set $H_\\alpha$ from ${\\mathcal H}$",
- "because ${\\mathcal H}$ covers $S$; therefore, $\\alpha\\in F$. Since $F$ is",
- "nonempty and bounded above by $\\beta$, it has a supremum $\\gamma$.",
- "First, we wish to show that $\\gamma=\\beta$. Since $\\gamma\\le\\beta$ by",
- "definition of $F$, it suffices to rule out the possibility that",
- "$\\gamma<\\beta$. We consider two cases.",
- "{\\sc Case 1}. Suppose that $\\gamma<\\beta$ and $\\gamma\\not\\in S$. Then,",
- "since $S$ is closed, $\\gamma$ is not a limit point of $S$",
- "(Theorem~\\ref{thmtype:1.3.5}). Consequently, there is an $\\epsilon>0$",
- "such that",
- "$$",
- "[\\gamma-\\epsilon,\\gamma+\\epsilon]\\cap S=\\emptyset,",
- "$$",
- "so $S_{\\gamma-\\epsilon}=S_{\\gamma+\\epsilon}$. However, the",
- "definition of $\\gamma$ implies that $S_{\\gamma-\\epsilon}$ has a finite",
- "subcovering from ${\\mathcal H}$, while $S_{\\gamma+\\epsilon}$ does not.",
- "This is a contradiction.",
- "{\\sc Case 2}. Suppose that $\\gamma<\\beta$ and $\\gamma\\in S$. Then",
- "there is an open",
- "set $H_\\gamma$ in ${\\mathcal H}$ that contains $\\gamma$ and, along with $\\gamma$, an",
- "interval $[\\gamma-\\epsilon,\\gamma+\\epsilon]$ for some positive",
- "$\\epsilon$.",
- "Since $S_{\\gamma-\\epsilon}$ has a finite covering $\\{H_1, \\dots,H_n\\}$ of",
- "sets from ${\\mathcal H}$, it follows that $S_{\\gamma+\\epsilon}$ has the finite",
- "covering $\\{H_1, \\dots,H_n,H_\\gamma\\}$. This contradicts the",
- "definition of $\\gamma$.",
- "Now we know that $\\gamma=\\beta$, which is in $S$. Therefore, there is",
- "an open set $H_\\beta$ in ${\\mathcal H}$ that contains $\\beta$ and along",
- "with $\\beta$, an interval of the form",
- "$[\\beta-\\epsilon,\\beta+\\epsilon]$, for some positive $\\epsilon$. Since",
- "$S_{\\beta-\\epsilon}$ is covered by a finite collection of sets",
- "$\\{H_1, \\dots,H_k\\}$, $S_\\beta$ is covered by the finite collection",
- "$\\{H_1, \\dots, H_k, H_\\beta\\}$. Since $S_\\beta=S$, we are",
- "finished."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:1.3.5"
- ],
- "ref_ids": [
- 10
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 12,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.3.8",
- "categories": [],
- "title": "",
- "contents": [
- " Every bounded infinite set of real numbers has at least one",
- "limit point$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We will show that a bounded nonempty set without a limit point",
- "can contain only a finite number of points. If $S$ has no limit",
- "points, then $S$ is closed (Theorem~\\ref{thmtype:1.3.5}) and every point",
- "$x$ of $S$ has an open neighborhood $N_x$ that contains no point of",
- "$S$ other than $x$. The collection",
- "$$",
- "{\\mathcal H}=\\set{N_x}{x\\in S}",
- "$$",
- "is an open covering for $S$. Since $S$ is also bounded,",
- "Theorem~\\ref{thmtype:1.3.7} implies that $S$ can be covered by a finite",
- "collection of sets from ${\\mathcal H}$, say $N_{x_1}$, \\dots, $N_{x_n}$.",
- "Since",
- "these sets contain only $x_1$, \\dots, $x_n$ from $S$, it follows that",
- "$S=\\{x_1, \\dots,x_n\\}$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:1.3.5",
- "TRENCH_REAL_ANALYSIS-thmtype:1.3.7"
- ],
- "ref_ids": [
- 10,
- 11
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 13,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.1.3",
- "categories": [],
- "title": "",
- "contents": [
- "then it is unique$\\,;$ that is$,$ if",
- "\\begin{equation} \\label{eq:2.1.7}",
- "\\lim_{x\\to x_0} f(x)=L_1\\mbox{\\quad and \\quad}\\lim_{x\\to x_0} f(x)=",
- "L_2,",
- "\\end{equation}",
- "then $L_1=L_2.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that \\eqref{eq:2.1.7} holds and let $\\epsilon>0$.",
- "From Definition~\\ref{thmtype:2.1.2}, there are",
- "positive numbers $\\delta_1$ and $\\delta_2$ such that",
- "$$",
- "|f(x)-L_i|<\\epsilon\\mbox{\\quad if \\quad} 0<|x-x_0|<\\delta_i,",
- "\\quad i=1,2.",
- "$$",
- "If $\\delta=\\min(\\delta_1,\\delta_2)$, then",
- "\\begin{eqnarray*}",
- "|L_1-L_2|\\ar= |L_1-f(x)+f(x)-L_2|\\\\",
- "\\ar \\le|L_1-f(x)|+|f(x)-L_2|<2\\epsilon",
- "\\mbox{\\quad if \\quad} 0<|x-x_0|<\\delta.",
- "\\end{eqnarray*}",
- "We have now established an inequality that does not depend on $x$;",
- "that is,",
- "$$",
- "|L_1-L_2|<2\\epsilon.",
- "$$",
- "Since this holds for any positive $\\epsilon$,",
- " $L_1=L_2$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.1.2"
- ],
- "ref_ids": [
- 303
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 14,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.1.4",
- "categories": [],
- "title": "",
- "contents": [
- "\\begin{equation}\\label{eq:2.1.9}",
- "\\lim_{x\\to x_0} f(x)=L_1\\mbox{\\quad and \\quad}\\lim_{x\\to x_0} g(x)=",
- "L_2,",
- "\\end{equation}",
- "then",
- "\\begin{eqnarray}",
- "\\lim_{x\\to x_0} (f+g)(x)\\ar= L_1+L_2,\\label{eq:2.1.10}\\\\",
- "\\lim_{x\\to x_0} (f-g)(x)\\ar= L_1-L_2,\\label{eq:2.1.11}\\\\",
- "\\lim_{x\\to x_0} (fg)(x)\\ar= L_1L_2,\\label{eq:2.1.12}\\\\",
- "\\arraytext{and, if $L_2\\ne0$,}\\\\",
- "\\lim_{x\\to x_0}\\left(\\frac{f}{g}\\right)(x)\\ar= \\frac{L_1}{",
- "L_2}.\\label{eq:2.1.13}",
- "\\end{eqnarray}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "From \\eqref{eq:2.1.9} and Definition~\\ref{thmtype:2.1.2},",
- " if $\\epsilon>0$, there is a",
- "$\\delta_1>0$ such that",
- "\\begin{equation}\\label{eq:2.1.14}",
- "|f(x)-L_1|<\\epsilon",
- "\\end{equation}",
- "if $0<|x-x_0|<\\delta_1$, and a $\\delta_2>0$ such that",
- "\\begin{equation}\\label{eq:2.1.15}",
- "|g(x)-L_2|<\\epsilon",
- "\\end{equation}",
- "if $0<|x-x_0|<\\delta_2$. Suppose that",
- "\\begin{equation}\\label{eq:2.1.16}",
- "0<|x-x_0|<\\delta=\\min (\\delta_1,\\delta_2),",
- "\\end{equation}",
- "so that \\eqref{eq:2.1.14} and \\eqref{eq:2.1.15} both hold. Then",
- "\\begin{eqnarray*}",
- "|(f\\pm g)(x)-(L_1\\pm L_2)|\\ar= |(f(x)-L_1)\\pm",
- "(g(x)-L_2)|\\\\",
- "\\ar \\le|f(x)-L_1|+|g(x)-L_2|<2\\epsilon,",
- "\\end{eqnarray*}",
- "which proves \\eqref{eq:2.1.10} and \\eqref{eq:2.1.11}.",
- "To prove \\eqref{eq:2.1.12}, we assume \\eqref{eq:2.1.16} and write",
- "\\begin{eqnarray*}",
- "|(fg)(x)-L_1L_2|\\ar= |f(x)g(x)-L_1L_2|\\\\[.5\\jot]",
- "\\ar= |f(x)(g(x)-L_2)+L_2(f(x)-L_1)|\\\\[.5\\jot]",
- "\\ar \\le|f(x)||g(x)-L_2|+|L_2||f(x)-L_1|\\\\[.5\\jot]",
- "\\ar \\le(|f(x)|+|L_2|)\\epsilon\\mbox{\\quad (from \\eqref{eq:2.1.14} and",
- "\\eqref{eq:2.1.15})}\\\\[.5\\jot]",
- "\\ar \\le(|f(x)-L_1|+|L_1|+|L_2|)\\epsilon\\\\[.5\\jot]",
- "\\ar \\le(\\epsilon+|L_1|+|L_2|)\\epsilon\\mbox{\\quad from",
- "\\eqref{eq:2.1.14}}\\\\[.5\\jot]",
- "\\ar \\le (1+|L_1|+|L_2|)\\epsilon",
- "\\end{eqnarray*}",
- "if $\\epsilon<1$",
- "and $x$ satisfies \\eqref{eq:2.1.16}. This proves",
- "\\eqref{eq:2.1.12}.",
- "To prove \\eqref{eq:2.1.13}, we first observe that if $L_2\\ne0$, there is",
- "a $\\delta_3>0$ such that",
- "$$",
- "|g(x)-L_2|<\\frac{|L_2|}{2},",
- "$$",
- "so",
- "\\begin{equation} \\label{eq:2.1.17}",
- "|g(x)|>\\frac{|L_2|}{2}",
- "\\end{equation}",
- "if",
- "$$",
- "0<|x-x_0|<\\delta_3.",
- "$$",
- "To see this, let $L=L_2$ and $\\epsilon=|L_2|/2$ in",
- "\\eqref{eq:2.1.4}. Now suppose that",
- "$$",
- "0<|x-x_0|<\\min",
- "(\\delta_1,\\delta_2,\\delta_3),",
- "$$",
- "\\nopagebreak",
- " so that \\eqref{eq:2.1.14}, \\eqref{eq:2.1.15},",
- "and \\eqref{eq:2.1.17} all hold. Then",
- "\\pagebreak",
- "\\begin{eqnarray*}",
- "\\left|\\left(\\frac{f}{ g}\\right)(x)-\\frac{L_1}{ L_2}\\right|",
- "\\ar= \\left|\\frac{f(x)}{ g(x)}-\\frac{L_1}{ L_2}\\right|\\\\",
- "\\ar= \\frac{|L_2f(x)-L_1g(x)|}{|g(x)L_2|}\\\\",
- "\\ar \\le\\frac{2}{ |L_2|^2}|L_2f(x)-L_1g(x)|\\\\",
- "\\ar= \\frac{2}{ |L_2|^2}\\left|L_2[f(x)-L_1]+",
- "L_1[L_2-g(x)]\\right|\\mbox{\\quad (from \\eqref{eq:2.1.17})}\\\\",
- "\\ar \\le\\frac{2}{ |L_2|^2}\\left[|L_2||f(x)-L_1|+|L_1|",
- "|L_2-g(x)|\\right]\\\\",
- "\\ar \\le\\frac{2}{ |L_2|^2}(|L_2|+|L_1|)\\epsilon",
- "\\mbox{\\quad (from \\eqref{eq:2.1.14} and \\eqref{eq:2.1.15})}.",
- "\\end{eqnarray*}",
- "This proves \\eqref{eq:2.1.13}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.1.2"
- ],
- "ref_ids": [
- 303
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 15,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.1.6",
- "categories": [],
- "title": "",
- "contents": [
- "A function $f$ has a limit at $x_0$",
- "if and only if it has left- and right-hand limits at $x_0,$ and they",
- "are equal. More specifically$,$",
- "$$",
- "\\lim_{x\\to x_0} f(x)=L",
- "$$",
- "if and only if",
- "$$",
- "f(x_0+)=f(x_0-)=L.",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 16,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.1.9",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f$ is monotonic on $(a,b)$ and define",
- "$$",
- "\\alpha=\\inf_{a\\alpha$, there is an $x_0$ in $(a,b)$ such that $f(x_0)-\\infty$, let",
- "$M=\\alpha+\\epsilon$, where $\\epsilon>0$. Then $\\alpha\\le",
- "f(x)<\\alpha+\\epsilon$, so",
- "\\begin{equation} \\label{eq:2.1.20}",
- "|f(x)-\\alpha|<\\epsilon\\mbox{\\quad if \\quad} a-\\infty$, let $\\delta=x_0-a$. Then \\eqref{eq:2.1.20} is equivalent to",
- "$$",
- "|f(x)-\\alpha|<\\epsilon\\mbox{\\quad if \\quad} aM$. Since $f$ is nondecreasing, $f(x)>M$ if",
- "$x_00$. Then",
- "$\\beta-\\epsilon< f(x)\\le\\beta$, so",
- "\\begin{equation} \\label{eq:2.1.21}",
- "|f(x)-\\beta|<\\epsilon\\mbox{\\quad if \\quad} x_00$, there is an $a_1$ in $[a,x_0)$ such that",
- "\\begin{equation} \\label{eq:2.1.22}",
- "f(x)<\\beta+\\epsilon\\mbox{\\quad if \\quad} a_1\\le x0$ and $a_1$ is in $[a,x_0),$ then",
- "$$",
- "f(\\overline x)>\\beta-\\epsilon\\mbox{\\quad for some }\\overline",
- "x\\in[a_1,x_0).",
- "$$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $f$ is bounded on $[a,x_0)$, $S_f(x;x_0)$ is nonincreasing and",
- "bounded on $[a,x_0)$. By applying Theorem~\\ref{thmtype:2.1.9}\\part{b} to",
- "$S_f(x;x_0)$, we conclude that $\\beta$",
- "exists (finite). Therefore, if $\\epsilon>0$, there is an $\\overline a$",
- "in",
- "$[a,x_0)$ such that}",
- "\\begin{equation} \\label{eq:2.1.23}",
- "\\beta-\\epsilon/2\\beta-\\epsilon/2.",
- "\\end{equation}",
- "Since $S_f(x_1;x_0)$ is the supremum of $\\set{f(t)}{x_1S_f(x_1;x_0)-\\epsilon/2.",
- "$$",
- "This and \\eqref{eq:2.1.24} imply that $f(\\overline x)>\\beta-\\epsilon$.",
- "Since $\\overline x$ is in $[a_1,x_0)$, this proves \\part{b}.",
- "Now we show that there cannot be more than one real number with",
- "properties \\part{a} and \\part{b}. Suppose that $\\beta_1<\\beta_2$ and",
- "$\\beta_2$ has property \\part{b}; thus, if $\\epsilon>0$ and $a_1$ is",
- "in $[a,x_0)$, there is an",
- "$\\overline x$ in $[a_1,x_0)$ such that",
- "$f(\\overline x)>\\beta_2-\\epsilon$. Letting",
- "$\\epsilon=\\beta_2-\\beta_1$, we see that there is an $\\overline x$ in",
- " $[a_1,b)$ such that",
- "$$",
- "f(\\overline x)>\\beta_2-(\\beta_2-\\beta_1)=\\beta_1,",
- "$$",
- "so $\\beta_1$ cannot have property \\part{a}. Therefore, there cannot",
- "be more than one real number that satisfies both \\part{a} and",
- "\\part{b}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.1.9"
- ],
- "ref_ids": [
- 16
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 18,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.1.12",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is bounded on $[a,x_0),$",
- "then $\\alpha=\\liminf_{x\\to x_0-}f(x)$ exists",
- "and is the unique real number with the following properties:",
- "\\begin{alist}",
- "\\item % (a)",
- "If $\\epsilon>0,$ there is an $a_1$ in $[a,x_0)$ such that",
- "$$",
- "f(x)>\\alpha-\\epsilon\\mbox{\\quad if \\quad} a_1\\le x0$ and $a_1$ is in $[a,x_0),$ then",
- "$$",
- "f(\\overline x)<\\alpha+\\epsilon\\mbox{\\quad for some }\\overline",
- "x\\in[a_1,x_0).",
- "$$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 19,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.2.2",
- "categories": [],
- "title": "",
- "contents": [
- "\\vspace*{6pt}",
- "\\begin{alist}",
- "\\item % (a)",
- "A function $f$ is continuous at $x_0$ if and only if $f$ is defined on",
- "an open interval $(a,b)$ containing $x_0$ and for each",
- "$\\epsilon>0$ there is a $\\delta >0$ such that",
- "\\begin{equation}\\label{eq:2.2.1}",
- "|f(x)-f(x_0)|<\\epsilon",
- "\\end{equation}",
- "whenever $|x-x_0|<\\delta.$",
- "\\item % (b)",
- "A function $f$ is continuous from the right at $x_0$ if and only if",
- "$f$ is defined on an interval $[x_0,b)$ and for each $\\epsilon>",
- "0$",
- "there is a $\\delta>0$ such that $\\eqref{eq:2.2.1}$ holds whenever $x_0\\le",
- "x0$",
- "there is a $\\delta>0$ such that $\\eqref{eq:2.2.1}$ holds whenever",
- "$x_0-\\delta0$. Since $g(x_0)$ is an interior",
- "point of $D_f$ and $f$ is continuous at $g(x_0)$, there is a",
- "$\\delta_1>0$ such that $f(t)$ is defined and",
- "\\begin{equation}\\label{eq:2.2.4}",
- "|f(t)-f(g(x_0))|<\\epsilon\\mbox{\\quad if \\quad} |t-g(x_0)|<",
- "\\delta_1.",
- "\\end{equation}",
- "Since $g$ is continuous at $x_0$, there is a $\\delta>0$ such that",
- "$g(x)$ is defined and",
- "\\begin{equation}\\label{eq:2.2.5}",
- "|g(x)-g(x_0)|<\\delta_1\\mbox{\\quad if \\quad}|x-x_0|<\\delta.",
- "\\end{equation}",
- "Now \\eqref{eq:2.2.4} and \\eqref{eq:2.2.5} imply that",
- "$$",
- "|f(g(x))-f(g(x_0))|<\\epsilon\\mbox{\\quad if \\quad}|x-x_0|<\\delta.",
- "$$",
- " Therefore, $f\\circ g$ is continuous at $x_0$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 22,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.2.8",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is continuous on a finite closed interval $[a,b],$ then $f$ is",
- "bounded on $[a,b].$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $t\\in [a,b]$. Since $f$ is continuous at $t$,",
- "there is an open interval $I_t$ containing $t$ such",
- "that",
- "\\begin{equation}\\label{eq:2.2.7}",
- "|f(x)-f(t)|<1 \\mbox{\\quad if \\quad}\\ x\\in I_t\\cap [a,b].",
- "\\end{equation}",
- "(To see this, set $\\epsilon=1$ in \\eqref{eq:2.2.1},",
- "Theorem~\\ref{thmtype:2.2.2}.) The collection",
- "${\\mathcal H}=\\set{I_t}{a\\le t\\le b}$",
- "is an open covering of $[a,b]$. Since $[a,b]$ is compact, the",
- "Heine--Borel theorem implies that there are finitely many points",
- "$t_1$,",
- "$t_2$, \\dots, $t_n$ such that the intervals $I_{t_1}$,",
- "$I_{t_2}$, \\dots, $I_{t_n}$",
- "cover $[a,b]$. According to \\eqref{eq:2.2.7} with $t=t_i$,",
- "$$",
- "|f(x)-f(t_i)|<1\\mbox{\\quad if \\quad}\\ x\\in I_{t_i}\\cap [a,b].",
- "$$",
- "Therefore,",
- "\\begin{equation}\\label{eq:2.2.8}",
- "\\begin{array}{rcl}",
- "|f(x)|\\ar =|(f(x)-f(t_i))+f(t_i)|\\le|f(x)-f(t_i)|+|f(t_i)|\\\\[2\\jot]",
- "\\ar\\le 1+|f(t_i)|\\mbox{\\quad if \\quad}\\",
- "x\\in I_{t_i}\\cap[a,b].",
- "\\end{array}",
- "\\end{equation}",
- " Let",
- "$$",
- "M=1+\\max_{1\\le i\\le n}|f(t_i)|.",
- "$$",
- "Since $[a,b]\\subset\\bigcup^n_{i=1}\\left(I_{t_i}\\cap",
- "[a,b]\\right)$, \\eqref{eq:2.2.8} implies that",
- "$|f(x)|\\le M$ if $x\\in [a,b]$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.2.2"
- ],
- "ref_ids": [
- 19
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 23,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.2.9",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f$ is continuous on a finite closed interval $[a,b].$ Let",
- "$$",
- "\\alpha=\\inf_{a\\le x\\le b}f(x)\\mbox{\\quad and",
- "\\quad}\\beta=\\sup_{a\\le x\\le b}f(x).",
- "$$",
- "Then $\\alpha$ and $\\beta$ are respectively the minimum",
- "and maximum of $f$ on $[a,b];$ that is$,$",
- " there are points $x_1$ and $x_2$ in $[a,b]$ such that",
- "$$",
- "f(x_1)=\\alpha\\mbox{\\quad and \\quad} f(x_2)=\\beta.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We show that $x_1$ exists and leave it to you to show that $x_2$",
- "exists (Exercise~\\ref{exer:2.2.24}).",
- "Suppose that there is no",
- "$x_1$ in $[a,b]$ such that $f(x_1)=\\alpha$. Then $f(x)>\\alpha$",
- "for all $x\\in[a,b]$. We will show that this leads to a",
- "contradiction.",
- "Suppose that $t\\in[a,b]$.",
- "Then $f(t)>\\alpha$, so",
- "$$",
- "f(t)>\\frac{f(t)+\\alpha}{2}>\\alpha.",
- "$$",
- "\\enlargethispage{1in}",
- "\\newpage",
- "\\noindent",
- "Since $f$ is continuous at $t$, there is an open interval $I_t$ about",
- "$t$ such that",
- "\\begin{equation}\\label{eq:2.2.9}",
- "f(x)>\\frac{f(t)+\\alpha}{2}\\mbox{\\quad if \\quad} x\\in",
- "I_t\\cap [a,b]",
- "\\end{equation}",
- "(Exercise~\\ref{exer:2.2.15}). The collection ${\\mathcal H}=\\set{I_t}{a\\le t\\le",
- "b}$ is an open covering of $[a,b]$. Since $[a,b]$ is compact, the",
- "Heine--Borel theorem implies that there are finitely many points $t_1$,",
- "$t_2$, \\dots, $t_n$ such that the intervals $I_{t_1}$,",
- "$I_{t_2}$, \\dots,",
- "$I_{t_n}$ cover $[a,b]$. Define",
- "$$",
- "\\alpha_1=\\min_{1\\le i\\le n}\\frac{f(t_i)+\\alpha}{2}.",
- "$$",
- "Then, since $[a,b]\\subset\\bigcup^n_{i=1} (I_{t_i}\\cap [a,b])$,",
- "\\eqref{eq:2.2.9} implies that",
- "$$",
- "f(t)>\\alpha_1,\\quad a\\le t\\le b.",
- "$$",
- "But $\\alpha_1>\\alpha$, so this contradicts the definition of $\\alpha$.",
- "Therefore, $f(x_1)=\\alpha$ for some $x_1$ in $[a,b]$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 24,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.2.10",
- "categories": [],
- "title": "Intermediate Value Theorem",
- "contents": [
- "Suppose that $f$ is continuous on $[a,b],$ $f(a)\\ne f(b),$ and $\\mu$",
- "is between $f(a)$ and $f(b).$ Then $f(c)=\\mu$ for some",
- "$c$ in $(a,b).$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $f(a)<\\mu\\mu$, then $c>a$ and, since $f$ is",
- "continuous at $c$, there is an $\\epsilon>0$ such that",
- "$f(x)>\\mu$ if $c-\\epsilon0$ such that $f(x)<\\mu$ for $c\\le",
- "x0$. Since $f$ is continuous on $[a,b]$,",
- "for each $t$ in $[a,b]$ there is a positive number",
- "$\\delta_{t}$ such that",
- "\\begin{equation}\\label{eq:2.2.10}",
- "|f(x)-f(t)|<\\frac{\\epsilon}{2}",
- "\\mbox{\\quad if \\quad}",
- "|x-t|<2\\delta_{t}",
- "\\mbox{\\quad and \\quad} x\\in[a,b].",
- "\\end{equation}",
- "If $I_{t}=(t-\\delta_{t",
- "},t+\\delta_{t})$, the collection",
- "$$",
- "{\\mathcal H}=\\set{I_{t}}{t\\in [a,b]}",
- "$$",
- "is an open covering of $[a,b]$. Since $[a,b]$ is compact, the",
- "Heine--Borel theorem implies that there are finitely many points",
- "$t_1$, $t_2$, \\dots, $t_n$ in",
- "$[a,b]$ such that $I_{t_1}$, $I_{t_2}$, \\dots, $I_{t_n}$ cover",
- "$[a,b]$. Now define",
- "\\begin{equation}\\label{eq:2.2.11}",
- "\\delta=\\min\\{\\delta_{t_1},\\delta_{t_2}, \\dots,\\delta_{t_n}\\}.",
- "\\end{equation}",
- "We will show that if",
- "\\begin{equation} \\label{eq:2.2.12}",
- "|x-x'|<\\delta \\mbox{\\quad and \\quad}x,x'\\in [a,b],",
- "\\end{equation}",
- "then",
- "$|f(x)-f(x')|<\\epsilon$.",
- "From the triangle inequality,",
- "\\begin{equation} \\label{eq:2.2.13}",
- "\\begin{array}{rcl}",
- "|f(x)-f(x')|\\ar =",
- "|\\left(f(x)-f(t_r)\\right)+\\left(f(t_r)-f(x')\\right)|\\\\",
- "\\ar\\le |f(x)-f(t_r)|+|f(t_r)-f(x')|.",
- "\\end{array}",
- "\\end{equation}",
- "Since $I_{t_1}$, $I_{t_2}$, \\dots, $I_{t_n}$ cover $[a,b]$, $x$ must",
- "be in one of",
- "these intervals. Suppose that",
- "$x\\in I_{t_r}$; that is,",
- "\\begin{equation} \\label{eq:2.2.14}",
- "|x-t_r|<\\delta_{t_r}.",
- "\\end{equation}",
- "From \\eqref{eq:2.2.10} with $t=t_r$,",
- "\\begin{equation} \\label{eq:2.2.15}",
- "|f(x)-f(t_r)|<\\frac{\\epsilon}{2}.",
- "\\end{equation}",
- "From \\eqref{eq:2.2.12}, \\eqref{eq:2.2.14}, and the triangle inquality,",
- "$$",
- "|x'-t_r|=|(x'-x)+(x-t_r)|\\le",
- " |x'-x|+|x-t_r|<\\delta+\\delta_{t_r}\\le2\\delta_{t_r}.",
- "$$",
- "Therefore, \\eqref{eq:2.2.10} with $t=t_r$ and $x$ replaced by",
- "$x'$ implies that",
- "$$",
- "|f(x')-f(t_r)|<\\frac{\\epsilon}{2}.",
- "$$",
- "This, \\eqref{eq:2.2.13}, and \\eqref{eq:2.2.15} imply that",
- "$|f(x)-f(x')|<\\epsilon$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 26,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.2.14",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is monotonic and nonconstant on $[a,b],$ then $f$ is continuous",
- "on $[a,b]$ if and only if its range $R_f=\\set{f(x)}{x\\in[a,b]}$ is the",
- "closed interval with endpoints $f(a)$ and $f(b).$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We assume that $f$ is nondecreasing, and",
- "leave the case where $f$ is nonincreasing to you",
- "(Exercise~\\ref{exer:2.2.34}).",
- "Theorem~\\ref{thmtype:2.1.9}\\part{a}",
- "implies that the set $\\widetilde R_f=\\set{f(x)}{x\\in(a,b)}$",
- "is a subset of the open interval $(f(a+),f(b-))$. Therefore,",
- "\\begin{equation} \\label{eq:2.2.16}",
- "R_f=\\{f(a)\\}\\cup\\widetilde",
- "R_f\\cup\\{f(b)\\}\\subset\\{f(a)\\}\\cup(f(a+),f(b-))\\cup\\{f(b)\\}.",
- "\\end{equation}",
- "Now",
- "suppose that $f$ is continuous on $[a,b]$. Then $f(a)=f(a+)$,",
- "$f(b-)=f(b)$,",
- "so \\eqref{eq:2.2.16} implies that",
- "$R_f\\subset[f(a),f(b)]$. If $f(a)<\\mu0$ such that",
- "$$",
- "|E(x)|<|f'(x_0)|\\mbox{\\quad if\\quad} |x-x_0|<\\delta,",
- "$$",
- "and the right side of \\eqref{eq:2.3.16} must have the same sign as",
- "$f'(x_0)$ for $|x-x_0|<\\delta$. Since the same is true of the left",
- "side, $f(x)-f(x_0)$ must change sign in every neighborhood of $x_0$",
- "(since $x-x_0$ does). Therefore, neither \\eqref{eq:2.3.14} nor",
- "\\eqref{eq:2.3.15} can hold for all $x$ in any interval about $x_0$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.3.2"
- ],
- "ref_ids": [
- 244
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 32,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.3.8",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f$ is continuous on the closed interval $[a,b]$ and",
- "differentiable on the open interval $(a,b),$ and $f(a)=f(b).$ Then",
- "$f'(c)=0$ for some $c$ in the open interval $(a,b).$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $f$ is continuous on $[a,b]$, $f$ attains a maximum and a",
- "minimum",
- "value on $[a,b]$ (Theorem~\\ref{thmtype:2.2.9}). If these two",
- "extreme values are the same, then $f$ is constant on $(a,b)$, so",
- "$f'(x)=0$ for all $x$ in $(a,b)$. If the extreme values differ, then",
- "at least one must be attained at some point $c$ in the open interval",
- "$(a,b)$, and $f'(c)=0$, by Theorem~\\ref{thmtype:2.3.7}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.2.9",
- "TRENCH_REAL_ANALYSIS-thmtype:2.3.7"
- ],
- "ref_ids": [
- 23,
- 31
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 33,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.3.9",
- "categories": [],
- "title": "Intermediate Value Theorem for Derivatives",
- "contents": [
- " Suppose that $f$ is differentiable on $[a,b],$ $f'(a)\\ne",
- "f'(b),$ and $\\mu$ is between $f'(a)$ and $f'(b).$ Then $f'(c)=\\mu$",
- "for some $c$ in $(a,b).$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose first that",
- "\\begin{equation}\\label{eq:2.3.17}",
- "f'(a)<\\mu0.",
- "\\end{equation}",
- "Since $g$ is",
- "continuous on $[a,b]$, $g$ attains a minimum at some point $c$ in",
- "$[a,b]$. Lemma~\\ref{thmtype:2.3.2} and \\eqref{eq:2.3.19} imply that there is a",
- "$\\delta>0$ such that",
- "$$",
- "g(x)0,\\quad f'(x)\\ge0,\\quad f'(x)<0,\\mbox{\\quad or\\quad} f'(x)",
- "\\le0,",
- "$$",
- "respectively$,$ for all $x$ in $(a,b).$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 38,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.3.14",
- "categories": [],
- "title": "",
- "contents": [
- "If",
- "$$",
- "|f'(x)|\\le M,\\quad a0$. From \\eqref{eq:2.4.3}, there is an $x_0$ in $(a,b)$ such",
- "that",
- "\\begin{equation}\\label{eq:2.4.5}",
- "\\left|\\frac{f'(c)}{g'(c)}-L\\right|<\\epsilon\\mbox{\\quad if\\quad}",
- "x_0",
- "x_0$",
- "so that $f(x)\\ne0$ and $f(x)\\ne f(x_0)$ if $x_10.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $f^{(r)}(x_0)=0$ for $1\\le r\\le n-1$,",
- " \\eqref{eq:2.5.7} implies that",
- "\\begin{equation}\\label{eq:2.5.10}",
- "f(x)-f(x_0)=\\left[\\frac{f^{(n)}(x_0)}{ n!}+E_n(x)\\right] (x-x_0)^n",
- "\\end{equation}",
- "in some interval containing $x_0$. Since $\\lim_{x\\to x_0} E_n(x)=0$",
- "and",
- "$f^{(n)}(x_0)\\ne0$, there is a $\\delta>0$ such that",
- "$$",
- "|E_n(x)|<\\left|\\frac{f^{(n)}(x_0)}{ n!}\\right|\\mbox{\\quad if\\quad}",
- "|x-x_0|",
- "<\\delta.",
- "$$",
- "\\newpage",
- "\\noindent",
- "This and \\eqref{eq:2.5.10} imply that",
- "\\begin{equation}\\label{eq:2.5.11}",
- "\\frac{f(x)-f(x_0)}{(x-x_0)^n}",
- "\\end{equation}",
- "has the same sign as $f^{(n)}(x_0)$ if $0<|x-x_0|<\\delta$. If $n$ is",
- "odd the denominator of \\eqref{eq:2.5.11} changes sign in every",
- "neighborhood of $x_0$, and therefore so must the numerator (since the",
- "ratio has constant sign for $0<|x-x_0|<\\delta$). Consequently,",
- "$f(x_0)$ cannot be a local extreme value of $f$. This proves \\part{a}. If",
- "$n$ is even, the denominator of \\eqref{eq:2.5.11} is positive for $x\\ne",
- "x_0$, so $f(x)-f(x_0)$ must have the same sign as",
- "$f^{(n)}(x_0)$ for $0<|x-x_0|<\\delta$. This proves \\part{b}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 42,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.5.4",
- "categories": [],
- "title": "Taylor's Theorem",
- "contents": [
- "Suppose that $f^{(n+1)}$ exists on an open interval $I$ about $x_0,$",
- "and let",
- "$x$ be in $I.$ Then the remainder",
- "$$",
- "R_n(x)=f(x)-T_n(x)",
- "$$",
- "can be written as",
- "$$",
- "R_n(x)=\\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1},",
- "$$",
- "where $c$ depends upon $x$ and is between $x$ and $x_0.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 43,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.5.5",
- "categories": [],
- "title": "Extended Mean Value Theorem",
- "contents": [
- "Suppose that $f$ is continuous on a finite closed interval $I$ with",
- "endpoints $a$ and $b$ $($that is, either $I=(a,b)$ or $I=(b,a)),$",
- "$f^{(n+1)}$ exists on the open interval $I^0,$ and$,$ if $n>0,$ that",
- "$f'$, \\dots, $f^{(n)}$ exist and are continuous at $a.$ Then",
- "\\begin{equation}\\label{eq:2.5.17}",
- "f(b)-\\sum_{r=0}^n\\frac{f^{(r)}(a)}{ r!}(b-a)^r=\\frac{f^{(n+1)}(c)}{(n+1)!}",
- "(b-a)^{n+1}",
- "\\end{equation}",
- "for some $c$ in $I^0.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "The proof is by induction. The mean value theorem",
- "(Theorem~\\ref{thmtype:2.3.11}) implies the conclusion for $n=0$.",
- "Now suppose that",
- "$n\\ge1$, and assume that the assertion of the theorem is true with $n$",
- "replaced by",
- "$n-1$. The left side of \\eqref{eq:2.5.17} can be written as",
- "\\begin{equation}\\label{eq:2.5.18}",
- "f(b)-\\sum_{r=0}^n\\frac{f^{(r)}(a)}{ r!}(b-a)^r=K\\frac{(b-a)^{n+1}}{(n+1)!}",
- "\\end{equation}",
- "for some number $K$. We must prove that $K=f^{(n+1)}(c)$ for",
- "some $c$ in $I^0$. To this end, consider the auxiliary function",
- "$$",
- "h(x)=f(x)-\\sum_{r=0}^n\\frac{f^{(r)}(a)}{",
- "r!}(x-a)^r-K\\frac{(x-a)^{n+1}}{",
- "(n+1)!},",
- "$$",
- "which satisfies",
- "$$",
- "h(a)=0,\\quad h(b)=0,",
- "$$",
- "(the latter because of \\eqref{eq:2.5.18}) and is continuous on the closed",
- "interval $I$ and differentiable on $I^0$, with",
- "\\begin{equation}\\label{eq:2.5.19}",
- "h'(x)=f'(x)-\\sum_{r=0}^{n-1}\\frac{f^{(r+1)}(a)}{",
- "r!}(x-a)^r-K\\frac{(x-a)^n}{n!}.",
- "\\end{equation}",
- "Therefore, Rolle's theorem (Theorem~\\ref{thmtype:2.3.8})",
- "implies that $h'(b_1)=0$ for some $b_1$ in",
- "$I^0$; thus, from \\eqref{eq:2.5.19},",
- "$$",
- "f'(b_1)-\\sum_{r=0}^{n-1}\\frac{f^{(r+1)}(a)}{",
- "r!}(b_1-a)^r-K\\frac{(b_1-a)^n}{n!}=0.",
- "$$",
- "If we temporarily write $f'=g$, this becomes",
- "\\begin{equation}\\label{eq:2.5.20}",
- "g(b_1)-\\sum_{r=0}^{n-1}\\frac{g^{(r)}(a)}{",
- "r~}(b_1-a)^r-K\\frac{(b_1-a)^n}{n!}=0.",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "Since $b_1\\in I^0$, the hypotheses on $f$ imply that $g$ is continuous",
- "on the closed interval $J$ with endpoints $a$ and $b_1$, $g^{(n)}$",
- "exists on",
- "$J^0$, and, if $n\\ge1$, $g'$, \\dots, $g^{(n-1)}$ exist and are",
- "continuous",
- "at $a$ (also at $b_1$, but this is not important). The induction",
- "hypothesis, applied to $g$ on the interval $J$, implies that",
- "$$",
- "g(b_1)-\\sum_{r=0}^{n-1}\\frac{g^{(r)}(a)}{ r!}",
- "(b_1-a)^r=\\frac{g^{(n)}(c)}{n!}(b_1-a)^n",
- "$$",
- "for some $c$ in $J^0$. Comparing this with \\eqref{eq:2.5.20} and recalling",
- "that $g=f'$ yields",
- "$$",
- "K=g^{(n)}(c)=f^{(n+1)}(c).",
- "$$",
- "Since $c$ is in $I^0$, this completes the induction."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.3.11",
- "TRENCH_REAL_ANALYSIS-thmtype:2.3.8"
- ],
- "ref_ids": [
- 35,
- 32
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 44,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.1.2",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is unbounded on $[a,b],$ then $f$ is not integrable on",
- "$[a,b].$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We will show that if $f$ is unbounded on $[a,b]$, $P$ is any",
- "partition of $[a,b]$, and $M>0$, then there are Riemann sums $\\sigma$",
- "and $\\sigma'$ of $f$ over $P$ such that",
- "\\begin{equation} \\label{eq:3.1.7}",
- "|\\sigma-\\sigma'|\\ge M.",
- "\\end{equation}",
- "We leave it to you (Exercise~\\ref{exer:3.1.2}) to complete the proof by",
- "showing from this that",
- "$f$ cannot satisfy Definition~\\ref{thmtype:3.1.1}.",
- "Let",
- "$$",
- "\\sigma=\\sum_{j=1}^nf(c_j)(x_j-x_{j-1})",
- "$$",
- "be a Riemann sum of $f$ over a partition $P$ of $[a,b]$. There must be",
- "an integer $i$ in $\\{1,2, \\dots,n\\}$ such that",
- "\\begin{equation} \\label{eq:3.1.8}",
- "|f(c)-f(c_i)|\\ge \\frac{M }{ x_i-x_{i-1}}",
- "\\end{equation}",
- "for some $c$ in $[x_{i-1}x_i]$, because if there were not so, we",
- "would have",
- "$$",
- "|f(x)-f(c_j)|<\\frac{M}{ x_j-x_{j-1}},\\quad x_{j-1}\\le x\\le x_j,\\quad",
- "1\\le j\\le n.",
- "$$",
- "Then",
- "\\begin{eqnarray*}",
- "|f(x)|\\ar=|f(c_j)+f(x)-f(c_j)|\\le|f(c_j)|+|f(x)-f(c_j)|\\\\",
- "\\ar\\le |f(c_j)|+\\frac{M}{ x_j-x_{j-1}},\\quad x_{j-1}\\le x\\le x_j,\\quad",
- "1\\le j\\le n.",
- "\\end{eqnarray*}",
- "which implies that",
- "$$",
- "|f(x)|\\le\\max_{1\\le j\\le n}|f(c_j)|+\\frac{M}{",
- "x_j-x_{j-1}},",
- "\\quad a\\le x \\le b,",
- "$$",
- "contradicting the assumption that $f$ is unbounded on $[a,b]$.",
- " Now suppose that $c$ satisfies \\eqref{eq:3.1.8}, and",
- "consider the Riemann sum",
- "$$",
- "\\sigma'=\\sum_{j=1}^nf(c'_j)(x_j-x_{j-1})",
- "$$",
- "over the same partition $P$, where",
- "$$",
- "c'_j=\\left\\{\\casespace\\begin{array}{ll}",
- "c_j,&j \\ne i,\\\\",
- "c,&j=i.\\end{array}\\right.",
- "$$",
- "\\newpage",
- "\\noindent",
- "Since",
- "$$",
- "|\\sigma-\\sigma'|=|f(c)-f(c_i)|(x_i-x_{i-1}),",
- "$$",
- "\\eqref{eq:3.1.8} implies \\eqref{eq:3.1.7}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.1.1"
- ],
- "ref_ids": [
- 315
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 45,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.1.4",
- "categories": [],
- "title": "",
- "contents": [
- "Let $f$ be bounded on $[a,b]$, and let $P$",
- "be a partition of $[a,b].$ Then",
- "\\begin{alist}",
- "\\item % (a)",
- " The upper sum $S(P)$ of $f$ over $P$ is the supremum",
- " of the set of all Riemann sums of $f$ over $P.$",
- "\\item % (b)",
- " The lower sum $s(P)$ of $f$ over $P$ is the infimum",
- " of the set of all Riemann sums of $f$ over $P.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "\\part{a} If $P=\\{x_0,x_1, \\dots,x_n\\}$, then",
- "$$",
- "S(P)=\\sum_{j=1}^n M_j(x_j-x_{j-1}),",
- "$$",
- "where",
- "$$",
- "M_j=\\sup_{x_{j-1}\\le x\\le x_j}f(x).",
- "$$",
- "An arbitrary Riemann sum of $f$ over $P$ is of the form",
- "$$",
- "\\sigma=\\sum_{j=1}^n f(c_j)(x_j-x_{j-1}),",
- "$$",
- "where $x_{j-1}\\le c_j\\le x_j$.",
- "Since $f(c_j)\\le M_j$, it follows that $\\sigma\\le S(P)$.",
- "Now let",
- "$\\epsilon>0$ and choose $\\overline c_j$ in $[x_{j-1},x_j]$ so that",
- "$$",
- "f(\\overline c_j) > M_j -\\frac{\\epsilon}{ n(x_j-x_{j-1})},\\quad 1\\le j\\le",
- "n.",
- "$$",
- "The Riemann sum produced in this way is",
- "$$",
- "\\overline \\sigma=\\sum_{j=1}^n",
- "f(\\overline",
- "c_j)(x_j-x_{j-1})>\\sum_{j=1}^n\\left[M_j-\\frac{\\epsilon}{",
- "n(x_j-x_{j-1})})\\right](x_j-x_{j-1})=S(P)-\\epsilon.",
- "$$",
- "Now Theorem~\\ref{thmtype:1.1.3} implies that",
- "$S(P)$ is the supremum of the set of Riemann sums of $f$",
- "over $P$.",
- "\\part{b} Exercise~\\ref{exer:3.1.7}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:1.1.3"
- ],
- "ref_ids": [
- 1
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 46,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.2.2",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is bounded on $[a,b],$ then",
- "\\begin{equation} \\label{eq:3.2.6}",
- "\\underline{\\int_a^b}f(x)\\,dx\\le\\overline{\\int_a^b}f(x)\\,dx.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $P_1$ and $P_2$ are partitions of $[a,b]$ and $P'$ is a",
- "refinement of both. Letting $P=P_1$ in \\eqref{eq:3.2.3} and $P=P_2$ in",
- "\\eqref{eq:3.2.2} shows that",
- "$$",
- "s(P_1)\\le s(P') \\mbox{\\quad and \\quad} S(P')\\le S(P_2).",
- "$$",
- "Since $s(P')\\le S(P')$, this implies that",
- "$s(P_1)\\le S(P_2)$.",
- "Thus, every lower sum is a lower bound for the set of all upper sums.",
- "Since $\\overline{\\int_a^b}f(x)\\,dx$ is the infimum of",
- "this set, it follows that",
- "$$",
- "s(P_1)\\le\\overline{\\int_a^b}f(x)\\,dx",
- "$$",
- "for every partition $P_1$ of $[a,b]$. This means that",
- "$\\overline{\\int_a^b}",
- "f(x)\\,dx$ is an upper bound for the set of all lower sums. Since",
- "$\\underline{\\int_a^b} f(x)\\,dx$ is the supremum of this set,",
- "this implies \\eqref{eq:3.2.6}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 47,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.2.3",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is integrable on $[a,b],$ then",
- "$$",
- "\\underline{\\int_a^b}f(x)\\,dx=\\overline{\\int_a^b}f(x)\\,dx=\\int_a^b",
- "f(x)\\,dx.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We prove that",
- "$\\overline{\\int_a^b}f(x)\\,dx=\\int_a^bf(x)\\,dx$ and leave it to you to",
- "show that",
- "$\\underline{\\int_a^b}f(x)\\,dx=\\int_a^bf(x)\\,dx$",
- "(Exercise~\\ref{exer:3.2.2}).",
- " Suppose that $P$ is a partition of $[a,b]$",
- "and $\\sigma$ is a Riemann sum of $f$ over $P$.",
- "Since",
- "\\begin{eqnarray*}",
- "\\overline{\\int_a^b}f(x)\\,dx-\\int_a^b f(x)\\,dx\\ar=",
- "\\left(\\overline{\\int_a^b}f(x)\\,dx-S(P)\\right)+(S(P)-\\sigma)",
- "\\\\[2\\jot]",
- "&&+\\left(\\sigma-\\int_a^b f(x)\\ dx\\right),",
- "\\end{eqnarray*}",
- "\\newpage",
- "\\noindent",
- "the triangle inequality implies that",
- "\\begin{equation} \\label{eq:3.2.7}",
- "\\begin{array}{rcl}",
- "\\dst{\\left|\\overline{\\int_a^b}f(x)\\,dx-\\int_a^b f(x)\\,dx \\right|}\\ar\\le",
- "\\dst{\\left|\\overline{\\int_a^b}f(x)\\,dx-S(P)\\right|+|S(P)-\\sigma|}",
- "\\\\[2\\jot]",
- "&&+\\dst{\\left|\\sigma-\\int_a^b f(x)\\ dx\\right|}.",
- "\\end{array}",
- "\\end{equation}",
- "Now suppose that $\\epsilon>0$.",
- " From Definition~\\ref{thmtype:3.1.3}, there is",
- "a partition $P_0$ of $[a,b]$ such that",
- "\\begin{equation} \\label{eq:3.2.8}",
- "\\overline{\\int_a^b} f(x)\\,dx\\le S(P_0)<",
- "\\overline{\\int_a^b}f(x)\\,dx+\\frac{\\epsilon}{3}.",
- "\\end{equation}",
- "From Definition~\\ref{thmtype:3.1.1}, there is a $\\delta>0$ such that",
- "\\begin{equation} \\label{eq:3.2.9}",
- "\\left|\\sigma-\\int_a^bf(x)\\,dx\\right|<\\frac{\\epsilon}{3}",
- "\\end{equation}",
- "if $\\|P\\|<\\delta$. Now suppose that $\\|P\\|<\\delta$ and $P$ is a",
- "refinement of $P_0$. Since $S(P)\\le S(P_0)$ by Lemma~\\ref{thmtype:3.2.1},",
- "\\eqref{eq:3.2.8} implies that",
- "$$",
- "\\overline{\\int_a^b} f(x)\\,dx\\le S(P)<",
- "\\overline{\\int_a^b}f(x)\\,dx+\\frac{\\epsilon}{3},",
- "$$",
- "so",
- "\\begin{equation} \\label{eq:3.2.10}",
- "\\left|S(P)-\\overline{\\int_a^b}f(x)\\,dx\\right|<\\frac{\\epsilon}{3}",
- "\\end{equation}",
- "in addition to \\eqref{eq:3.2.9}. Now \\eqref{eq:3.2.7}, \\eqref{eq:3.2.9}, and",
- "\\eqref{eq:3.2.10} imply that",
- "\\begin{equation} \\label{eq:3.2.11}",
- "\\left|\\overline{\\int_a^b} f(x)\\,dx-\\int_a^b f(x)\\,dx\\right|<",
- "\\frac{2\\epsilon}{3}+|S(P)-\\sigma|",
- "\\end{equation}",
- "for every Riemann sum $\\sigma$ of $f$ over $P$. Since $S(P)$ is the",
- "supremum of these Riemann sums",
- "(Theorem~\\ref{thmtype:3.1.4}), we may choose",
- "$\\sigma$ so that",
- "$$",
- "|S(P)-\\sigma|<\\frac{\\epsilon}{3}.",
- "$$",
- "Now \\eqref{eq:3.2.11} implies that",
- "$$",
- "\\left|\\overline{\\int_a^b} f(x)\\,dx-\\int_a^b f(x)\\,dx \\right|<",
- "\\epsilon.",
- "$$",
- "Since $\\epsilon$ is an arbitrary positive number, it follows that",
- "$$",
- "\\overline{\\int_a^b}f(x)\\,dx=\\int_a^b f(x)\\,dx.",
- "$$",
- "\\vskip-6.5ex"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.1.3",
- "TRENCH_REAL_ANALYSIS-thmtype:3.1.1",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.1",
- "TRENCH_REAL_ANALYSIS-thmtype:3.1.4"
- ],
- "ref_ids": [
- 316,
- 315,
- 246,
- 45
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 48,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.2.5",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is bounded on $[a,b]$ and",
- "\\begin{equation} \\label{eq:3.2.16}",
- "\\underline{\\int_a^b} f(x)\\,dx=\\overline{\\int_a^b}f(x)\\,dx=L,",
- "\\end{equation}",
- "then $f$ is integrable on $[a,b]$ and",
- "\\begin{equation} \\label{eq:3.2.17}",
- "\\int_a^b f(x)\\,dx=L.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "If $\\epsilon>0$, there is a $\\delta>0$ such that",
- "\\begin{equation} \\label{eq:3.2.18}",
- "\\underline{\\int_a^b}f(x)\\,dx-\\epsilon0$ there is",
- "a partition $P$ of $[a,b]$ for which",
- "\\begin{equation} \\label{eq:3.2.19}",
- "S(P)-s(P)<\\epsilon.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We leave it to you (Exercise~\\ref{exer:3.2.4}) to show that if $\\int_a^b",
- "f(x)\\,dx$ exists, then \\eqref{eq:3.2.19} holds for $\\|P\\|$ sufficiently",
- "small. This implies that the stated condition is necessary for",
- "integrability. To show that it is sufficient, we observe that since",
- "$$",
- "s(P)\\le \\underline{\\int_a^b}f(x)\\,dx\\le\\overline{\\int_a^b}f(x)\\,dx\\le",
- "S(P)",
- "$$",
- "for all $P$, \\eqref{eq:3.2.19} implies that",
- "$$",
- "0\\le\\overline{\\int_a^b} f(x)\\,dx-\\underline{\\int_a^b}f(x)\\,dx<",
- "\\epsilon.",
- "$$",
- "Since $\\epsilon$ can be any positive number, this implies that",
- "$$",
- "\\overline{\\int_a^b} f(x)\\,dx=\\underline{\\int_a^b} f(x)\\,dx.",
- "$$",
- "Therefore, $\\int_a^b f(x)\\,dx$ exists, by Theorem~\\ref{thmtype:3.2.5}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.5"
- ],
- "ref_ids": [
- 48
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 51,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.2.8",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is continuous on $[a,b],$",
- "then $f$ is integrable on $[a,b]$."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $P=\\{x_0,x_1, \\dots,x_n\\}$ be a partition of $[a,b]$. Since",
- "$f$ is continuous on $[a,b]$, there are points $c_j$ and $c'_j$ in",
- "$[x_{j-1},x_j]$ such that",
- "$$ f(c_j)=M_j=\\sup_{x_{j-1}\\le x\\le x_j}f(x)",
- "$$",
- "and",
- "$$",
- "f(c'_j)=m_j=\\inf_{x_{j-1}\\le x\\le x_j}f(x)",
- "$$",
- "(Theorem~\\ref{thmtype:2.2.9}).",
- "Therefore,",
- "\\begin{equation} \\label{eq:3.2.20}",
- "S(P)-s(P)=\\sum_{j=1}^n\\left[f(c_j)-f(c'_j)\\right](x_j-x_{j-1}).",
- "\\end{equation}",
- "Since $f$ is uniformly continuous on $[a,b]$",
- "(Theorem~\\ref{thmtype:2.2.12}), there is for each $\\epsilon>0$",
- "a",
- "$\\delta>0$ such that",
- " $$",
- "|f(x')-f(x)|<\\frac{\\epsilon}{ b-a}",
- " $$",
- " if $x$ and $x'$ are",
- "in $[a,b]$ and $|x-x'|<\\delta$. If $\\|P\\|<\\delta$, then",
- "$|c_j-c'_j|<\\delta$ and, from \\eqref{eq:3.2.20},",
- "$$",
- " S(P)-s(P)<\\frac{\\epsilon}{ b-a}",
- "\\sum_{j=1}^n(x_j-x_{j-1})=\\epsilon.",
- "$$",
- "Hence, $f$ is integrable",
- "on $[a,b]$, by Theorem~\\ref{thmtype:3.2.7}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.2.9",
- "TRENCH_REAL_ANALYSIS-thmtype:2.2.12",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.7"
- ],
- "ref_ids": [
- 23,
- 25,
- 50
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 52,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.2.9",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is monotonic on $[a,b],$ then $f$ is integrable on $[a,b]$."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $P=\\{x_0,x_1, \\dots,x_n\\}$ be a partition of $[a,b]$. Since",
- " $f$ is nondecreasing,",
- "\\begin{eqnarray*}",
- "f(x_j)\\ar=M_j=\\sup_{x_{j-1}\\le x\\le x_j}f(x)\\\\",
- "\\arraytext{and}\\\\",
- "f(x_{j-1})\\ar=m_j=\\inf_{x_{j-1}\\le x\\le x_j}f(x).",
- "\\end{eqnarray*}",
- "Hence,",
- "$$",
- "S(P)-s(P)=\\sum_{j=1}^n(f(x_j)-f(x_{j-1})) (x_j-x_{j-1}).",
- "$$",
- "Since $00$",
- "there are positive numbers $\\delta_1$ and $\\delta_2$ such that",
- "\\begin{eqnarray*}",
- "\\left|\\sigma_f-\\int_a^b f(x)\\,dx\\right|\\ar<\\frac{\\epsilon}{2}",
- "\\mbox{\\quad if\\quad}\\|P\\|<\\delta_1\\\\",
- "\\arraytext{and}\\\\",
- "\\left|\\sigma_g-\\int_a^b g(x)\\,dx\\right|\\ar<\\frac{\\epsilon}{2}",
- "\\mbox{\\quad if\\quad}\\|P\\|<\\delta_2.",
- "\\end{eqnarray*}",
- "If $\\|P\\|<\\delta=\\min(\\delta_1,\\delta_2)$, then",
- "\\begin{eqnarray*}",
- "\\left|\\sigma_{f+g}-\\int_a^b f(x)\\,dx-\\int_a^b g(x)\\,dx\\right|",
- "\\ar=\\left|\\left(\\sigma_f-\\int_a^b f(x)\\,dx\\right)+",
- "\\left(\\sigma_g-\\int_a^b g(x)\\,dx\\right)\\right|\\\\",
- "\\ar\\le \\left|\\sigma_f-\\int_a^b f(x)\\,dx\\right|+",
- "\\left|\\sigma_g-\\int_a^b g(x)\\,dx\\right|\\\\",
- "&<&\\frac{\\epsilon}{2}+\\frac{\\epsilon}{2}=\\epsilon,",
- "\\end{eqnarray*}",
- "so the conclusion follows from Definition~\\ref{thmtype:3.1.1}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.1.1",
- "TRENCH_REAL_ANALYSIS-thmtype:3.1.1"
- ],
- "ref_ids": [
- 315,
- 315
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 54,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.2",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is integrable on $[a,b]$ and",
- "$c$ is a constant$,$ then $cf$ is integrable on $[a,b]$ and",
- "$$",
- "\\int_a^b cf(x)\\,dx=c\\int_a^b f(x)\\,dx.",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 55,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.3",
- "categories": [],
- "title": "",
- "contents": [
- " If $f_1,$ $f_2,$ \\dots$,$ $f_n$ are",
- "integrable on $[a,b]$ and $c_1,$ $c_2,$ \\dots$,$ $c_n$ are",
- "constants$,$ then",
- "$c_1f_1+c_2f_2+\\cdots+ c_nf_n$ is integrable on $[a,b]$ and",
- "\\begin{eqnarray*}",
- "\\int_a^b (c_1f_1+c_2f_2+\\cdots+c_nf_n)(x)\\,dx\\ar=c_1\\int_a^b f_1(x)\\,dx",
- "+c_2\\int_a^b f_2(x)\\,dx\\\\",
- "\\ar{}+\\cdots+c_n\\int_a^b f_n(x)\\,dx.",
- "\\end{eqnarray*}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 56,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.4",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ and $g$ are integrable on",
- "$[a,b]$ and $f(x)\\le g(x)$ for $a\\le x\\le b,$ then",
- "\\begin{equation}\\label{eq:3.3.1}",
- "\\int_a^b f(x)\\,dx\\le\\int_a^b g(x)\\,dx.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $g(x)-f(x)\\ge0$, every lower sum of $g-f$ over any",
- "partition of $[a,b]$ is nonnegative. Therefore,",
- "$$",
- "\\underline{\\int_a^b}(g(x)-f(x))\\,dx\\ge0.",
- "$$",
- "Hence,",
- "\\begin{equation}\\label{eq:3.3.2}",
- "\\begin{array}{rcl}",
- "\\dst\\int_a^b g(x)\\,dx-\\int_a^b f(x)\\,dx\\ar=\\dst\\int_a^b",
- "(g(x)-f(x))\\,dx\\\\[2\\jot]",
- "\\ar=\\dst\\underline{\\int_a^b}(g(x)-f(x))\\,dx\\ge0,",
- "\\end{array}",
- "\\end{equation}",
- "which yields \\eqref{eq:3.3.1}. (The first equality in \\eqref{eq:3.3.2}",
- "follows",
- "from Theorems~\\ref{thmtype:3.3.1} and \\ref{thmtype:3.3.2}; the second, from",
- "Theorem~\\ref{thmtype:3.2.3}.)"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.1",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.2",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.3"
- ],
- "ref_ids": [
- 53,
- 54,
- 47
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 57,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.5",
- "categories": [],
- "title": "",
- "contents": [
- " If $f$ is integrable on $[a,b],$",
- "then so is $|f|$, and",
- "\\begin{equation} \\label{eq:3.3.3}",
- "\\left|\\int_a^b f(x)\\,dx\\right|\\le\\int_a^b |f(x)|\\,dx.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $P$ be a partition of $[a,b]$ and define",
- "\\begin{eqnarray*}",
- "M_j\\ar=\\sup\\set{f(x)}{x_{j-1}\\le x\\le x_j},\\\\",
- "m_j\\ar=",
- "\\inf\\set{f(x)}{x_{j-1}\\le x\\le x_j},\\\\",
- "\\overline{M}_j\\ar=\\sup\\set{|f(x)|}{x_{j-1}\\le x\\le x_j},\\\\",
- "\\overline{m}_j\\ar=\\inf\\set{|f(x)|}{x_{j-1}\\le x\\le x_j}.",
- "\\end{eqnarray*}",
- "Then",
- "\\begin{equation} \\label{eq:3.3.4}",
- "\\begin{array}{rcl}",
- "\\overline{M}_j-\\overline{m}_j\\ar=",
- "\\dst\\sup\\set{|f(x)|-|f(x')|}{x_{j-1}\\le x,x'\\le x_j}\\\\",
- "\\ar\\le \\dst\\sup\\set{|f(x)-f(x')|}{x_{j-1}\\le x,x'\\le x_j}\\\\",
- "\\ar=M_j-m_j.",
- "\\end{array}",
- "\\end{equation}",
- "Therefore,",
- "$$",
- "\\overline{S}(P)-\\overline{s}(P)\\le S(P)-s(P),",
- "$$",
- "where the upper and lower sums on the left are associated with $|f|$",
- "and those on the right are associated with $f$. Now suppose that",
- "$\\epsilon>0$. Since $f$ is integrable on $[a,b]$,",
- " Theorem~\\ref{thmtype:3.2.7} implies that",
- "there is a partition $P$ of $[a,b]$ such that $S(P)-s(P)<\\epsilon$.",
- "This inequality and \\eqref{eq:3.3.4} imply that $\\overline",
- "S(P)-\\overline s(P)<\\epsilon$.",
- " Therefore, $|f|$ is integrable on $[a,b]$,",
- " again by Theorem~\\ref{thmtype:3.2.7}.",
- "Since",
- "$$",
- "f(x)\\le|f(x)|\\mbox{\\quad and \\quad}-f(x)\\le|f(x)|,\\quad a\\le x\\le b,",
- "$$",
- "\\newpage",
- "\\noindent",
- " Theorems~\\ref{thmtype:3.3.2} and \\ref{thmtype:3.3.4} imply",
- "that",
- "$$",
- "\\int_a^b f(x)\\,dx\\le\\int_a^b|f(x)|\\,dx\\mbox{\\quad and }",
- "-\\int_a^b f(x)\\,dx\\le\\int_a^b|f(x)|\\,dx,",
- "$$",
- "which implies \\eqref{eq:3.3.3}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.7",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.7",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.2",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.4"
- ],
- "ref_ids": [
- 50,
- 50,
- 54,
- 56
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 58,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.6",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ and $g$ are integrable on $[a,b],$ then so is the product",
- "$fg.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We consider the case where $f$ and $g$ are nonnegative, and",
- "leave the rest of the proof to you (Exercise~\\ref{exer:3.3.4}). The",
- "subscripts $f$, $g$, and $fg$ in the following argument identify the",
- "functions",
- "with which the various quantities are associated. We assume that",
- "neither $f$ nor $g$ is identically zero on $[a,b]$, since the",
- "conclusion is obvious if one of them is.",
- "If $P=\\{x_0,x_1, \\dots,x_n\\}$ is a partition of $[a,b]$, then",
- "\\begin{equation}\\label{eq:3.3.5}",
- "S_{fg}(P)-s_{fg}(p)=\\sum_{j=1}^n (M_{fg,j}-m_{fg,",
- "j})(x_j-x_{j-1}).",
- "\\end{equation}",
- "Since $f$ and $g$ are nonnegative, $M_{fg,j}\\le M_{f,j}M_{g,j}$ and",
- "$m_{fg,j}\\ge m_{f,j}m_{g,j}$. Hence,",
- "\\begin{eqnarray*}",
- "M_{fg,j}-m_{fg,j}\\ar\\le M_{f,j}M_{g,j}-m_{f,",
- "j}m_{g,j}\\\\[2\\jot]",
- "\\ar=(M_{f,j}-m_{f,j})M_{g,j}+m_{f,j}(M_{g,j}-",
- "m_{g,j})\\\\[2\\jot]",
- "\\ar\\le M_g(M_{f,j}-m_{f,j})+M_f(M_{g,j}-m_{g,j}),",
- "\\end{eqnarray*}",
- "where $M_f$ and $M_g$ are upper bounds for $f$ and $g$ on $[a,b]$. From",
- "\\eqref{eq:3.3.5} and the last inequality,",
- "\\begin{equation} \\label{eq:3.3.6}",
- "S_{fg}(P)-s_{fg}(P)\\le M_g[S_f(P)-s_f(P)]+M_f[S_g(P)-s_g(P)].",
- "\\end{equation}",
- "Now suppose that $\\epsilon>0$. Theorem~\\ref{thmtype:3.2.7}",
- "implies that there are partitions $P_1$ and $P_2$ of $[a,b]$ such that",
- "\\begin{equation} \\label{eq:3.3.7}",
- "S_f(P_1)-s_f(P_1)<\\frac{\\epsilon}{2M_g}\\mbox{\\quad and\\quad}",
- "S_g(P_2)-s_g(P_2)<\\frac{\\epsilon}{2M_f}.",
- "\\end{equation}",
- "If $P$ is a refinement of both $P_1$ and $P_2$,",
- " then \\eqref{eq:3.3.7}",
- "and Lemma~\\ref{thmtype:3.2.1} imply that",
- "$$",
- "S_f(P)-s_f(P)<\\frac{\\epsilon}{2M_g}\\mbox{\\quad and\\quad}",
- "S_g(P)-s_g(P)<\\frac{\\epsilon}{2M_f}.",
- "$$",
- "This and \\eqref{eq:3.3.6} yield",
- "$$",
- "S_{fg}(P)-s_{fg}(P)<\\frac{\\epsilon}{2}+\\frac{\\epsilon}{2}=\\epsilon.",
- "$$",
- " Therefore, $fg$ is integrable on $[a,b]$, by",
- "Theorem~\\ref{thmtype:3.2.7}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.7",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.1",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.7"
- ],
- "ref_ids": [
- 50,
- 246,
- 50
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 59,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.7",
- "categories": [],
- "title": "First Mean Value Theorem for Integrals",
- "contents": [
- "Suppose that $u$ is continuous and $v$ is integrable and nonnegative",
- "on",
- "$[a,b].$ Then",
- "\\begin{equation} \\label{eq:3.3.8}",
- "\\int_a^b u(x)v(x)\\,dx=u(c)\\int_a^b v(x)\\,dx",
- "\\end{equation}",
- "for some $c$ in $[a,b]$."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "From Theorem~\\ref{thmtype:3.2.8}, $u$ is integrable on",
- "$[a,b]$. Therefore,",
- "Theorem~\\ref{thmtype:3.3.6} implies",
- "that the integral on the left exists. If $m=\\min\\set{u(x)}{a\\le x\\le",
- "b}$",
- " and $M=\\max\\set{u(x)}{a\\le x\\le b}$ (recall",
- "Theorem~\\ref{thmtype:2.2.9}), then",
- "$$",
- "m\\le u(x)\\le M",
- "$$",
- "and, since $v(x)\\ge0$,",
- "$$",
- "mv(x)\\le u(x) v(x)\\le Mv(x).",
- "$$",
- "Therefore, Theorems~\\ref{thmtype:3.3.2} and",
- "\\ref{thmtype:3.3.4} imply that",
- "\\vskip2pt",
- "\\begin{equation} \\label{eq:3.3.9}",
- "m\\int_a^b v(x)\\,dx\\le\\int_a^b u(x)v(x)\\,dx\\le M\\int_a^b v(x)\\,dx.",
- "\\end{equation}",
- "\\vskip2pt",
- "This implies that \\eqref{eq:3.3.8} holds for any $c$ in $[a,b]$",
- "if $\\int_a^b v(x)\\,dx=0$. If $\\int_a^b v(x)\\,dx\\ne0$, let",
- "\\vskip1pt",
- "\\begin{equation} \\label{eq:3.3.10}",
- "\\overline{u}=\\frac{\\dst\\int_a^b u(x)v(x)\\,dx}{\\dst\\int_a^bv(x)\\,dx}",
- "\\end{equation}",
- "\\vskip1pt",
- "\\noindent Since $\\int_a^b v(x)\\,dx>0$ in this case (why?),",
- "\\eqref{eq:3.3.9} implies",
- "that $m\\le\\overline{u}\\le M$, and the intermediate value theorem",
- " (Theorem~\\ref{thmtype:2.2.10}) implies that $\\overline{u}=u(c)$",
- "for some $c$ in $[a,b]$. This implies \\eqref{eq:3.3.8}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.8",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.6",
- "TRENCH_REAL_ANALYSIS-thmtype:2.2.9",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.2",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.4",
- "TRENCH_REAL_ANALYSIS-thmtype:2.2.10"
- ],
- "ref_ids": [
- 51,
- 58,
- 23,
- 54,
- 56,
- 24
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 60,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.8",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is integrable on $[a,b]$",
- "and $a\\le a_10$. From Theorem~\\ref{thmtype:3.2.7},",
- "there is a partition $P=\\{x_0,x_1, \\dots,x_n\\}$ of $[a,b]$ such that",
- "\\begin{equation} \\label{eq:3.3.11}",
- "S(P)-s(P)=\\sum_{j=1}^n(M_j-m_j)(x_j-x_{j-1})<\\epsilon.",
- "\\end{equation}",
- "We may assume that $a_1$ and $b_1$ are partition points of $P$,",
- "because if not they can be inserted to obtain a refinement",
- "$P'$ such that $S(P')-s(P')\\le S(P)-s(P)$",
- "(Lemma~\\ref{thmtype:3.2.1}). Let",
- "$a_1=x_r$ and $b_1=x_s$. Since every term in \\eqref{eq:3.3.11} is",
- "nonnegative,",
- "$$",
- "\\sum_{j=r+1}^s (M_j-m_j)(x_j-x_{j-1})<\\epsilon.",
- "$$",
- "Thus, $\\overline{P}=\\{x_r,x_{r+1}, \\dots,x_s\\}$ is a partition of",
- "$[a_1,b_1]$ over which the upper and lower sums of $f$ satisfy",
- "$$",
- "S(\\overline{P})-s(\\overline{P})<\\epsilon.",
- "$$",
- " Therefore, $f$ is integrable on $[a_1,b_1]$, by",
- "Theorem~\\ref{thmtype:3.2.7}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.7",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.1",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.7"
- ],
- "ref_ids": [
- 50,
- 246,
- 50
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 61,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.9",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is integrable on $[a,b]$",
- "and $[b,c],$ then $f$ is integrable on $[a,c],$ and",
- "\\begin{equation} \\label{eq:3.3.12}",
- "\\int_a^cf(x)\\,dx=\\int_a^bf(x)\\,dx+\\int_b^cf(x)\\,dx.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 62,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.10",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is integrable on $[a,b]$ and",
- "$a\\le c\\le b,$ then the function",
- "$F$ defined by",
- "$$",
- " F(x)=\\int_c^x f(t)\\,dt",
- "$$",
- " satisfies a Lipschitz",
- "condition on $[a,b],$ and is therefore",
- "continuous on",
- "$[a,b].$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "If $x$ and $x'$ are in $[a,b]$, then",
- "$$",
- "F(x)-F(x')=\\int_c^x f(t)\\,dt-\\int_c^{x'} f(t)\\,dt=\\int_{x'}^x f(t)\\,",
- "dt,",
- "$$",
- "by Theorem~\\ref{thmtype:3.3.9} and the conventions just adopted. Since",
- "$|f(t)|\\le K$ $(a\\le t\\le b)$ for some constant $K$,",
- "$$",
- "\\left|\\int_{x'}^x f(t)\\,dt\\right|\\le K|x-x'|,\\quad a\\le x,\\, x'\\le b",
- "$$",
- "(Theorem~\\ref{thmtype:3.3.5}), so",
- "$$",
- "|F(x)-F(x')|\\le K|x-x'|,\\quad a\\le x,\\,x'\\le b.",
- "$$",
- "\\vskip-2em"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.9",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.5"
- ],
- "ref_ids": [
- 61,
- 57
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 63,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.11",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is integrable on $[a,b]$ and $a\\le c\\le b,$ then",
- "$F(x)=\\int_c^x",
- "f(t)\\,dt$ is differentiable at any point $x_0$ in $(a,b)$ where $f$ is",
- "continuous$,$ with $F'(x_0)=f(x_0).$ If $f$ is continuous from the",
- "right at $a,$ then $F_+'(a)=f(a)$. If $f$ is continuous from",
- "the left at $b,$ then $F_-'(b)=f(b).$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We consider the case where $a0$ a",
- "$\\delta>0$ such that",
- "$$",
- "|f(t)-f(x_0)|<\\epsilon\\mbox{\\quad if\\quad} |x-x_0|<\\delta",
- "$$",
- "and $t$ is between $x$ and $x_0$. Therefore, from \\eqref{eq:3.3.13},",
- "$$",
- "\\left|\\frac{F(x)-F(x_0)}{ x-x_0}-f(x_0)\\right|<\\epsilon",
- "\\frac{|x-x_0|}{",
- "|x-x_0|}=\\epsilon\\mbox{\\quad if\\quad} 0<|x-x_0|<\\delta.",
- "$$",
- "Hence, $F'(x_0)=f(x_0)$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.5"
- ],
- "ref_ids": [
- 57
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 64,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.12",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $F$ is continuous on the closed interval $[a,b]$ and",
- "differentiable on the open interval",
- "$(a,b),$ and $f$ is integrable on $[a,b].$ Suppose also that",
- "$$",
- "F'(x)=f(x),\\quad a0$ a $\\delta>0$",
- "such that",
- "$$",
- "\\left|\\sigma-\\int_a^b f(x)\\,dx\\right|<\\epsilon\\mbox{\\quad if\\quad}",
- "\\|P\\|<\\delta.",
- "$$",
- "Therefore,",
- "$$",
- "\\left|F(b)-F(a)-\\int_a^b f(x)\\,dx\\right|<\\epsilon",
- "$$",
- "for every $\\epsilon>0$, which implies \\eqref{eq:3.3.14}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.3.11"
- ],
- "ref_ids": [
- 35
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 65,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.14",
- "categories": [],
- "title": "Fundamental Theorem of Calculus",
- "contents": [
- "If $f$ is continuous on $[a,b],$ then $f$ has an antiderivative on",
- "$[a,b].$ Moreover$,$ if $F$ is any antiderivative of $f$ on $[a,b],$",
- "then",
- "$$",
- "\\int_a^b f(x)\\,dx=F(b)-F(a).",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "The function",
- " $F_0(x)=\\int_a^x f(t)\\,dt$ is",
- "continuous on $[a,b]$ by Theorem~\\ref{thmtype:3.3.10}, and $F_0'(x)",
- "=f(x)$ on $(a,b)$ by Theorem~\\ref{thmtype:3.3.11}. Therefore,",
- "$F_0$ is an antiderivative of $f$ on $[a,b]$.",
- "Now let $F=F_0+c$ ($c=$ constant) be an arbitrary antiderivative of",
- "$f$ on $[a,b]$. Then",
- "\\vskip-2pt",
- "$$",
- "F(b)-F(a)=\\int_a^b f(x)\\,dx+c-\\int_a^a f(x)\\,dx-c=\\int_a^b f(x)\\,dx.",
- "$$",
- "\\vskip-2.5em"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.10",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.11"
- ],
- "ref_ids": [
- 62,
- 63
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 66,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.15",
- "categories": [],
- "title": "Integration by Parts",
- "contents": [
- "If $u'$ and $v'$ are integrable on $[a,b],$ then",
- "\\begin{equation}\\label{eq:3.3.16}",
- "\\int_a^b u(x)v'(x)\\,dx=u(x)v(x)\\bigg|^b_a-\\int_a^b v(x)u'(x)\\,dx.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $u$ and $v$ are continuous",
- "on",
- "$[a,b]$ (Theorem~\\ref{thmtype:2.3.3}), they",
- "are integrable on $[a,b]$. Therefore, Theorems~\\ref{thmtype:3.3.1} and",
- "\\ref{thmtype:3.3.6} imply that the function",
- "$$",
- "(uv)'=u'v+uv'",
- "$$",
- "is integrable on $[a,b]$, and Theorem~\\ref{thmtype:3.3.12} implies that",
- "$$",
- "\\int_a^b[u(x)v'(x)+u'(x)v(x)]\\,dx=u(x)v(x)\\bigg|^b_a,",
- "$$",
- "which implies \\eqref{eq:3.3.16}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.3.3",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.1",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.6",
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.12"
- ],
- "ref_ids": [
- 28,
- 53,
- 58,
- 64
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 67,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.3.16",
- "categories": [],
- "title": "Second Mean Value Theorem for Integrals",
- "contents": [
- "Suppose that $f'$ is nonnegative and integrable and $g$ is",
- "continuous on $[a,b].$ Then",
- "\\begin{equation}\\label{eq:3.3.17}",
- "\\int_a^b f(x)g(x)\\,dx=f(a)\\int_a^c g(x)\\,dx+f(b)\\int_c^b g(x)\\,dx",
- "\\end{equation}",
- "for some $c$ in $[a,b].$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $f$ is differentiable on $[a,b]$, it is continuous on $[a,b]$",
- "(Theorem~\\ref{thmtype:2.3.3}).",
- "Since $g$ is continuous on $[a,b]$, so is $fg$",
- "(Theorem~\\ref{thmtype:2.2.5}). Therefore,",
- "Theorem~\\ref{thmtype:3.2.8} implies",
- "that the integrals in \\eqref{eq:3.3.17} exist. If",
- "\\begin{equation}\\label{eq:3.3.18}",
- "G(x)=\\int_a^x g(t)\\,dt,",
- "\\end{equation}",
- "then $G'(x)=g(x),\\ a0$ and $f(x)\\ge0$ on some subinterval",
- "$[a_1,b)$ of $[a,b),$ and",
- "\\begin{equation}\\label{eq:3.4.3}",
- "\\lim_{x\\to b-}\\frac{f(x)}{ g(x)}=M.",
- "\\end{equation}",
- "\\begin{alist}",
- "\\item % (a)",
- "If $00$. Then",
- "$$",
- "W_f[x_0-h,x_0+h]<\\epsilon",
- "$$",
- "for some $h>0$, so",
- "$$",
- "|f(x)-f(x')|<\\epsilon\\mbox{\\quad if\\quad} x_0-h\\le x,x'\\le x_0+h.",
- "$$",
- " Letting $x'=x_0$, we conclude that",
- "$$",
- "|f(x)-f(x_0)|<\\epsilon\\mbox{\\quad if\\quad} |x-x_0|0$, there is a",
- "$\\delta>0$ such that",
- "$$",
- "|f(x)-f(x_0)|<\\frac{\\epsilon}{2}\\mbox{\\quad and\\quad} |f(x')-f(x_0)|<",
- "\\frac{\\epsilon}{2}",
- "$$",
- "if $x_0-\\delta\\le x$, $x'\\le x_0+\\delta$. From the triangle",
- "inequality,",
- "$$",
- "|f(x)-f(x')|\\le|f(x)-f(x_0)|+|f(x')-f(x_0)|<\\epsilon,",
- "$$",
- "so",
- "$$",
- "W_f[x_0-h,x_0+h]\\le\\epsilon\\mbox{\\quad if\\quad} h<\\delta;",
- "$$",
- " therefore, $w_f(x_0)=0$.",
- "Similar arguments apply if",
- "$x_0=a$ or $x_0=b$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 80,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.5.6",
- "categories": [],
- "title": "",
- "contents": [
- "A bounded function $f$ is integrable on a finite interval $[a,b]$ if",
- "and only if the set $S$ of discontinuities of $f$ in $[a,b]$ is of",
- "Lebesgue measure zero$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "From Theorem~\\ref{thmtype:3.5.2},",
- "$$",
- "S=\\set{x\\in [a,b]}{w_f(x)>0}\\negthickspace.",
- "$$",
- "Since $w_f(x)>0$ if and only if $w_f(x)\\ge1/i$ for some positive",
- "integer $i$, we can write",
- "\\begin{equation} \\label{eq:3.5.12}",
- "S=\\bigcup^\\infty_{i=1} S_i,",
- "\\end{equation}",
- "where",
- "$$",
- "S_i=\\set{x\\in [a,b]}{w_f(x)\\ge1/i}.",
- "$$",
- "Now suppose that $f$ is integrable on $[a,b]$ and $\\epsilon>0$.",
- "From Lemma~\\ref{thmtype:3.5.4},",
- " each $S_i$ can be covered by a finite number of",
- "open intervals $I_{i1}$, $I_{i2}$, \\dots, $I_{in}$ of total length",
- "less than",
- "$\\epsilon/2^i$. We simply renumber these intervals consecutively;",
- "thus,",
- "$$",
- "I_1,I_2, \\dots=",
- "I_{11}, \\dots,I_{1n_1},I_{21}, \\dots,I_{2n_2}, \\dots,",
- "I_{i1}, \\dots,I_{in_i}, \\dots.",
- "$$",
- "Now \\eqref{eq:3.5.8} and \\eqref{eq:3.5.9} hold because of \\eqref{eq:3.5.11} and",
- "\\eqref{eq:3.5.12}, and we have shown that the stated condition is",
- "necessary for integrability.",
- "For sufficiency, suppose that the stated condition holds and",
- "$\\epsilon>0$. Then $S$ can be covered by open intervals",
- "$I_1,I_2, \\dots$ that satisfy \\eqref{eq:3.5.9}. If $\\rho>0$, then the",
- "set",
- "$$",
- "E_\\rho=\\set{x\\in [a,b]}{w_f(x)\\ge\\rho}",
- "$$",
- "of Lemma~\\ref{thmtype:3.5.4} is contained in $S$",
- "(Theorem~\\ref{thmtype:3.5.2}), and therefore $E_\\rho$ is covered by",
- "$I_1,I_2, \\dots$. Since $E_\\rho$ is closed (Lemma~\\ref{thmtype:3.5.4})",
- "and bounded, the Heine--Borel theorem implies that $E_\\rho$ is covered",
- "by a finite number of intervals from $I_1,I_2, \\dots$. The sum of",
- "the lengths of the latter is less than $\\epsilon$, so",
- "Lemma~\\ref{thmtype:3.5.4} implies that $f$ is integrable on $[a,b]$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.5.2",
- "TRENCH_REAL_ANALYSIS-thmtype:3.5.4",
- "TRENCH_REAL_ANALYSIS-thmtype:3.5.4",
- "TRENCH_REAL_ANALYSIS-thmtype:3.5.2",
- "TRENCH_REAL_ANALYSIS-thmtype:3.5.4",
- "TRENCH_REAL_ANALYSIS-thmtype:3.5.4"
- ],
- "ref_ids": [
- 79,
- 249,
- 249,
- 79,
- 249,
- 249
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 81,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.2",
- "categories": [],
- "title": "",
- "contents": [
- "The limit of a convergent sequence is unique$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that",
- "$$",
- "\\lim_{n\\to\\infty}s_n=s\\mbox{\\quad and \\quad}",
- "\\lim_{n\\to\\infty}s_n=s'.",
- "$$",
- "\\vskip5pt",
- "\\noindent We must show that $s=s'$.",
- "Let $\\epsilon>0$. From Definition~\\ref{thmtype:4.1.1}, there are",
- "integers $N_1$ and $N_2$ such that",
- "$$",
- "|s_n-s|<\\epsilon\\mbox{\\quad if\\quad} n\\ge N_1",
- "$$",
- "\\vskip5pt",
- "\\noindent(because $\\lim_{n\\to\\infty} s_n=s$), and",
- "$$",
- "|s_n-s'|<\\epsilon\\mbox{\\quad if\\quad} n\\ge N_2",
- "$$",
- "\\newpage",
- "\\noindent",
- "(because $\\lim_{n\\to\\infty}s_n=s'$). These inequalities both hold if",
- "$n\\ge N=\\max (N_1,N_2)$, which implies that",
- "\\begin{eqnarray*}",
- "|s-s'|\\ar=|(s-s_N)+(s_N-s')|\\\\",
- "\\ar\\le |s-s_N|+|s_N-s'|<\\epsilon+\\epsilon=2\\epsilon.",
- "\\end{eqnarray*}",
- "Since this inequality holds for every $\\epsilon>0$ and $|s-s'|$",
- "is independent of $\\epsilon$, we conclude that $|s-s'|=0$; that is,",
- "$s=s'$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.1"
- ],
- "ref_ids": [
- 324
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 82,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.4",
- "categories": [],
- "title": "",
- "contents": [
- "A convergent sequence is bounded$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "By taking $\\epsilon=1$ in \\eqref{eq:4.1.2}, we see that if",
- " $\\lim_{n\\to\\infty} s_n=s$, then there is an integer $N$",
- "such that",
- "$$",
- "|s_n-s|<1\\mbox{\\quad if\\quad} n\\ge N.",
- "$$",
- "Therefore,",
- "$$",
- "|s_n|=|(s_n-s)+s|\\le|s_n-s|+|s|<1+|s|\\mbox{\\quad if\\quad} n\\ge N,",
- "$$",
- "and",
- "$$",
- "|s_n|\\le\\max\\{|s_0|,|s_1|, \\dots,|s_{N-1}|, 1+|s|\\}",
- "$$",
- "for all $n$, so $\\{s_n\\}$ is bounded."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 83,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.6",
- "categories": [],
- "title": "",
- "contents": [
- "\\begin{alist}",
- "\\item % (a)",
- " If $\\{s_n\\}$ is nondecreasing$,$",
- "then $\\lim_{n\\to\\infty}s_n=\\sup\\{s_n\\}.$",
- "\\item % (b",
- "If $\\{s_n\\}$ is nonincreasing$,$ then $\\lim_{n\\to\\infty}s_n=",
- "\\inf\\{s_n\\}.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "\\part{a}. Let $\\beta=\\sup\\{s_n\\}$.",
- "If $\\beta<\\infty$, Theorem~\\ref{thmtype:1.1.3}",
- "implies that if $\\epsilon>0$ then",
- "$$",
- "\\beta-\\epsilonb$",
- "for some integer $N$. Then $s_n>b$ for $n\\ge N$, so",
- "$\\lim_{n\\to\\infty}s_n=\\infty$.",
- "We leave the proof of \\part{b}",
- "to you (Exercise~\\ref{exer:4.1.8})"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:1.1.3",
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.1"
- ],
- "ref_ids": [
- 1,
- 324
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 84,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.7",
- "categories": [],
- "title": "",
- "contents": [
- " Let $\\lim_{x\\to\\infty} f(x)=L,$",
- "where $L$ is in the extended reals$,$ and suppose that",
- "$s_n=f(n)$ for large $n.$ Then",
- "$$",
- "\\lim_{n\\to\\infty}s_n=L.",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 85,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.8",
- "categories": [],
- "title": "",
- "contents": [
- " Let",
- "\\begin{equation}\\label{eq:4.1.4}",
- "\\lim_{n\\to\\infty} s_n=s\\mbox{\\quad and\\quad}\\lim_{n\\to\\infty} t_n=t,",
- "\\end{equation}",
- "where $s$ and $t$ are finite$.$ Then",
- "\\begin{equation}\\label{eq:4.1.5}",
- "\\lim_{n\\to\\infty} (cs_n)=cs",
- "\\end{equation}",
- "if $c$ is a constant$;$",
- "\\begin{eqnarray}",
- "\\lim_{n\\to\\infty}(s_n+t_n)\\ar=s+t,\\label{eq:4.1.6}\\\\",
- "\\lim_{n\\to\\infty}(s_n-t_n)\\ar=s-t, \\label{eq:4.1.7}\\\\",
- "\\lim_{n\\to\\infty}(s_nt_n)\\ar=st,\\label{eq:4.1.8}\\\\",
- "\\arraytext{and}\\nonumber\\\\",
- "\\lim_{n\\to\\infty}\\frac{s_n}{ t_n}\\ar=\\frac{s}{ t}\\label{eq:4.1.9}",
- "\\end{eqnarray}",
- "if $t_n$ is nonzero for all $n$ and $t\\ne0$."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We prove \\eqref{eq:4.1.8} and \\eqref{eq:4.1.9}",
- "and leave the rest to you",
- "(Exercises~\\ref{exer:4.1.15} and \\ref{exer:4.1.17}). For",
- "\\eqref{eq:4.1.8}, we write",
- "$$",
- "s_nt_n-st=s_nt_n-st_n+st_n-st",
- "=(s_n-s)t_n+s(t_n-t);",
- "$$",
- "\\newpage",
- "\\noindent",
- "hence,",
- "\\begin{equation}\\label{eq:4.1.10}",
- "|s_nt_n-st|\\le |s_n-s|\\,|t_n|+|s|\\,|t_n-t|.",
- "\\end{equation}",
- "Since $\\{t_n\\}$ converges, it is bounded (Theorem~\\ref{thmtype:4.1.4}).",
- "Therefore, there is a number $R$ such that $|t_n|\\le R$ for all $n$,",
- "and",
- "\\eqref{eq:4.1.10} implies that",
- "\\begin{equation}\\label{eq:4.1.11}",
- "|s_nt_n-st|\\le R|s_n-s|+|s|\\,|t_n-t|.",
- "\\end{equation}",
- "From \\eqref{eq:4.1.4}, if $\\epsilon>0$ there are integers",
- "$N_1$ and $N_2$ such that",
- "\\begin{eqnarray}",
- "|s_n-s|\\ar<\\epsilon\\mbox{\\quad if\\quad} n\\ge N_1 \\label{eq:4.1.12}\\\\",
- "\\arraytext{and}\\nonumber\\\\",
- "|t_n-t|\\ar<\\epsilon\\mbox{\\quad if\\quad} n\\ge N_2.\\label{eq:4.1.13}",
- "\\end{eqnarray}",
- "If $N=\\max (N_1,N_2)$, then \\eqref{eq:4.1.12} and \\eqref{eq:4.1.13} both hold",
- "when $n\\ge N$, and \\eqref{eq:4.1.11} implies that",
- "$$",
- "|s_nt_n-st|\\le (R+|s|)\\epsilon\\mbox{\\quad if\\quad} n\\ge N.",
- "$$",
- "This proves \\eqref{eq:4.1.8}.",
- "Now consider \\eqref{eq:4.1.9} in the special case where $s_n=1$ for all",
- "$n$ and $t\\ne 0$; thus, we want to show that",
- "$$",
- "\\lim_{n\\to\\infty}\\frac{1}{ t_n}=\\frac{1}{ t}.",
- "$$",
- "First, observe that since $\\lim_{n\\to\\infty} t_n=t\\ne0$, there is an",
- "integer $M$ such that $|t_n|\\ge |t|/2$ if $n\\ge M$. To see this,",
- "we apply Definition~\\ref{thmtype:4.1.1} with $\\epsilon=|t|/2$; thus,",
- "there is an integer $M$ such that $|t_n-t|<|t/2|$ if $n\\ge M$.",
- "Therefore,",
- "$$",
- "|t_n|=|t+(t_n-t)|\\ge ||t|-|t_n-t||\\ge\\frac{|t|}{2}\\mbox{\\quad if",
- "\\quad} n\\ge M.",
- "$$",
- " If $\\epsilon>0$, choose $N_0$ so that $|t_n-t|<\\epsilon$",
- "if $n\\ge N_0$,",
- " and let $N=\\max (N_0,M)$. Then",
- "$$",
- "\\left|\\frac{1}{ t_n}-\\frac{1}{ t}\\right|=\\frac{|t-t_n|}{",
- "|t_n|\\,|t|}\\le\\frac {2",
- "\\epsilon}{ |t|^2}\\mbox{\\quad if\\quad} n\\ge N;",
- "$$",
- "hence, $\\lim_{n\\to\\infty} 1/t_n=1/t$.",
- "Now we obtain \\eqref{eq:4.1.9} in the general case from \\eqref{eq:4.1.8}",
- "with $\\{t_n\\}$ replaced by $\\{1/t_n\\}$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.4",
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.1"
- ],
- "ref_ids": [
- 82,
- 324
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 86,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.9",
- "categories": [],
- "title": "",
- "contents": [
- "\\begin{alist}",
- "\\item % (a)",
- "If $\\{s_n\\}$ is bounded above and does not diverge to $-\\infty,$ then",
- "there is a unique real number $\\overline{s}$ such that$,$ if",
- "$\\epsilon>0,$",
- "\\begin{equation}\\label{eq:4.1.16}",
- "s_n<\\overline{s}+\\epsilon\\mbox{\\quad for large $n$}",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:4.1.17}",
- "s_n>\\overline{s}-\\epsilon\\mbox{\\quad for infinitely many",
- " $n$}.",
- "\\end{equation}",
- "\\item % (b)",
- "If $\\{s_n\\}$ is bounded below and does not diverge to $\\infty,$ then",
- "there is a unique real number $\\underline{s}$ such that$,$ if",
- "$\\epsilon",
- ">0,$",
- "\\begin{equation}\\label{eq:4.1.18}",
- "s_n>\\underline{s}-\\epsilon\\mbox{\\quad for large $n$}",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:4.1.19}",
- "s_n<\\underline{s}+\\epsilon\\mbox{\\quad for infinitely many",
- "$n$}.",
- "\\end{equation}",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We will prove \\part{a} and leave the proof of \\part{b} to you",
- "(Exercise~\\ref{exer:4.1.23}). Since $\\{s_n\\}$ is bounded above,",
- "there is a number $\\beta$ such that $s_n<\\beta$ for all",
- "$n$. Since $\\{s_n\\}$ does not diverge to $-\\infty$, there is",
- "a number $\\alpha$ such that",
- "$s_n> \\alpha$ for infinitely many $n$. If we define",
- "$$",
- "M_k=\\sup\\{s_k,s_{k+1}, \\dots,s_{k+r}, \\dots\\},",
- "$$",
- "\\newpage",
- "\\noindent",
- "then $\\alpha\\le M_k\\le\\beta$, so $\\{M_k\\}$ is bounded. Since",
- "$\\{M_k\\}$ is nonincreasing (why?), it converges, by",
- "Theorem~\\ref{thmtype:4.1.6}. Let",
- "\\begin{equation} \\label{eq:4.1.20}",
- "\\overline{s}=\\lim_{k\\to\\infty} M_k.",
- "\\end{equation}",
- "If $\\epsilon>0$, then $M_k<\\overline{s}+\\epsilon$ for large $k$, and",
- "since $s_n\\le M_k$ for $n\\ge k$, $\\overline{s}$ satisfies",
- "\\eqref{eq:4.1.16}.",
- "If \\eqref{eq:4.1.17} were false for some positive",
- "$\\epsilon$, there would be an integer $K$ such that",
- "$$",
- "s_n\\le\\overline{s}-\\epsilon\\mbox{\\quad if\\quad} n\\ge K.",
- "$$",
- "However, this implies that",
- "$$",
- "M_k\\le\\overline{s}-\\epsilon\\mbox{\\quad if\\quad} k\\ge K,",
- "$$",
- "which contradicts \\eqref{eq:4.1.20}. Therefore, $\\overline{s}$",
- " has the stated properties.",
- "Now we must show that",
- "$\\overline{s}$ is the only real number with the stated properties.",
- "If $t<\\overline{s}$, the inequality",
- "$$",
- "s_n t-\\frac{t-\\overline{s}}{2}=\\overline{s}+\\frac{t-\\overline{s}}{",
- "2}",
- "$$",
- "cannot hold for infinitely many $n$, because this would contradict",
- "\\eqref{eq:4.1.16} with $\\epsilon=(t-\\overline{s})/2$. Therefore,",
- "$\\overline{s}$ is the only real number with the stated properties."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.6"
- ],
- "ref_ids": [
- 83
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 87,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.11",
- "categories": [],
- "title": "",
- "contents": [
- "Every sequence $\\{s_n\\}$ of real numbers has a unique limit",
- "superior$,$",
- "$\\overline{s},$ and a unique limit inferior$,$ $\\underline{s}$, in the",
- "extended reals$,$ and",
- "\\begin{equation}\\label{eq:4.1.21}",
- "\\underline{s}\\le \\overline{s}.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "The existence and uniqueness of $\\overline{s}$ and",
- "$\\underline{s}$ follow from Theorem~\\ref{thmtype:4.1.9} and",
- "Definition~\\ref{thmtype:4.1.10}. If $\\overline{s}$ and $\\underline{s}$ are",
- "both finite, then \\eqref{eq:4.1.16} and \\eqref{eq:4.1.18} imply that",
- "$$",
- "\\underline{s}-\\epsilon<\\overline{s}+\\epsilon",
- "$$",
- "for every $\\epsilon>0$, which implies \\eqref{eq:4.1.21}. If",
- "$\\underline{s}=-\\infty$ or $\\overline{s}=\\infty$, then \\eqref{eq:4.1.21}",
- "is obvious. If $\\underline{s}=\\infty$ or $\\overline{s}=-\\infty$, then",
- "\\eqref{eq:4.1.21} follows immediately from Definition~\\ref{thmtype:4.1.10}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.9",
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.10",
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.10"
- ],
- "ref_ids": [
- 86,
- 327,
- 327
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 88,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.12",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\{s_n\\}$ is a sequence of real numbers, then",
- "\\begin{equation}\\label{eq:4.1.22}",
- "\\lim_{n\\to\\infty} s_n=s",
- "\\end{equation}",
- "if and only if",
- "\\begin{equation}\\label{eq:4.1.23}",
- "\\limsup_{n\\to\\infty}s_n=\\liminf_{n\\to\\infty} s_n=s.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "If $s=\\pm\\infty$, the equivalence of \\eqref{eq:4.1.22} and",
- "\\eqref{eq:4.1.23} follows immediately from their definitions. If",
- "$\\lim_{n\\to\\infty}s_n=s$ (finite), then Definition~\\ref{thmtype:4.1.1}",
- "implies that \\eqref{eq:4.1.16}--\\eqref{eq:4.1.19} hold with $\\overline{s}$ and $\\underline{s}$ replaced by",
- "$s$. Hence, \\eqref{eq:4.1.23} follows from the uniqueness of",
- "$\\overline{s}$ and $\\underline{s}$. For the converse, suppose that",
- "$\\overline{s}=\\underline{s}$ and let $s$ denote their common value.",
- "Then \\eqref{eq:4.1.16} and \\eqref{eq:4.1.18} imply that",
- "$$",
- "s-\\epsilon0,$ there is an integer $N$ such that",
- "\\begin{equation}\\label{eq:4.1.24}",
- "|s_n-s_m|<\\epsilon\\mbox{\\quad if\\quad} m,n\\ge N.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $\\lim_{n\\to\\infty}s_n=s$ and $\\epsilon>0$.",
- "By Definition~\\ref{thmtype:4.1.1}, there is an integer $N$ such that",
- "$$",
- "|s_r-s|<\\frac{\\epsilon}{2}\\mbox{\\quad if\\quad} r\\ge N.",
- "$$",
- "Therefore,",
- "$$",
- "|s_n-s_m|=|(s_n-s)+(s-s_m)|\\le |s_n-s|+|s-s_m|<\\epsilon",
- "\\mbox{\\quad if\\quad} n,m\\ge N.",
- "$$",
- "Therefore, the stated condition is necessary for convergence of",
- "$\\{s_n\\}$. To see that it is sufficient, we first observe that it",
- "implies that $\\{s_n\\}$ is bounded (Exercise~\\ref{exer:4.1.27}), so",
- "$\\overline{s}$ and $\\underline{s}$ are finite",
- "(Theorem~\\ref{thmtype:4.1.9}).",
- "Now suppose that $\\epsilon>0$ and $N$ satisfies \\eqref{eq:4.1.24}. From",
- "\\eqref{eq:4.1.16} and \\eqref{eq:4.1.17},",
- "\\begin{equation}\\label{eq:4.1.25}",
- "|s_n-\\overline{s}|<\\epsilon,",
- "\\end{equation}",
- "for some integer $n>N$ and, from \\eqref{eq:4.1.18} and \\eqref{eq:4.1.19},",
- "\\begin{equation}\\label{eq:4.1.26}",
- "|s_m-\\underline{s}|<\\epsilon",
- "\\end{equation}",
- "for some integer $m>N$. Since",
- "\\begin{eqnarray*}",
- "|\\overline{s}-\\underline{s}|\\ar=|(\\overline{s}-s_n)+",
- "(s_n-s_m)+(s_m-\\underline{s})|\\\\",
- "\\ar\\le |\\overline{s}-s_n|+|s_n-s_m|+|s_m-\\underline{s}|,",
- "\\end{eqnarray*}",
- "\\eqref{eq:4.1.24}--\\eqref{eq:4.1.26} imply that",
- "$$",
- "|\\overline{s}-\\underline{s}|<3\\epsilon.",
- "$$",
- "Since $\\epsilon$ is an arbitrary positive number, this implies that",
- "$\\overline{s}=\\underline{s}$, so $\\{s_n\\}$ converges, by",
- "Theorem~\\ref{thmtype:4.1.12}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.1",
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.9",
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.12"
- ],
- "ref_ids": [
- 324,
- 86,
- 88
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 90,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.2.2",
- "categories": [],
- "title": "",
- "contents": [
- "If",
- "\\begin{equation}\\label{eq:4.2.1}",
- "\\lim_{n\\to\\infty}s_n=s\\quad (-\\infty\\le s\\le\\infty),",
- "\\end{equation}",
- "then",
- "\\begin{equation}\\label{eq:4.2.2}",
- "\\lim_{k\\to\\infty} s_{n_k}=s",
- "\\end{equation}",
- "for every subsequence $\\{s_{n_k}\\}$ of $\\{s_n\\}.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We consider the case where $s$ is finite and leave the rest to you",
- "(Exercise~\\ref{exer:4.2.4}). If \\eqref{eq:4.2.1} holds and $\\epsilon>0$,",
- "there is an integer $N$ such that",
- "$$",
- "|s_n-s|<\\epsilon\\mbox{\\quad if\\quad} n\\ge N.",
- "$$",
- "Since $\\{n_k\\}$ is an increasing sequence, there is an integer $K$",
- "such that",
- "$n_k\\ge N$ if $k\\ge K$. Therefore,",
- "$$",
- "|s_{n_k}-L|<\\epsilon\\mbox{\\quad if\\quad} k\\ge K,",
- "$$",
- "which implies \\eqref{eq:4.2.2}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 91,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.2.3",
- "categories": [],
- "title": "",
- "contents": [
- " If $\\{s_n\\}$ is monotonic and has a",
- "subsequence $\\{s_{n_k}\\}$ such that",
- "$$",
- "\\lim_{k\\to\\infty} s_{n_k}=s\\quad (-\\infty\\le s\\le\\infty),",
- "$$",
- "then",
- "$$",
- "\\lim_{n\\to\\infty} s_n=s.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We consider the case where $\\{s_n\\}$ is nondecreasing and leave",
- "the rest to you (Exercise~\\ref{exer:4.2.6}). Since $\\{s_{n_k}\\}$ is also",
- "nondecreasing in this case, it suffices to show that",
- "\\begin{equation}\\label{eq:4.2.3}",
- "\\sup\\{s_{n_k}\\}=\\sup\\{s_n\\}",
- "\\end{equation}",
- "and then apply Theorem~\\ref{thmtype:4.1.6}\\part{a}. Since the",
- "set of terms of",
- "$\\{s_{n_k}\\}$ is contained in the set of terms of $\\{s_n\\}$,",
- "\\begin{equation} \\label{eq:4.2.4}",
- "\\sup\\{s_n\\}\\ge\\sup\\{s_{n_k}\\}.",
- "\\end{equation}",
- "Since $\\{s_n\\}$ is nondecreasing, there is for every $n$ an integer",
- "$n_k$ such that $s_n\\le s_{n_k}$. This implies that",
- "$$",
- "\\sup\\{s_n\\}\\le\\,\\sup\\{s_{n_k}\\}.",
- "$$",
- "This and \\eqref{eq:4.2.4} imply \\eqref{eq:4.2.3}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.6"
- ],
- "ref_ids": [
- 83
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 92,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.2.4",
- "categories": [],
- "title": "",
- "contents": [
- "A point $\\overline{x}$ is a limit",
- "point of a set $S$ if and only if there is a sequence $\\{x_n\\}$ of points",
- "in $S$ such that $x_n\\ne\\overline{x}$ for $n\\ge 1,$ and",
- "$$",
- "\\lim_{n\\to\\infty}x_n=\\overline{x}.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "For sufficiency, suppose that the stated condition holds.",
- "Then, for each $\\epsilon>0$, there is an integer $N$ such",
- "that $0<|x_n-x|<\\epsilon$ if $n\\ge N$. Therefore, every",
- "$\\epsilon$-neighborhood of $\\overline{x}$ contains infinitely many",
- "points of $S$. This means that $\\overline{x}$ is a limit point of $S$.",
- "For necessity, let $\\overline{x}$ be a limit point of $S$. Then,",
- "for every integer $n\\ge1$,",
- "the interval $(\\overline{x}-1/n,\\overline{x}+1/n)$",
- "contains",
- "a point $x_n\\ (\\ne\\overline{x})$ in $S$. Since",
- "$|x_m-\\overline{x}|\\le1/n$ if $m\\ge n$, $\\lim_{n\\to\\infty}x_n=",
- "\\overline{x}$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 93,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.2.5",
- "categories": [],
- "title": "",
- "contents": [
- "\\vspace*{3pt}",
- "\\begin{alist}",
- "\\item % (a)",
- " If $\\{x_n\\}$ is bounded$,$ then",
- "$\\{x_n\\}$ has a convergent subsequence$.$",
- "\\vspace*{3pt}",
- "\\item % (b)",
- " If $\\{x_n\\}$ is unbounded above$,$",
- " then $\\{x_n\\}$ has a subsequence $\\{x_{n_k}\\}$ such that",
- "$$",
- "\\lim_{k\\to\\infty} x_{n_k}=\\infty.",
- "$$",
- "\\vspace*{3pt}",
- "\\item % (c)",
- " If $\\{x_n\\}$ is unbounded",
- "below$,$ then $\\{x_n\\}$ has a subsequence $\\{x_{n_k}\\}$ such that",
- "$$",
- "\\lim_{k\\to\\infty} x_{n_k}=-\\infty.",
- "$$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We prove \\part{a} and leave \\part{b} and \\part{c} to you",
- "(Exercise~\\ref{exer:4.2.7}). Let",
- "$S$ be the set of distinct numbers that occur as terms of $\\{x_n\\}$.",
- "(For example, if $\\{x_n\\}=\\{(-1)^n\\}$, $S=\\{1,-1\\}$; if",
- "$\\{x_n\\}=\\{1,\\frac{1}{2}, 1, \\frac{1}{3}, \\dots, 1, 1/n, \\dots\\}$,",
- "$S=\\{1,\\frac{1}{2}, \\dots, 1/n, \\dots\\}$.) If $S$ contains only finitely",
- "many points, then some $\\overline{x}$ in $S$ occurs infinitely often",
- "in $\\{x_n\\}$; that is, $\\{x_n\\}$ has a subsequence $\\{x_{n_k}\\}$ such",
- "that $x_{n_k}=\\overline{x}$ for all $k$. Then",
- "$\\lim_{k\\to\\infty}",
- "x_{n_k}=\\overline{x}$, and we are finished in this case.",
- "If $S$ is infinite, then, since $S$ is bounded (by assumption), the",
- "Bolzano--Weierstrass theorem (Theorem~\\ref{thmtype:1.3.8})",
- "implies that",
- "$S$ has a limit point",
- "$\\overline{x}$. From Theorem~\\ref{thmtype:4.2.4}, there is a sequence of",
- "points $\\{y_j\\}$ in $S$, distinct from $\\overline{x}$, such that",
- "\\begin{equation}\\label{eq:4.2.5}",
- "\\lim_{j\\to\\infty} y_j=\\overline{x}.",
- "\\end{equation}",
- "Although each $y_j$ occurs as a term of $\\{x_n\\}$, $\\{y_j\\}$ is",
- "not necessarily a subsequence of $\\{x_n\\}$, because if we write",
- "$$",
- "y_j=x_{n_j},",
- "$$",
- "there is no reason to expect that $\\{n_j\\}$ is an increasing sequence",
- "as required in Definition~\\ref{thmtype:4.2.1}. However, it is always",
- "possible to pick a subsequence $\\{n_{j_k}\\}$ of $\\{n_j\\}$ that is",
- "increasing, and then the sequence $\\{y_{j_k}\\}=\\{s_{n_{j_k}}\\}$ is a",
- "subsequence of both $\\{y_j\\}$ and $\\{x_n\\}$. Because of \\eqref{eq:4.2.5}",
- "and Theorem~\\ref{thmtype:4.2.2} this subsequence converges",
- "to~$\\overline{x}$.",
- "\\mbox{}"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:1.3.8",
- "TRENCH_REAL_ANALYSIS-thmtype:4.2.4",
- "TRENCH_REAL_ANALYSIS-thmtype:4.2.1",
- "TRENCH_REAL_ANALYSIS-thmtype:4.2.2"
- ],
- "ref_ids": [
- 12,
- 92,
- 328,
- 90
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 94,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.2.6",
- "categories": [],
- "title": "",
- "contents": [
- "Let $f$ be defined on a closed interval $[a,b]$ containing",
- "$\\overline{x}.$ Then $f$ is continuous at $\\overline{x}$",
- "$($from the right if $\\overline{x}=a,$ from the left if",
- "$\\overline{x}=b$$)$ if and only if",
- "\\begin{equation}\\label{eq:4.2.6}",
- "\\lim_{n\\to\\infty} f(x_n)=f(\\overline{x})",
- "\\end{equation}",
- "whenever $\\{x_n\\}$ is a sequence of points in $[a,b]$ such that",
- "\\begin{equation}\\label{eq:4.2.7}",
- "\\lim_{n\\to\\infty} x_n=\\overline{x}.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Assume that $a<\\overline{x}0$, there is a",
- "$\\delta> 0$ such that",
- "\\begin{equation} \\label{eq:4.2.8}",
- "|f(x)-f(\\overline{x})|<\\epsilon\\mbox{\\quad if\\quad} |x-\\overline{x}|",
- "<\\delta.",
- "\\end{equation}",
- "From \\eqref{eq:4.2.7}, there is an integer $N$ such that",
- "$|x_n-\\overline{x}|<\\delta$",
- " if $n\\ge N$. This and \\eqref{eq:4.2.8} imply that",
- "$|f(x_n)-f(\\overline{x})|<\\epsilon$ if $n\\ge N$. This implies",
- "\\eqref{eq:4.2.6}, which shows that the stated condition is necessary.",
- "For sufficiency, suppose that $f$ is discontinuous at $\\overline{x}$.",
- "Then there is an $\\epsilon_0>0$ such that, for each positive integer",
- "$n$, there is a point $x_n$ that satisfies the inequality",
- "$$",
- "|x_n-\\overline{x}|<\\frac{1}{ n}",
- "$$",
- "\\newpage",
- "\\noindent",
- "while",
- "$$",
- "|f(x_n)-f(\\overline{x})|\\ge\\epsilon_0.",
- "$$",
- "The sequence $\\{x_n\\}$ therefore satisfies \\eqref{eq:4.2.7}, but not",
- "\\eqref{eq:4.2.6}. Hence, the stated condition cannot hold if $f$ is",
- "discontinuous at $\\overline{x}$. This proves sufficiency."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 95,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.2.7",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is continuous on a closed",
- "interval $[a,b],$ then $f$ is bounded on $[a,b].$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "The proof is by contradiction.",
- "If $f$ is not bounded on $[a,b]$, there is for each positive",
- "integer $n$ a point $x_n$ in $[a,b]$ such that",
- "$|f(x_n)|>n$. This implies that",
- "\\begin{equation}\\label{eq:4.2.9}",
- "\\lim_{n\\to\\infty}|f(x_n)|=\\infty.",
- "\\end{equation}",
- "Since $\\{x_n\\}$ is bounded, $\\{x_n\\}$ has a convergent subsequence",
- "$\\{x_{n_k}\\}$ (Theorem~\\ref{thmtype:4.2.5}\\part{a}). If",
- "$$",
- "\\overline{x}=\\lim_{k\\to\\infty} x_{n_k},",
- "$$",
- "then $\\overline{x}$ is a limit point of $[a,b]$, so",
- "$\\overline{x}\\in [a,b]$. If $f$ is continuous on $[a,b]$, then",
- "$$",
- "\\lim_{k\\to\\infty} f(x_{n_k})=f(\\overline{x})",
- "$$",
- "by Theorem~\\ref{thmtype:4.2.6}, so",
- "$$",
- "\\lim_{k\\to\\infty} |f(x_{n_k})|=|f(\\overline{x})|",
- "$$",
- "(Exercise~\\ref{exer:4.1.6}), which contradicts",
- "\\eqref{eq:4.2.9}.",
- "Therefore, $f$ cannot be both continuous and unbounded on $[a,b]$"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.2.5",
- "TRENCH_REAL_ANALYSIS-thmtype:4.2.6"
- ],
- "ref_ids": [
- 93,
- 94
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 96,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.2",
- "categories": [],
- "title": "",
- "contents": [
- "The sum of a convergent series is unique$.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 97,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.3",
- "categories": [],
- "title": "",
- "contents": [
- "Let",
- "$$",
- "\\sum_{n=k}^\\infty a_n=A\\mbox{\\quad and\\quad}\\sum_{n=k}^\\infty b_n=B,",
- "$$",
- "where $A$ and $B$ are finite$.$ Then",
- "$$",
- "\\sum_{n=k}^\\infty (ca_n)=cA",
- "$$",
- "if $c$ is a constant$,$",
- "$$",
- "\\sum_{n=k}^\\infty (a_n+b_n)=A+B,",
- "$$",
- "and",
- "$$",
- "\\sum_{n=k}^\\infty (a_n-b_n)=A-B.",
- "$$",
- "These relations also hold if one or both of $A$ and $B$ is infinite,",
- "provided that the right sides are not indeterminate$.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 98,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.5",
- "categories": [],
- "title": "Cauchy's Convergence Criterion for Series",
- "contents": [
- "A series $\\sum a_n$ converges if and only if for every",
- "$\\epsilon>0$",
- "there is an integer $N$ such that",
- "\\begin{equation}\\label{eq:4.3.3}",
- "|a_n+a_{n+1}+\\cdots+a_m|<\\epsilon\\mbox{\\quad if\\quad} m\\ge n\\ge N.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "In terms of the partial sums $\\{A_n\\}$ of $\\sum a_n$,",
- "$$",
- "a_n+a_{n+1}+\\cdots+a_m=A_m-A_{n-1}.",
- "$$",
- "Therefore, \\eqref{eq:4.3.3} can be written as",
- "$$",
- "|A_m-A_{n-1}|<\\epsilon\\mbox{\\quad if\\quad} m\\ge n\\ge N.",
- "$$",
- "Since $\\sum a_n$ converges if and only if $\\{A_n\\}$ converges,",
- "Theorem~\\ref{thmtype:4.1.13} implies the conclusion."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.13"
- ],
- "ref_ids": [
- 89
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 99,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.8",
- "categories": [],
- "title": "",
- "contents": [
- "If $a_n\\ge0$ for $n\\ge k,$ then $\\sum a_n$ converges if its partial",
- "sums are bounded$,$ or diverges to $\\infty$ if they are not$.$ These",
- "are the only possibilities and$,$ in either case$,$",
- "$$",
- "\\sum_{n=k}^\\infty a_n =\\,\\sup\\set{A_n}{n\\ge k}\\negthickspace,",
- "$$",
- "where",
- "$$",
- "A_n=a_k+a_{k+1}+\\cdots+a_n,\\quad n\\ge k.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $A_n=A_{n-1}+a_n$ and $a_n\\ge0$ $(n\\ge k)$, the sequence",
- "$\\{A_n\\}$ is nondecreasing, so the conclusion follows from",
- "Theorem~\\ref{thmtype:4.1.6}\\part{a} and",
- "Definition~\\ref{thmtype:4.3.1}.",
- "\\newline\\mbox{}"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.6",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.1"
- ],
- "ref_ids": [
- 83,
- 329
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 100,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.9",
- "categories": [],
- "title": "The Comparison Test",
- "contents": [
- "Suppose that",
- "\\begin{equation}\\label{eq:4.3.5}",
- "0\\le a_n\\le b_n,\\quad n\\ge k.",
- "\\end{equation}",
- "Then",
- "\\begin{alist}",
- "\\item % (a)",
- " $\\sum a_n<\\infty$ if $\\sum b_n<\\infty$$.$",
- "\\item % (b)",
- " $\\sum b_n=\\infty$ if $\\sum a_n=\\infty.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "\\part{a} If",
- "$$",
- "A_n=a_k+a_{k+1}+\\cdots+a_n\\mbox{\\quad and\\quad} B_n=b_k+",
- "b_{k+1}+\\cdots+b_n,\\quad n\\ge k,",
- "$$",
- "then, from \\eqref{eq:4.3.5},",
- "\\begin{equation}\\label{eq:4.3.6}",
- "A_n\\le B_n.",
- "\\end{equation}",
- "Now we use Theorem~\\ref{thmtype:4.3.8}.",
- "If $\\sum b_n<\\infty$, then $\\{B_n\\}$ is bounded above",
- " and \\eqref{eq:4.3.6} implies that $\\{A_n\\}$ is",
- "also; therefore, $\\sum a_n<\\infty$.",
- "On the other hand, if",
- " $\\sum a_n=\\infty$, then $\\{A_n\\}$ is unbounded above",
- " and \\eqref{eq:4.3.6} implies that $\\{B_n\\}$ is",
- "also; therefore, $\\sum b_n~=~\\infty$.",
- "\\vspace*{4pt}",
- "We leave it to you to show that \\part{a} implies \\part{b}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.8"
- ],
- "ref_ids": [
- 99
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 101,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.10",
- "categories": [],
- "title": "The Integral Test",
- "contents": [
- "Let",
- "\\begin{equation}\\label{eq:4.3.7}",
- "c_n=f(n),\\quad n\\ge k,",
- "\\end{equation}",
- "where $f$ is positive$,$ nonincreasing$,$ and locally integrable on",
- "$[k,\\infty).$",
- "Then",
- "\\begin{equation}\\label{eq:4.3.8}",
- "\\sum c_n<\\infty",
- "\\end{equation}",
- "if and only if",
- "\\begin{equation}\\label{eq:4.3.9}",
- "\\int^\\infty_k f(x)\\,dx<\\infty.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We first observe that \\eqref{eq:4.3.9} holds if and only if",
- "\\begin{equation}\\label{eq:4.3.10}",
- "\\sum_{n=k}^\\infty \\int^{n+1}_n f(x)\\,dx<\\infty",
- "\\end{equation}",
- "(Exercise~\\ref{exer:4.3.9}), so it is enough to show that \\eqref{eq:4.3.8}",
- "holds if and only if \\eqref{eq:4.3.10} does. From \\eqref{eq:4.3.7} and the",
- "assumption that $f$ is nonincreasing,",
- "$$",
- "c_{n+1}=f(n+1)\\le f(x)\\le f(n)=c_n,\\quad n\\le x\\le n+1,\\quad n\\ge k.",
- "$$",
- "Therefore,",
- "$$",
- "c_{n+1}=\\int^{n+1}_n c_{n+1}\\,dx\\le\\int^{n+1}_n f(x)\\,dx\\le",
- "\\int^{n+1}_n c_n\\,dx=c_n,\\quad n\\ge k",
- "$$",
- "(Theorem~\\ref{thmtype:3.3.4}). From the first inequality and",
- "Theorem~\\ref{thmtype:4.3.9}\\part{a} with $a_n=c_{n+1}$ and",
- "$b_n=\\int^{n+1}_n",
- "f(x)\\,dx$, \\eqref{eq:4.3.10} implies that $\\sum c_{n+1}<\\infty$, which is",
- "equivalent to \\eqref{eq:4.3.8}. From the second inequality and",
- "Theorem~\\ref{thmtype:4.3.9}\\part{a} with $a_n=\\int^{n+1}_n f(x)\\,dx$ and",
- "$b_n=c_n$, \\eqref{eq:4.3.8} implies \\eqref{eq:4.3.10}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.3.4",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.9",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.9"
- ],
- "ref_ids": [
- 56,
- 100,
- 100
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 102,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.11",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $a_n\\ge0$ and $b_n>0$ for $n\\ge k.$ Then",
- "\\begin{alist}",
- "\\item % (a)",
- "$\\dst{\\sum a_n<\\infty\\mbox{\\quad if\\quad}\\sum b_n<",
- "\\infty\\mbox{\\quad and\\quad}\\limsup_{n\\to\\infty} a_n/b_n<\\infty}.$",
- "\\item % (b)",
- " $\\dst{\\sum a_n=\\infty\\mbox{\\quad if\\quad}\\sum b_n=",
- "\\infty\\mbox{\\quad and\\quad}\\liminf_{n\\to\\infty} a_n/b_n>0}.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "\\part{a} If",
- "$\\limsup_{n\\to\\infty} a_n/b_n<\\infty$, then $\\{a_n/b_n\\}$ is",
- "bounded, so there is a constant $M$ and an integer $k$ such that",
- "$$",
- "a_n\\le Mb_n,\\quad n\\ge k.",
- "$$",
- "Since $\\sum b_n<\\infty$, Theorem~\\ref{thmtype:4.3.3} implies that $\\sum",
- "(Mb_n)< \\infty$. Now",
- "$\\sum a_n<\\infty$, by the comparison test.",
- "\\part{b}",
- "If",
- "$\\liminf_{n\\to\\infty} a_n/b_n>0$,",
- " there is a constant $m$ and an integer $k$ such that",
- "$$",
- "a_n\\ge mb_n,\\quad n\\ge k.",
- "$$",
- "Since $\\sum b_n=\\infty$, Theorem~\\ref{thmtype:4.3.3} implies that $\\sum",
- "(mb_n)= \\infty$. Now",
- "$\\sum a_n=\\infty$, by the comparison test."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.3",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.3"
- ],
- "ref_ids": [
- 97,
- 97
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 103,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.13",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $a_n>0,$ $b_n>0,$ and",
- "\\begin{equation}\\label{eq:4.3.12}",
- "\\frac{a_{n+1}}{ a_n}\\le \\frac{b_{n+1}}{ b_n}.",
- "\\end{equation}",
- "Then",
- "\\begin{alist}",
- "\\item % (a)",
- " $\\sum a_n<\\infty$ if $\\sum b_n<\\infty.$",
- "\\item % (b)",
- " $\\sum b_n=\\infty$ if $\\sum a_n=\\infty.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Rewriting \\eqref{eq:4.3.12} as",
- "$$",
- "\\frac{a_{n+1}}{ b_{n+1}}\\le \\frac{a_n}{ b_n},",
- "$$",
- "we see that $\\{a_n/b_n\\}$ is nonincreasing. Therefore,",
- "$\\limsup_{n \\to\\infty} a_n/b_n<\\infty$, and",
- "Theorem~\\ref{thmtype:4.3.11}\\part{a} implies \\part{a}.",
- "To prove",
- "\\part{b}, suppose that $\\sum a_n=\\infty$. Since $\\{a_n/b_n\\}$",
- "is nonincreasing,",
- " there is a number $\\rho$",
- "such that $b_n\\ge \\rho a_n$ for large $n$. Since $\\sum (\\rho",
- "a_n)=\\infty$ if $\\sum a_n=\\infty$, Theorem~\\ref{thmtype:4.3.9}\\part{b}",
- "(with $a_n$ replaced by $\\rho a_n$)",
- "implies that $\\sum b_n=\\infty$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.11",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.9"
- ],
- "ref_ids": [
- 102,
- 100
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 104,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.14",
- "categories": [],
- "title": "The Ratio Test",
- "contents": [
- "Suppose that $a_n>0$ for $n\\ge k.$ Then",
- "\\vspace*{5pt}",
- "\\begin{alist}",
- "\\vspace*{5pt}",
- "\\item % (a)",
- "$\\sum a_n<\\infty$ if\\,",
- "$\\limsup_{n\\to\\infty} a_{n+1}/a_n<1.$",
- "\\vspace*{5pt}",
- "\\item % (b)",
- " $\\sum a_n=\\infty$ if\\,",
- "$\\liminf_{n\\to\\infty} a_{n+1}/a_n>1.$",
- "\\end{alist}",
- "\\vspace*{5pt}",
- "\\noindent If",
- "\\begin{equation}\\label{eq:4.3.13}",
- "\\liminf_{n\\to\\infty}\\frac{a_{n+1}}{ a_n}\\le1\\le",
- "\\limsup_{n\\to\\infty}\\frac{a_{n+1}}{ a_n},",
- "\\end{equation}",
- "then the test is inconclusive$;$ that is$,$ $\\sum a_n$ may converge",
- "or diverge$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "\\part{a} If",
- "$$",
- "\\limsup_{n\\to\\infty}\\frac{a_{n+1}}{ a_n}<1,",
- "$$",
- "there is a number $r$ such that $01,",
- "$$",
- " there is a number $r$ such that $r>1$ and",
- "$$",
- "\\frac{a_{n+1}}{ a_n}>r",
- "$$",
- "for $n$ sufficiently large. This can be rewritten as",
- "$$",
- "\\frac{a_{n+1}}{ a_n}>\\frac{r^{n+1}}{ r^n}.",
- "$$",
- "Since $\\sum r^n=\\infty$,",
- "Theorem~\\ref{thmtype:4.3.13}\\part{b} with $a_n=r^n$ implies that $\\sum",
- "b_n=\\infty$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.13",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.13"
- ],
- "ref_ids": [
- 103,
- 103
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 105,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.16",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $a_n>0$ for large $n.$ Let",
- "$$",
- "M=\\limsup_{n\\to\\infty} n\\left(\\frac{a_{n+1}}{ a_n}-",
- "1\\right)\\mbox{\\quad and\\quad} m=\\liminf_{n\\to\\infty} n",
- "\\left(\\frac{a_{n+1}}{ a_n}-1\\right).",
- "$$",
- "Then",
- "\\begin{alist}",
- "\\item % (a)",
- " $\\sum a_n<\\infty$ if $M<-1.$",
- "\\item % (b)",
- " $\\sum a_n=\\infty$ if $m>-1.$",
- "\\end{alist}",
- "The test is inconclusive if $m\\le-1\\le M.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "\\part{a}",
- "We need the inequality",
- "\\begin{equation}\\label{eq:4.3.15}",
- "\\frac{1}{(1+x)^p}>1-px,\\quad x>0,\\ p>0.",
- "\\end{equation}",
- "This follows from Taylor's theorem",
- "(Theorem~\\ref{thmtype:2.5.4}), which implies that",
- "$$",
- "\\frac{1}{(1+x)^p}=1-px+\\frac{1}{2}\\frac{p(p+1)}{(1+c)^{p+2}}x^2,",
- "$$",
- "where $00$,",
- "this implies \\eqref{eq:4.3.15}.",
- "Now suppose that $M<-p<-1$. Then there is an integer $k$ such that",
- "$$",
- "n\\left(\\frac{a_{n+1}}{ a_n}-1\\right)<-p,\\quad n\\ge k,",
- "$$",
- "so",
- "$$",
- "\\frac{a_{n+1}}{ a_n}<1-\\frac{p}{ n},\\quad n\\ge k.",
- "$$",
- "Hence,",
- "$$",
- "\\frac{a_{n+1}}{ a_n}<\\frac{1}{(1+1/n)^p},\\quad n\\ge k,",
- "$$",
- "as can be seen by letting $x=1/n$ in \\eqref{eq:4.3.15}. From this,",
- "$$",
- "\\frac{a_{n+1}}{ a_n}<\\frac{1}{(n+1)^p}\\bigg/\\frac{1}{ n^p},\\quad n\\ge k.",
- "$$",
- " Since $\\sum 1/n^p<\\infty$ if $p>1$,",
- " Theorem~\\ref{thmtype:4.3.13}\\part{a} implies that",
- " $\\sum a_n<\\infty$.",
- "\\part{b} Here we need the inequality",
- "\\begin{equation}\\label{eq:4.3.16}",
- "(1-x)^q<1-qx,\\quad 0-q,\\quad n\\ge k,",
- "$$",
- "so",
- "$$",
- "\\frac{a_{n+1}}{ a_n}\\ge1-\\frac{q}{ n},\\quad n\\ge k.",
- "$$",
- "If $q\\le0$, then $\\sum a_n=\\infty$, by Corollary~\\ref{thmtype:4.3.6}.",
- "Hence, we may assume that $0\\left(1-\\frac{1}{ n}\\right)^q,\\quad n\\ge k,",
- "$$",
- "\\newpage",
- "\\noindent",
- "as can be seen by setting $x=1/n$ in \\eqref{eq:4.3.16}. Hence,",
- "$$",
- "\\frac{a_{n+1}}{ a_n}>\\frac{1}{ n^q}\\bigg/\\frac{1}{(n-1)^q},\\quad n\\ge k.",
- "$$",
- " Since $\\sum 1/n^q=\\infty$ if $q<1$,",
- " Theorem~\\ref{thmtype:4.3.13}\\part{b} implies that",
- " $\\sum a_n=\\infty$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.5.4",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.13",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.6",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.13"
- ],
- "ref_ids": [
- 42,
- 103,
- 277,
- 103
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 106,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.17",
- "categories": [],
- "title": "Cauchy's Root Test",
- "contents": [
- "If $a_n\\ge 0$ for $n\\ge k,$ then",
- "\\begin{alist}",
- "\\item % (a)",
- " $\\sum a_n<\\infty$ if",
- "$\\limsup_{n\\to\\infty} a^{1/n}_n<1.$",
- "\\item % (b)",
- " $\\sum a_n=\\infty$ if",
- "$\\limsup_{n\\to\\infty} a^{1/n}_n>1.$",
- "\\end{alist}",
- "The test is inconclusive if $\\limsup_{n\\to\\infty} a^{1/n}_n=",
- "1.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "\\part{a} If $\\limsup_{n\\to\\infty}a^{1/n}_n<1$, there is an",
- " $r$",
- "such that $01$, then $a^{1/n}_n>1$",
- "for infinitely many values of $n$,",
- "so $\\sum a_n=\\infty$, by",
- "Corollary~\\ref{thmtype:4.3.6}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.6"
- ],
- "ref_ids": [
- 277
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 107,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.19",
- "categories": [],
- "title": "",
- "contents": [
- "absolutely$,$ then $\\sum a_n$ converges$.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 108,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.20",
- "categories": [],
- "title": "Dirichlet's Test for Series",
- "contents": [
- "The series $\\sum ^\\infty_{n=k} a_nb_n$ converges if $\\lim_{n\\to\\infty}",
- "a_n= 0,$",
- "\\begin{equation}\\label{eq:4.3.18}",
- "\\sum |a_{n+1}-a_n|<\\infty,",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:4.3.19}",
- "|b_k+b_{k+1}+\\cdots+b_n|\\le M,\\quad n\\ge k,",
- "\\end{equation}",
- "for some constant $M.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "The proof is similar to the proof of Dirichlet's test for integrals.",
- "Define",
- "$$",
- "B_n=b_k+b_{k+1}+\\cdots+b_n,\\quad n\\ge k",
- "$$",
- "and consider the partial sums of $\\sum_{n=k}^\\infty a_nb_n$:",
- "\\begin{equation}\\label{eq:4.3.20}",
- "S_n=a_kb_k+a_{k+1}b_{k+1}+\\cdots+a_nb_n,\\quad n\\ge k.",
- "\\end{equation}",
- "By substituting",
- "$$",
- "b_k=B_k\\mbox{\\quad and\\quad} b_n=B_n-B_{n-1},\\quad n\\ge k+1,",
- "$$",
- "into \\eqref{eq:4.3.20}, we obtain",
- "$$",
- "S_n=a_kB_k+a_{k+1}(B_{k+1}-B_k)+\\cdots+a_n(B_n-B_{n-1}),",
- "$$",
- "which we rewrite as",
- "\\begin{equation}\\label{eq:4.3.21}",
- "\\begin{array}{rcl}",
- "S_n\\ar=(a_k-a_{k+1})B_k+(a_{k+1}-a_{k+2})B_{k+1}+\\cdots\\\\",
- "\\ar{}+\\,(a_{n-1}-a_n)B_{n-1}+a_nB_n.",
- "\\end{array}",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "(The procedure that led from \\eqref{eq:4.3.20} to \\eqref{eq:4.3.21} is called",
- "{\\it summation by parts\\/}. It is analogous",
- "to integration by parts.) Now \\eqref{eq:4.3.21} can be viewed as",
- "\\begin{equation}\\label{eq:4.3.22}",
- "S_n=T_{n-1}+a_nB_n,",
- "\\end{equation}",
- "where",
- "$$",
- "T_{n-1}=(a_k-a_{k+1})B_k+(a_{k+1}-a_{k+2})",
- "B_{k+1}+\\cdots+(a_{n-1}-a_n)B_{n-1};",
- "$$",
- "that is, $\\{T_n\\}$ is the sequence of partial sums of the series",
- "\\begin{equation}\\label{eq:4.3.23}",
- "\\sum_{j=k}^\\infty (a_j-a_{j+1})B_j.",
- "\\end{equation}",
- "Since",
- "$$",
- "|(a_j-a_{j+1})B_j|\\le M|a_j-a_{j+1}|",
- "$$",
- "from \\eqref{eq:4.3.19}, the comparison test and \\eqref{eq:4.3.18} imply that",
- "the series \\eqref{eq:4.3.23} converges absolutely.",
- "Theorem~\\ref{thmtype:4.3.19}",
- "now implies that $\\{T_n\\}$ converges. Let $T=\\lim_{n\\to\\infty}T_n$.",
- "Since $\\{B_n\\}$ is bounded and $\\lim_{n\\to \\infty}a_n=0$, we infer",
- "from \\eqref{eq:4.3.22} that",
- "$$",
- "\\lim_{n\\to\\infty} S_n=\\lim_{n\\to\\infty}T_{n-1}+\\lim_{n\\to",
- "\\infty}a_nB_n=T+0=T.",
- "$$",
- "Therefore, $\\sum a_nb_n$ converges."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.19"
- ],
- "ref_ids": [
- 107
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 109,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.23",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\sum_{n=k}^\\infty a_n=A,$ where $-\\infty \\le A\\le\\infty.$ Let",
- "$\\{n_j\\}_1^\\infty$ be an increasing sequence of integers, with $n_1\\ge",
- "k$. Define",
- "\\begin{eqnarray*}",
- "b_1\\ar=a_k+\\cdots+a_{n_1},\\\\",
- "b_2\\ar=a_{{n_1}+1}+\\cdots+a_{n_2},\\\\",
- "&\\vdots\\\\",
- "b_r\\ar=a_{n_{r-1}+1}+\\cdots+a_{n_r}.",
- "\\end{eqnarray*}",
- "Then",
- "$$",
- "\\sum_{j=1}^\\infty b_{n_j}=A.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "If $T_r$ is the $r$th partial sum of $\\sum_{j=1}^\\infty",
- "b_{n_j}$ and $\\{A_n\\}$ is the $n$th partial sum of",
- "$\\sum_{s=k}^\\infty a_s$, then",
- "\\begin{eqnarray*}",
- "T_r\\ar=b_1+b_2+\\cdots+b_r\\\\",
- "\\ar=(a_1+\\cdots+a_{n_1})+(a_{n_1+1}+\\cdots+a_{n_2})+\\cdots+",
- "(a_{n_{r-1}+1}+\\cdots+a_{n_r})\\\\",
- "\\ar=A_{n_r}.",
- "\\end{eqnarray*}",
- "Thus, $\\{T_r\\}$ is a subsequence of $\\{A_n\\}$, so",
- "$\\lim_{r\\to\\infty} T_r=\\lim_{n\\to\\infty}A_n=A$ by",
- "Theorem~\\ref{thmtype:4.2.2}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.2.2"
- ],
- "ref_ids": [
- 90
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 110,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.24",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\sum_{n=1}^\\infty b_n$ is a rearrangement of an absolutely",
- "convergent series $\\sum_{n=1}^\\infty a_n,$ then $\\sum_{n=1}^\\infty",
- "b_n$ also converges absolutely$,$ and to the same sum$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let",
- "$$",
- "\\overline{A}_n=|a_1|+|a_2|+\\cdots+|a_n|\\mbox{\\quad and\\quad}",
- "\\overline{B}_n=|b_1|+|b_2|+\\cdots+|b_n|.",
- "$$",
- "For each $n\\ge1$, there is an integer $k_n$ such that",
- "$b_1$, $b_2$, \\dots, $b_n$ are included among",
- "$a_1$, $a_2$, \\dots, $a_{k_n}$,",
- "so $\\overline{B}_n\\le\\overline{A}_{k_n}$. Since",
- "$\\{\\overline{A}_n\\}$ is bounded, so is $\\{\\overline{B}_n\\}$, and",
- "therefore $\\sum |b_n|<\\infty$ (Theorem~\\ref{thmtype:4.3.8}).",
- "Now let",
- "\\begin{eqnarray*}",
- "A_n\\ar=a_1+a_2+\\cdots+a_n,\\quad B_n=b_1+b_2+\\cdots+",
- "b_n,\\\\",
- "A\\ar=\\sum_{n=1}^\\infty a_n,\\mbox{\\quad and\\quad} B=\\sum_{n=1}^\\infty",
- "b_n.",
- "\\end{eqnarray*}",
- "\\newpage",
- "\\noindent",
- "We must show that $A=B$. Suppose that $\\epsilon>0$. From Cauchy's",
- "convergence criterion for series and the",
- "absolute convergence of $\\sum a_n$, there is an",
- "integer $N$ such that",
- "\\vspace*{2pt}",
- "$$",
- "|a_{N+1}|+|a_{N+2}|+\\cdots+|a_{N+k}|<\\epsilon,\\quad k\\ge1.",
- "$$",
- "\\vspace*{2pt}",
- "\\noindent\\hskip-.3em Choose $N_1$ so that $a_1$, $a_2$, \\dots, $a_N$",
- "are included",
- "among",
- "$b_1$, $b_2$, \\dots, $b_{N_1}$. If $n\\ge N_1$, then $A_n$ and $B_n$",
- "both",
- "include the terms $a_1$, $a_2$, \\dots, $a_N$, which cancel on",
- "subtraction;",
- "thus, $|A_n-B_n|$ is dominated by the sum of the absolute values of",
- "finitely many terms from $\\sum a_n$ with subscripts greater than $N$.",
- "Since every such sum is less than~$\\epsilon$,",
- "\\vspace*{2pt}",
- "$$",
- "|A_n-B_n|<\\epsilon\\mbox{\\quad if\\quad} n\\ge N_1.",
- "$$",
- "\\vspace*{2pt}",
- "Therefore, $\\lim_{n\\to\\infty}(A_n-B_n)=0$ and $A=B$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.8"
- ],
- "ref_ids": [
- 99
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 111,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.25",
- "categories": [],
- "title": "",
- "contents": [
- "If $P=\\{a_{n_i}\\}_1^\\infty$ and",
- "$Q=",
- "\\{a_{m_j}\\}_1^\\infty$ are respectively the subsequences of all",
- "positive and",
- "negative terms in a conditionally convergent series $\\sum a_n,$ then",
- "\\begin{equation} \\label{eq:4.3.24}",
- "\\sum_{i=1}^\\infty a_{n_i}=\\infty\\mbox{\\quad and\\quad}\\sum_{j=1}^\\infty",
- "a_{m_j}=-\\infty.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "If both series in \\eqref{eq:4.3.24} converge, then $\\sum",
- "a_n$ converges absolutely, while if one converges and the other",
- "diverges, then $\\sum a_n$ diverges to $\\infty$ or $-\\infty$. Hence,",
- "both must diverge."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 112,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.26",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\sum_{n=1}^\\infty a_n$ is conditionally convergent and",
- " $\\mu$ and $\\nu$ are arbitrarily given in the extended",
- "reals$,$ with $\\mu\\le\\nu.$ Then",
- "the terms of $\\sum_{n=1}^\\infty a_n$",
- "can be rearranged to form a series $\\sum_{n=1}^\\infty b_n$",
- "with partial sums",
- "$$",
- "B_n=b_1+b_2+\\cdots+b_n,\\quad n\\ge1,",
- "$$",
- "such that",
- "\\begin{equation}\\label{eq:4.3.25}",
- "\\limsup_{n\\to\\infty}B_n=\\nu\\mbox{\\quad and\\quad}",
- "\\liminf_{n\\to\\infty}B_n=\\mu.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We consider the case where $\\mu$ and $\\nu$ are finite and leave",
- "the other cases to you (Exercise~\\ref{exer:4.3.36}).",
- "We may ignore any zero terms that occur in $\\sum_{n=1}^\\infty a_n$.",
- "For convenience, we",
- "denote the positive terms by",
- " $P=\\{\\alpha_i\\}_1^\\infty$ and and the negative terms by",
- "$Q=\\{-\\beta_j\\}_1^\\infty$. We construct the sequence",
- "\\begin{equation} \\label{eq:4.3.26}",
- "\\{b_n\\}_1^\\infty=\\{\\alpha_1, \\dots,\\alpha_{m_1},-\\beta_1, \\dots,-\\beta_{n_1},",
- "\\alpha_{m_1+1}, \\dots,\\alpha_{m_2},-\\beta_{n_1+1}, \\dots,-\\beta_{n_2},",
- "\\dots\\},",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "with segments chosen alternately from $P$ and $Q$. Let $m_0=n_0=0$.",
- "If $k\\ge1$, let $m_k$ and $n_k$ be the smallest integers such that",
- "$m_k>m_{k-1}$, $n_k>n_{k-1}$,",
- "$$",
- "\\sum_{i=1}^{m_k}\\alpha_i-\\sum_{j=1}^{n_{k-1}}\\beta_j\\ge\\nu,",
- "\\mbox{\\quad and \\quad}",
- "\\sum_{i=1}^{m_k}\\alpha_i-\\sum_{j=1}^{n_k}\\beta_j\\le\\mu.",
- "$$",
- "Theorem~\\ref{thmtype:4.3.25} implies",
- "that this construction is possible:",
- "since $\\sum \\alpha_i=\\sum\\beta_j=\\infty$, we",
- "can choose $m_k$ and $n_k$ so that",
- "$$",
- "\\sum_{i=m_{k-1}}^{m_k}\\alpha_i\\mbox{\\quad and\\quad}",
- "\\sum_{j=n_{k-1}}^{n_k}\\beta_j",
- "$$",
- "are as large as we please, no matter how large $m_{k-1}$ and $n_{k-1}$",
- "are (Exercise~\\ref{exer:4.3.23}).",
- "Since $m_k$ and $n_k$ are the smallest integers with the specified",
- "properties,",
- "\\begin{eqnarray}",
- "\\nu\\le B_{m_k+n_{k-1}}\\ar<\\nu+\\alpha_{m_k},\\quad k\\ge2,",
- "\\label{eq:4.3.27}\\\\",
- "\\arraytext{and}\\nonumber\\\\",
- "\\mu-\\beta_{n_k}\\ar0$ if $m_k+n_k< n\\le m_{k+1}+n_k$, so",
- "\\begin{equation}\\label{eq:4.3.30}",
- "B_{m_k+n_k}\\le B_n\\le B_{m_{k+1}+n_k},\\quad m_k+n_k\\le n\\le m_{k+1}+n_k.",
- "\\end{equation}",
- "Because of \\eqref{eq:4.3.27} and \\eqref{eq:4.3.28}, \\eqref{eq:4.3.29}",
- "and \\eqref{eq:4.3.30} imply that",
- "\\begin{eqnarray}",
- "\\mu-\\beta_{n_k}\\ar0$ then",
- " $B_n>\\nu+ \\epsilon$ for only finitely many",
- "values of $n$. Therefore,",
- "$\\limsup_{n\\to\\infty} B_n=\\nu$.",
- "From the second inequality in \\eqref{eq:4.3.28}, $B_n\\le \\mu$ for",
- "infinitely many values of $n$. However, since",
- "$\\lim_{j\\to\\infty}\\beta_j=0$,",
- "the first inequalities in \\eqref{eq:4.3.31} and \\eqref{eq:4.3.32}",
- "imply that if $\\epsilon>0$ then",
- " $B_n<\\mu-\\epsilon$ for only finitely many",
- "values of $n$. Therefore,",
- "$\\liminf_{n\\to\\infty} B_n=\\mu$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.25"
- ],
- "ref_ids": [
- 111
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 113,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.27",
- "categories": [],
- "title": "",
- "contents": [
- "Let",
- "$$",
- "\\sum_{n=0}^\\infty a_n=A\\mbox{\\quad and\\quad}\\sum_{n=0}^\\infty b_n=B,",
- "$$",
- "where $A$ and $B$ are finite, and at least one term of each series",
- "is nonzero. Then $\\sum_{n=0}^\\infty p_n=AB$ for every sequence",
- "$\\{p_n\\}$ obtained by ordering the products in $\\eqref{eq:4.3.33}$ if and",
- "only if $\\sum a_n$ and $\\sum b_n$ converge absolutely$.$ Moreover$,$",
- "in this case, $\\sum p_n$ converges absolutely$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "First, let $\\{p_n\\}$ be the sequence obtained by",
- "arranging the products $\\{a_ib_j\\}$ according to the scheme indicated in",
- "\\eqref{eq:4.3.34}, and define",
- "$$",
- "\\begin{array}{ll}",
- "A_n=a_0+a_1+\\cdots+a_n,&",
- "\\overline{A}_n=|a_0|+|a_1|+\\cdots+|a_n|,\\\\[2\\jot]",
- "B_n=b_0+b_1+\\cdots+b_n,&",
- "\\overline{B}_n=|b_0|+|b_1|+\\cdots+|b_n|,\\\\[2\\jot]",
- "P_n\\hskip.1em=p_0+p_1+\\cdots+p_n,&\\overline{P}_n\\hskip.1em=|p_0|+|p_1|+\\cdots+|p_n|.",
- "\\end{array}",
- "$$",
- "From \\eqref{eq:4.3.34}, we see that",
- "$$",
- "P_0=A_0B_0,\\quad P_3=A_1B_1,\\quad P_8=A_2B_2,",
- "$$",
- "and, in general,",
- "\\begin{equation}\\label{eq:4.3.36}",
- "P_{(m+1)^2-1}=A_mB_m.",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "Similarly,",
- "\\begin{equation}\\label{eq:4.3.37}",
- "\\overline{P}_{(m+1)^2-1}=\\overline{A}_m\\overline{B}_m.",
- "\\end{equation}",
- "If $\\sum |a_n|<\\infty$ and $\\sum |b_n|<\\infty$, then",
- "$\\{\\overline{A}_m\\overline{B}_m\\}$ is bounded and, since",
- "$\\overline{P}_m\\le\\overline{P}_{(m+1)^2-1}$,",
- "\\eqref{eq:4.3.37} implies that $\\{\\overline{P}_m\\}$ is bounded. Therefore,",
- "$\\sum |p_n| <\\infty$, so $\\sum p_n$ converges. Now",
- "$$",
- "\\begin{array}{rcll}",
- "\\dst{\\sum ^\\infty_{n=0}p_n}\\ar=\\dst{\\lim_{n\\to\\infty}P_n}&\\mbox{(by",
- "definition)}\\\\[2\\jot]",
- "\\ar=\\dst{\\lim_{m\\to\\infty} P_{(m+1)^2-1}}&\\mbox{(by",
- "Theorem~\\ref{thmtype:4.2.2})}\\\\[2\\jot]",
- "\\ar=\\dst{\\lim_{m\\to\\infty} A_mB_m}&\\mbox{(from \\eqref{eq:4.3.36})}\\\\[2\\jot]",
- "\\ar=\\dst{\\left(\\lim_{m\\to\\infty}",
- "A_m\\right)\\left(\\lim_{m\\to\\infty}B_m\\right)}",
- "&\\mbox{(by Theorem~\\ref{thmtype:4.1.8})}\\\\[2\\jot]",
- "\\ar=AB.",
- "\\end{array}",
- "$$",
- "Since any other ordering of the products in \\eqref{eq:4.3.33} produces a",
- " a rearrangement of the",
- "absolutely convergent series $\\sum_{n=0}^\\infty p_n$,",
- "Theorem~\\ref{thmtype:4.3.24} implies that $\\sum |q_n|<\\infty$ for every",
- "such ordering and that $\\sum_{n=0}^\\infty q_n=AB$. This shows that",
- "the stated condition is sufficient.",
- "For necessity, again let $\\sum_{n=0}^\\infty p_n$ be obtained from the",
- "ordering indicated in \\eqref{eq:4.3.34}, and suppose that $\\sum_{n=0}^\\infty p_n$ and all its",
- "rearrangements converge to $AB$. Then $\\sum p_n$ must converge",
- "absolutely, by Theorem~\\ref{thmtype:4.3.26}. Therefore,",
- "$\\{\\overline{P}_{m^2-1}\\}$ is bounded, and \\eqref{eq:4.3.37} implies that",
- "$\\{\\overline{A}_m\\}$ and $\\{\\overline{B}_m\\}$ are bounded.",
- "(Here we need",
- "the assumption that neither $\\sum a_n$ nor $\\sum b_n$ consists",
- "entirely of zeros. Why?)",
- " Therefore,",
- "$\\sum |a_n|<\\infty$ and $\\sum |b_n|<\\infty$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.2.2",
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.8",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.24",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.26"
- ],
- "ref_ids": [
- 90,
- 85,
- 110,
- 112
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 114,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.29",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\sum_{n=0}^\\infty a_n$ and",
- "$\\sum_{n=0}^\\infty b_n$ converge absolutely to sums $A$ and $B,$ then",
- "the Cauchy product of $\\sum_{n=0}^\\infty a_n$",
- "and $\\sum_{n=0}^\\infty b_n$",
- "converges absolutely to $AB.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $C_n$ be the $n$th partial sum of the Cauchy",
- "product; that is,",
- "$$",
- "C_n=c_0+c_1+\\cdots+c_n",
- "$$",
- "(see \\eqref{eq:4.3.38}). Let $\\sum_{n=0}^\\infty p_n$ be the series",
- "obtained",
- "by ordering the products $\\{a_i,b_j\\}$ according to the scheme",
- "indicated in \\eqref{eq:4.3.35}, and define $P_n$ to be its $n$th partial",
- "sum; thus,",
- "$$",
- "P_n=p_0+p_1+\\cdots+p_n.",
- "$$",
- "Inspection of \\eqref{eq:4.3.35} shows that $c_n$ is the sum of the $n+1$",
- "terms connected by the diagonal arrows. Therefore, $C_n=P_{m_n}$,",
- "where",
- "$$",
- "m_n=1+2+\\cdots+(n+1)-1=\\frac{n(n+3)}{2}.",
- "$$",
- "From Theorem~\\ref{thmtype:4.3.27}, $\\lim_{n\\to\\infty} P_{m_n}=AB$, so",
- "$\\lim_{n\\to\\infty} C_n=AB$. To see that $\\sum |c_n|<\\infty$, we",
- "observe that",
- "$$",
- "\\sum_{r=0}^n |c_r|\\le\\sum_{s=0}^{m_n} |p_s|",
- "$$",
- "\\nopagebreak",
- "and recall that $\\sum |p_s|<\\infty$, from Theorem~\\ref{thmtype:4.3.27}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.27",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.27"
- ],
- "ref_ids": [
- 113,
- 113
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 115,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.4",
- "categories": [],
- "title": "",
- "contents": [
- "Let $\\{F_n\\}$ be defined on $S.$",
- "Then",
- "\\begin{alist}",
- "\\item % (a)",
- "$\\{F_n\\}$ converges pointwise to $F$ on $S$ if and only if there is,",
- "for each $\\epsilon>0$ and $x\\in S$, an integer $N$ $($which may depend",
- "on $x$ as well as $\\epsilon)$ such that",
- "$$",
- "|F_n(x)-F(x)|<\\epsilon\\mbox{\\quad if\\quad}\\ n\\ge N.",
- "$$",
- "\\item % (b)",
- " $\\{F_n\\}$ converges uniformly to $F$ on $S$ if and only if",
- "there is for each $\\epsilon>0$ an integer $N$ $($which depends only on",
- "$\\epsilon$ and not on any particular $x$ in $S)$ such that",
- "$$",
- "|F_n(x)-F(x)|<\\epsilon\\mbox{\\quad for all $x$ in $S$ if $n\\ge N$}.",
- "$$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 116,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.5",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\{F_n\\}$ converges uniformly to $F$ on $S,$ then $\\{F_n\\}$ converges",
- "pointwise to $F$ on $S.$ The converse is false$;$ that is$,$ pointwise",
- "convergence does not imply uniform convergence."
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 117,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.6",
- "categories": [],
- "title": "Cauchy's Uniform Convergence Criterion",
- "contents": [
- "A sequence of functions $\\{F_n\\}$ converges uniformly on a set $S$ if",
- "and",
- "only if for each $\\epsilon>0$ there is an integer $N$ such that",
- "\\begin{equation} \\label{eq:4.4.2}",
- "\\|F_n-F_m\\|_S<\\epsilon\\mbox{\\quad if\\quad} n, m\\ge N.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "For necessity, suppose that $\\{F_n\\}$ converges uniformly to",
- "$F$ on $S$. Then, if $\\epsilon>0$, there is an integer $N$ such that",
- "$$",
- "\\|F_k-F\\|_S<\\frac{\\epsilon}{2}\\mbox{\\quad if\\quad} k\\ge N.",
- "$$",
- "Therefore,",
- "\\begin{eqnarray*}",
- "\\|F_n-F_m\\|_S\\ar=\\|(F_n-F)+(F-F_m)\\|_S\\\\",
- "\\ar\\le \\|F_n-F\\|_S+\\|F-F_m\\|_S \\mbox{\\quad",
- "(Lemma~\\ref{thmtype:4.4.2})\\quad}\\\\",
- "&<&\\frac{\\epsilon}{2}+\\frac{\\epsilon}{2}=\\epsilon\\mbox{\\quad if\\quad}",
- "m, n\\ge N.",
- "\\end{eqnarray*}",
- "For sufficiency, we first observe that \\eqref{eq:4.4.2} implies that",
- "$$",
- "|F_n(x)-F_m(x)|<\\epsilon\\mbox{\\quad if\\quad} n, m\\ge N,",
- "$$",
- "for any fixed $x$ in $S$. Therefore, Cauchy's convergence criterion",
- "for sequences of constants (Theorem~\\ref{thmtype:4.1.13})",
- "implies that",
- "$\\{F_n(x)\\}$ converges for each $x$ in $S$; that is, $\\{F_n\\}$",
- "converges pointwise to a limit function $F$ on $S$. To see that the",
- "convergence is uniform, we write",
- "\\begin{eqnarray*}",
- "|F_m(x)-F(x) |\\ar=|[F_m(x)-F_n(x)]+[F_n(x)-F(x)]|\\\\",
- "\\ar\\le |F_m(x)-F_n(x)|+| F_n(x)-F(x)|\\\\",
- "\\ar\\le \\|F_m-F_n\\|_S+|F_n(x)-F(x)|.",
- "\\end{eqnarray*}",
- "This and \\eqref{eq:4.4.2} imply that",
- "\\begin{equation} \\label{eq:4.4.3}",
- "|F_m(x)-F(x)|<\\epsilon+|F_n(x)-F(x)|\\quad\\mbox {if}\\quad n, m\\ge N.",
- "\\end{equation}",
- "Since $\\lim_{n\\to\\infty}F_n(x)=F(x)$,",
- "$$",
- "|F_n(x)-F(x)|<\\epsilon",
- "$$",
- "for some $n\\ge N$, so \\eqref{eq:4.4.3} implies that",
- "$$",
- "|F_m(x)-F(x)|<2\\epsilon\\mbox{\\quad if\\quad} m\\ge N.",
- "$$",
- "But this inequality holds for all $x$ in $S$, so",
- "$$",
- "\\|F_m-F\\|_S\\le2\\epsilon\\mbox{\\quad if\\quad} m\\ge N.",
- "$$",
- "Since $\\epsilon$ is an arbitrary positive number, this implies that",
- "$\\{F_n\\}$ converges uniformly to $F$ on~$S$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.2",
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.13"
- ],
- "ref_ids": [
- 251,
- 89
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 118,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.7",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\{F_n\\}$ converges uniformly to $F$ on $S$ and each $F_n$ is",
- "continuous at a point $x_0$ in $S,$ then so is $F$. Similar",
- "statements hold for continuity from the right and left$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that each $F_n$ is continuous at $x_0$.",
- "If $x\\in S$ and $n\\ge1$, then",
- "\\begin{equation} \\label{eq:4.4.8}",
- "\\begin{array}{rcl}",
- "|F(x)-F(x_0)|\\ar\\le |F(x)-F_n(x)|+|F_n(x)-F_n(x_0)|+|F_n(x_0)-F(x_0)|",
- "\\\\",
- "\\ar\\le |F_n(x)-F_n(x_0)|+2\\|F_n-F\\|_S.",
- "\\end{array}",
- "\\end{equation}",
- "Suppose that $\\epsilon>0$. Since $\\{F_n\\}$ converges uniformly to $F$",
- "on $S$, we can choose $n$ so that $\\|F_n-F\\|_S<\\epsilon$. For this",
- "fixed $n$, \\eqref{eq:4.4.8} implies that",
- "\\begin{equation} \\label{eq:4.4.9}",
- "|F(x)-F(x_0)|<|F_n(x)-F_n(x_0)|+2\\epsilon,\\quad x\\in S.",
- "\\end{equation}",
- "Since $F_n$ is continuous at $x_0$, there is a $\\delta>0$ such that",
- "$$",
- "|F_n(x)-F_n(x_0)|<\\epsilon\\mbox{\\quad if\\quad} |x-x_0|<\\delta,",
- "$$",
- "so, from \\eqref{eq:4.4.9},",
- "$$",
- "|F(x)-F(x_0)|<3\\epsilon,\\mbox{\\quad if\\quad} |x-x_0|<\\delta.",
- "$$",
- "Therefore, $F$ is continuous at $x_0$. Similar",
- "arguments apply to the assertions on",
- "continuity from the right and left."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 119,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.9",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\{F_n\\}$ converges uniformly to $F$ on $S=[a,b]$. Assume",
- "that $F$ and all $F_n$",
- "are integrable on $[a,b].$ Then",
- "\\begin{equation} \\label{eq:4.4.10}",
- "\\int_a^b F(x)\\,dx=\\lim_{n\\to\\infty}\\int_a^b F_n(x)\\,dx.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since",
- "\\begin{eqnarray*}",
- "\\left|\\int_a^b F_n(x)\\,dx-\\int_a^b F(x)\\,dx\\right|\\ar\\le \\int_a^b",
- "|F_n(x)-F(x)|\\,dx\\\\",
- "\\ar\\le (b-a)\\|F_n-F\\|_S",
- "\\end{eqnarray*}",
- "and $\\lim_{n\\to\\infty}\\|F_n-F\\|_S=0$, the conclusion follows."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 120,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.10",
- "categories": [],
- "title": "",
- "contents": [
- " Suppose that $\\{F_n\\}$ converges",
- "pointwise to $F$ and each $F_n$ is integrable on $[a,b].$",
- "\\begin{alist}",
- "\\item % (a)",
- "If the convergence is uniform$,$ then $F$ is integrable on",
- "$[a,b]$ and $\\eqref{eq:4.4.10}$ holds.",
- "\\item % (b)",
- "If the sequence $\\{\\|F_n\\|_{[a,b]}\\}$ is bounded and $F$ is",
- "integrable on $[a,b],$ then $\\eqref{eq:4.4.10}$ holds.",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 121,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.11",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $F'_n$ is continuous on $[a,b]$ for all $n\\ge1$ and $\\{F'_n\\}$",
- "converges uniformly on $[a,b].$ Suppose also that",
- " $\\{F_n(x_0)\\}$ converges for some $x_0$ in $[a,b].$ Then",
- "$\\{F_n\\}$ converges uniformly on $[a,b]$ to a differentiable limit",
- "function $F,$ and",
- "\\begin{equation} \\label{eq:4.4.11}",
- "F'(x)=\\lim_{n\\to\\infty}F'_n(x),\\quad a0$ there is an integer $N$ such that",
- "\\vskip0pt",
- "\\begin{equation} \\label{eq:4.4.16}",
- "\\|f_n+f_{n+1}+\\cdots+f_m\\|_S<\\epsilon\\mbox{\\quad if\\quad} m\\ge n\\ge",
- "N.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Apply Theorem~\\ref{thmtype:4.4.6} to the partial sums of",
- "$\\sum f_n$, observing that",
- "$$",
- "f_n+f_{n+1}+\\cdots+f_m=F_m-F_{n-1}.",
- "$$",
- "\\vskip-2em"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.6"
- ],
- "ref_ids": [
- 117
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 123,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.15",
- "categories": [],
- "title": "Weierstrass's Test",
- "contents": [
- "The series $\\sum f_n$ converges uniformly on $S$ if",
- "\\begin{equation} \\label{eq:4.4.17}",
- "\\|f_n\\|_S\\le M_n,\\quad n\\ge k,",
- "\\end{equation}",
- "where $\\sum M_n<\\infty.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "From Cauchy's convergence criterion for series of constants,",
- "there is for each $\\epsilon>0$ an integer $N$ such that",
- "$$",
- "M_n+M_{n+1}+\\cdots+M_m<\\epsilon\\mbox{\\quad if\\quad} m\\ge n\\ge N,",
- "$$",
- "which, because of \\eqref{eq:4.4.17}, implies that",
- "$$",
- "\\|f_n\\|_S+\\|f_{n+1}\\|_S+\\cdots+\\|f_m\\|_S<\\epsilon\\mbox{\\quad if\\quad}",
- " m, n\\ge N.",
- "$$",
- " Lemma~\\ref{thmtype:4.4.2} and Theorem~\\ref{thmtype:4.4.13} imply that",
- "$\\sum f_n$ converges uniformly on $S$.",
- "\\mbox{}"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.2",
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.13"
- ],
- "ref_ids": [
- 251,
- 122
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 124,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.16",
- "categories": [],
- "title": "Dirichlet's Test for Uniform Convergence",
- "contents": [
- "The series",
- "$$",
- "\\sum_{n=k}^\\infty f_ng_n",
- "$$",
- " converges uniformly on",
- "$S$ if",
- " $\\{f_n\\}$ converges uniformly to zero on $S,$",
- " $\\sum (f_{n+1}-f_n)$ converges absolutely uniformly on",
- "$S,$ and",
- "\\begin{equation} \\label{eq:4.4.19}",
- "\\|g_k+g_{k+1}+\\cdots+g_n\\|_S\\le M,\\quad n\\ge k,",
- "\\end{equation}",
- "for some constant $M.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "The proof is similar to the proof of",
- "Theorem~\\ref{thmtype:4.3.20}. Let",
- "$$",
- "G_n=g_k+g_{k+1}+\\cdots+g_n,",
- "$$",
- "and consider the partial sums of $\\sum_{n=k}^\\infty f_ng_n$:",
- "\\begin{equation} \\label{eq:4.4.20}",
- "H_n=f_kg_k+f_{k+1}g_{k+1}+\\cdots+f_ng_n.",
- "\\end{equation}",
- "By substituting",
- "$$",
- "g_k=G_k\\mbox{\\quad and\\quad} g_n=G_n-G_{n-1},\\quad n\\ge k+1,",
- "$$",
- "into \\eqref{eq:4.4.20}, we obtain",
- "$$",
- "H_n=f_kG_k+f_{k+1}(G_{k+1}-G_k)+\\cdots+f_n(G_n-G_{n-1}),",
- "$$",
- "which we rewrite as",
- "$$",
- "H_n=(f_k-f_{k+1})",
- "G_k+(f_{k+1}-f_{k+2})G_{k+1}+\\cdots+(f_{n-1}-f_n)G_{n-1}+f_nG_n,",
- "$$",
- "or",
- "\\begin{equation} \\label{eq:4.4.21}",
- "H_n=J_{n-1}+f_nG_n,",
- "\\end{equation}",
- "where",
- "\\begin{equation} \\label{eq:4.4.22}",
- "J_{n-1}=(f_k-f_{k+1})G_k+(f_{k+1}-f_{k+2})",
- "G_{k+1}+\\cdots+(f_{n-1}-f_n)G_{n-1}.",
- "\\end{equation}",
- "That is, $\\{J_n\\}$ is the sequence of partial sums of the series",
- "\\begin{equation} \\label{eq:4.4.23}",
- "\\sum_{j=k}^\\infty (f_j-f_{j+1})G_j.",
- "\\end{equation}",
- " From \\eqref{eq:4.4.19} and the definition of",
- "$G_j$,",
- "$$",
- "\\left|\\sum^m_{j=n}[f_j(x)-f_{j+1}(x)]G_j(x)\\right|\\le M",
- "\\sum^m_{j=n}|f_j(x)-f_{j+1}(x)|,\\quad x\\in S,",
- "$$",
- "\\newpage",
- "\\noindent so",
- "$$",
- "\\left\\|\\sum^m_{j=n} (f_j-f_{j+1})G_j\\right\\|_S\\le M\\left\\|\\sum^m_{j=n}",
- "|f_j-f_{j+1}|\\right\\|_S.",
- "$$",
- "Now suppose that $\\epsilon>0$.",
- "Since $\\sum (f_j-f_{j+1})$ converges absolutely uniformly on $S$,",
- "Theorem~\\ref{thmtype:4.4.13} implies that",
- "there is an integer $N$ such that",
- "the right side of the last",
- "inequality is less than $\\epsilon$ if",
- "$m\\ge n\\ge N$. The same is then true of the left side, so",
- "Theorem~\\ref{thmtype:4.4.13}",
- " implies that",
- "\\eqref{eq:4.4.23} converges uniformly on~$S$.",
- "We have now shown that $\\{J_n\\}$ as defined in \\eqref{eq:4.4.22} converges",
- "uniformly to a limit function $J$ on $S$. Returning to \\eqref{eq:4.4.21},",
- "we see that",
- "$$",
- "H_n-J=J_{n-1}-J+f_nG_n.",
- "$$",
- "Hence, from Lemma~\\ref{thmtype:4.4.2} and \\eqref{eq:4.4.19},",
- "\\begin{eqnarray*}",
- "\\|H_n-J\\|_S\\ar\\le \\|J_{n-1}-J\\|_S+\\|f_n\\|_S\\|G_n\\|_S\\\\",
- "\\ar\\le \\|J_{n-1}-J\\|_S+M\\|f_n\\|_S.",
- "\\end{eqnarray*}",
- "Since $\\{J_{n-1}-J\\}$ and $\\{f_n\\}$ converge uniformly to zero on $S$,",
- "it now follows that $\\lim_{n\\to\\infty}\\|H_n-J\\|_S=0$. Therefore,",
- " $\\{H_n\\}$ converges uniformly on~$S$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.20",
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.13",
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.13",
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.2"
- ],
- "ref_ids": [
- 108,
- 122,
- 122,
- 251
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 125,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.18",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\sum_{n=k}^\\infty f_n$ converges uniformly to $F$ on $S$ and each",
- "$f_n$ is continuous at a point $x_0$ in $S,$ then so is $F.$ Similar",
- "statements hold for continuity from the right and left$.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 126,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.19",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\sum_{n=k}^\\infty f_n$ converges uniformly to $F$ on",
- "$S=[a,b].$ Assume that $F$ and $f_n,$ $n\\ge k,$",
- "are integrable on $[a,b].$ Then",
- "$$",
- "\\int_a^b F(x)\\,dx=\\sum_{n=k}^\\infty \\int_a^b f_n(x)\\,dx.",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 127,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.20",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f_n$ is continuously differentiable on $[a,b]$ for each",
- "$n\\ge k,$ $\\sum_{n=k}^\\infty f_n(x_0)$ converges for some $x_0$ in",
- "$[a,b],$ and",
- "$\\sum_{n=k}^\\infty f'_n$ converges uniformly on $[a,b].$ Then",
- "$\\sum_{n=k}^\\infty f_n$ converges uniformly on $[a,b]$ to a",
- "differentiable function $F,$ and",
- "$$",
- "F'(x)=\\sum_{n=k}^\\infty f'_n(x),\\quad aR.$ No general statement can be made concerning convergence",
- "at the endpoints $x=x_0+R$ and $x=x_0-R:$ the series may converge",
- "absolutely or conditionally at both$,$ converge conditionally at one",
- "and diverge at the other$,$ or diverge at both$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "In any case, the series \\eqref{eq:4.5.1} converges to $a_0$ if",
- "$x=x_0$. If",
- "\\begin{equation}\\label{eq:4.5.3}",
- "\\sum |a_n|r^n<\\infty",
- "\\end{equation}",
- "for some $r>0$, then $\\sum a_n (x-x_0)^n$ converges",
- "absolutely uniformly in $[x_0-r, x_0+r]$, by Weierstrass's test",
- "(Theorem~\\ref{thmtype:4.4.15}) and",
- "Exercise~\\ref{exer:4.4.21}. From Cauchy's root test",
- "(Theorem~\\ref{thmtype:4.3.17}),",
- "\\eqref{eq:4.5.3} holds if",
- "$$",
- "\\limsup_{n\\to\\infty} (|a_n|r^n)^{1/n}<1,",
- "$$",
- "which is equivalent to",
- " $$",
- " r\\,\\limsup_{n\\to\\infty} |a_n|^{1/n}<1",
- "$$",
- "(Exercise~\\ref{exer:4.1.30}\\part{a}).",
- "From \\eqref{eq:4.5.2}, this can be rewritten as $rR$, then",
- "\\newpage",
- "$$",
- "\\frac{1}{ R}>\\frac{1}{ |x-x_0|},",
- "$$",
- "so \\eqref{eq:4.5.2} implies that",
- "$$",
- "|a_n|^{1/n}\\ge\\frac{1}{ |x-x_0|}\\mbox{\\quad and therefore\\quad}",
- "|a_n(x-x_0)^n|\\ge1",
- "$$",
- "for infinitely many values of $n$. Therefore, $\\sum a_n(x-x_0)^n$",
- "diverges (Corollary~\\ref{thmtype:4.3.6}) if $|x-x_0|>R$.",
- "In particular, the series diverges for all $x\\ne x_0$ if $R=0$.",
- "To prove the assertions concerning the possibilities at $x=x_0+R$",
- "and $x=x_0-R$ requires examples, which follow. (Also, see",
- "Exercise~\\ref{exer:4.5.1}.)"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.15",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.17",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.6"
- ],
- "ref_ids": [
- 123,
- 106,
- 277
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 129,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.5.3",
- "categories": [],
- "title": "",
- "contents": [
- "The radius of convergence of $\\sum",
- "a_n(x-x_0)^n$ is given by",
- "$$",
- "\\frac{1}{ R}=\\lim_{n\\to\\infty}\\left|\\frac{a_{n+1}}{a_n}\\right|",
- "$$",
- "if the limit exists in the extended reals$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "From Theorem~\\ref{thmtype:4.5.2}, it suffices to show that if",
- "\\begin{equation}\\label{eq:4.5.4}",
- "L=\\lim_{n\\to\\infty}\\left|\\frac{a_{n+1}}{a_n}\\right|",
- "\\end{equation}",
- "exists in the extended reals, then",
- "\\begin{equation}\\label{eq:4.5.5}",
- "L=\\limsup_{n\\to\\infty}|a_n|^{1/n}.",
- "\\end{equation}",
- "We will show that this is so if $0 N.",
- "$$",
- "Therefore, if",
- "$$",
- "K_1=|a_N|(L-\\epsilon)^{-N}\\mbox{\\quad and\\quad} K_2=|a_N|(L+",
- "\\epsilon)^{-N},",
- "$$",
- "then",
- "\\begin{equation}\\label{eq:4.5.6}",
- "K^{1/n}_1(L-\\epsilon)<|a_n|^{1/n}0$, choose $N$ so that",
- "$$",
- "|s_n-s|<\\epsilon\\mbox{\\quad if\\quad} n\\ge N+1.",
- "$$",
- "Then, if $00$. If",
- "$$",
- "|\\mathbf{X}_1-\\mathbf{X}_0|0$ there is an integer $K$ such that",
- "$$",
- "|\\mathbf{X}_r-\\mathbf{X}_s|<\\epsilon\\mbox{\\quad if\\quad} r,s\\ge K.",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 142,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.17",
- "categories": [],
- "title": "Principle of Nested Sets",
- "contents": [
- "If $S_1,$ $S_2,$ \\dots\\ are closed nonempty subsets of $\\R^n$",
- "such that",
- "\\begin{equation}\\label{eq:5.1.14}",
- "S_1\\supset S_2\\supset\\cdots\\supset S_r\\supset\\cdots",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:5.1.15}",
- "\\lim_{r\\to\\infty} d(S_r)=0,",
- "\\end{equation}",
- "then the intersection",
- "$$",
- "I=\\bigcap^\\infty_{r=1}S_r",
- "$$",
- "contains exactly one point$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let",
- "$\\{\\mathbf{X}_r\\}$ be a sequence such that $\\mathbf{X}_r\\in S_r\\ (r\\ge1)$.",
- "Because of",
- "\\eqref{eq:5.1.14}, $\\mathbf{X}_r\\in S_k$ if $r\\ge k$, so",
- "$$",
- "|\\mathbf{X}_r-\\mathbf{X}_s|2$. The counterpart of the",
- "square $T$ is the {\\it hypercube\\/} with sides of",
- "length",
- "$L$:",
- "$$",
- "T=\\set{(x_1,x_2, \\dots,x_n)}{ a_i\\le x_i\\le a_i+L, i=1,2, \\dots, n}.",
- "$$",
- "Halving the intervals of variation of the $n$ coordinates",
- "$x_1$, $x_2$, \\dots, $x_n$ divides $T$ into $2^n$ closed hypercubes",
- "with sides of length $L/2$:",
- "$$",
- "T^{(i)}=\\set{(x_1,x_2, \\dots,x_n)}{b_i\\le x_i\\le b_i+L/2,",
- "1\\le i\\le n},",
- "$$",
- "where $b_i=a_i$ or $b_i=a_i+L/2$. If no finite subcollection of ${\\mathcal",
- "H}$ covers $S$, then at least one of these smaller hypercubes must",
- "contain a subset of $S$ that is not covered by any finite subcollection",
- "of $S$. Now the proof proceeds as for $n=2$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.1.17"
- ],
- "ref_ids": [
- 142
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 144,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.20",
- "categories": [],
- "title": "",
- "contents": [
- " An open set $S$ in $\\R^n$ is",
- "connected if and only if it is polygonally connected$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "For sufficiency, we will show that if $S$ is disconnected, then",
- "$S$ is not poly\\-gonally connected. Let $S=A\\cup B$, where $A$ and $B$",
- "satisfy \\eqref{eq:5.1.16}. Suppose that $\\mathbf{X}_1\\in A$ and $\\mathbf{X}_2\\in",
- "B$, and assume that there is a polygonal path in $S$ connecting",
- "$\\mathbf{X}_{1}$ to $\\mathbf{X}_2$. Then some line segment $L$ in this",
- "path must",
- "contain a point $\\mathbf{Y}_1$ in $A$ and a point $\\mathbf{Y}_2$ in $B$. The",
- "line segment",
- "$$",
- "\\mathbf{X}=t\\mathbf{Y}_2+(1-t)\\mathbf{Y}_1,\\quad 0\\le t\\le1,",
- "$$",
- "is part of $L$ and therefore in $S$. Now define",
- "$$",
- "\\rho=\\sup\\set{\\tau}{ tY_2+(1-t)\\mathbf{Y}_1\\in A,\\ 0\\le t\\le",
- "\\tau\\le1},",
- "$$",
- "and let",
- "$$",
- "\\mathbf{X}_\\rho=\\rho\\mathbf{Y}_2+(1-\\rho)\\mathbf{Y}_1.",
- "$$",
- "Then $\\mathbf{X}_\\rho\\in\\overline{A}\\cap\\overline{B}$. However, since",
- "$\\mathbf{X}_\\rho\\in A\\cup B $ and $\\overline{A}\\cap",
- "B=A\\cap\\overline{B}=\\emptyset$, this is impossible. Therefore,",
- "the assumption that there is a polygonal path in $S$",
- "from $\\mathbf{X}_1$ to $\\mathbf{X}_2$ must be false.",
- "For necessity, suppose that $S$ is a connected open set and $\\mathbf{X}_0\\in",
- "S$. Let $A$ be the set consisting of $\\mathbf{X}_0$ and the points in $S$",
- "can be connected to $\\mathbf{X}_0$ by polygonal paths in $S$. Let $B$ be",
- "set of points in $S$ that cannot be connected to $\\mathbf{X}_0$",
- "by polygonal paths.",
- " If $\\mathbf{Y}_0\\in S$, then $S$ contains an",
- "$\\epsilon$-neighborhood $N_\\epsilon (\\mathbf{Y}_0)$ of $\\mathbf{Y}_0$,",
- "since $S$ is open. Any point $\\mathbf{Y}_1$ in $N_\\epsilon",
- "(\\mathbf{Y}_{0}$",
- " can be connected to $\\mathbf{Y}_0$ by the line segment",
- "$$",
- "\\mathbf{X}=t\\mathbf{Y}_1+(1-t)\\mathbf{Y}_0,\\quad 0\\le t\\le1,",
- "$$",
- "which lies in $N_\\epsilon(\\mathbf{Y}_0)$ (Lemma~\\ref{thmtype:5.1.12}) and",
- "therefore in",
- "$S$. This implies that $\\mathbf{Y}_0$ can be connected to $\\mathbf{X}_0$ by a",
- "polygonal path in $S$ if and only if every member of $N_\\epsilon",
- "(\\mathbf{Y}_{0})$",
- " can also. Thus, $N_\\epsilon(\\mathbf{Y}_0)\\subset A$ if $\\mathbf{Y}_0\\in",
- "A$, and $N_\\epsilon (\\mathbf{Y}_0)\\in B$ if $\\mathbf{Y}_0\\in B$. Therefore,",
- "$A$ and $B$ are open. Since $A\\cap B =\\emptyset$, this implies that",
- "$A\\cap\\overline{B}=\\overline{A}\\cap B=\\emptyset$",
- "(Exercise~\\ref{exer:5.1.14}). Since $A$ is nonempty $(\\mathbf{X}_0\\in A)$,",
- "it",
- "now follows that $B=\\emptyset$, since if $B\\ne\\emptyset$, $S$ would be",
- "disconnected (Definition~\\ref{thmtype:5.1.19}). Therefore, $A=S$, which",
- "completes the proof of necessity."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.1.12",
- "TRENCH_REAL_ANALYSIS-thmtype:5.1.19"
- ],
- "ref_ids": [
- 253,
- 343
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 145,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.2",
- "categories": [],
- "title": "",
- "contents": [
- " If $\\lim_{\\mathbf{X}\\to\\mathbf{X}_0} f(\\mathbf{X})$ exists$,$ then it is",
- "unique."
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 146,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.3",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f$ and $g$ are defined on a set $D,$ $\\mathbf{X}_0$ is a",
- "limit point of $D,$ and",
- "$$",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0} f(\\mathbf{X})=L_1,\\quad\\lim_{\\mathbf{X}\\to\\mathbf{X}_0} g(\\mathbf{X})=L_2.",
- "$$",
- "Then",
- "\\begin{eqnarray}",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0}(f+g)(\\mathbf{X})\\ar=L_1+L_2,\\label{eq:5.2.10}\\\\",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0}(f-g)(\\mathbf{X})\\ar=L_1-L_2,\\label{eq:5.2.11}\\\\",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0}(fg)(\\mathbf{X})\\ar=L_1L_2,\\label{eq:5.2.12}\\\\",
- "\\arraytext{and$,$ if $L_2\\ne0,$}\\nonumber\\\\",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0}\\left(\\frac{f}{ g}\\right)(\\mathbf{X})",
- "\\ar=\\frac{L_1}{ L_2}.\\label{eq:5.2.13}",
- "\\end{eqnarray}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 147,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.7",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{X}_0$ is in $D_f$ and is a limit point of $D_f.$ Then",
- "$f$",
- "is continuous at $\\mathbf{X}_0$ if and only if for each $\\epsilon>0$ there",
- "is a $\\delta>0$ such that",
- "$$",
- "\\left|f(\\mathbf{X})-f(\\mathbf{X}_0)\\right|<\\epsilon",
- "$$",
- "whenever",
- "$$",
- "|\\mathbf{X}-\\mathbf{X}_0|<\\delta\\mbox{\\quad and\\quad}\\mathbf{X}\\in D_f.",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 148,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.8",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ and $g$ are continuous on a set $S$ in $\\R^n,$ then so",
- "are $f+g,$ $f-g,$ and $fg.$ Also$,$ $f/g$ is continuous at each",
- "$\\mathbf{X}_0$ in $S$ such that $g(\\mathbf{X}_0)\\ne0.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 149,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.9",
- "categories": [],
- "title": "",
- "contents": [
- "For a vector-valued function $\\mathbf{G},$",
- "$$",
- "\\lim_{\\mathbf{U}\\to\\mathbf{U}_0}\\mathbf{G}(\\mathbf{U})=\\mathbf{L}",
- "$$",
- "if and only if for each $\\epsilon>0$ there is a $\\delta>0$ such that",
- "$$",
- "|\\mathbf{G}(\\mathbf{U})-\\mathbf{L}|<\\epsilon\\mbox{\\quad whenever\\quad}",
- "0<|\\mathbf{U}-\\mathbf{U}_0|<\\delta\\mbox{\\quad and\\quad}\\mathbf{U}\\in D_{\\mathbf{G}}.",
- "$$",
- "Similarly, $\\mathbf{G}$ is continuous at $\\mathbf{U}_0$ if and only if for",
- "each",
- "$\\epsilon> 0$ there is a $\\delta>0$ such that",
- "$$",
- "|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|<\\epsilon",
- "\\mbox{\\quad whenever\\quad}",
- " |\\mathbf{U}-\\mathbf{U}_0|<\\delta\\mbox{\\quad and\\quad}\\mathbf{U}\\in D_{\\mathbf{G}}.",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 150,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.10",
- "categories": [],
- "title": "",
- "contents": [
- "Let $f$ be a real-valued function defined on a subset of $\\R^n,$",
- " and let the",
- "vector-valued function $\\mathbf{G}=(g_1,g_2, \\dots,g_n)$ be defined on a",
- "domain $D_\\mathbf{G}$ in $\\R^m.$ Let the set",
- "$$",
- "T=\\set{\\mathbf{U}}{\\mathbf{U}\\in D_{\\mathbf{G}}\\mbox{\\quad and \\quad}",
- "\\mathbf{G}(\\mathbf{U})\\in D_f}",
- "$$",
- "$($Figure~\\ref{figure:5.2.3}$)$,",
- " be",
- "nonempty$,$ and define the real-valued composite function",
- "$$",
- "h=f\\circ\\mathbf{G}",
- "$$",
- "on $T$ by",
- "$$",
- "h(\\mathbf{U})=f(\\mathbf{G}(\\mathbf{U})),\\quad \\mathbf{U}\\in T.",
- "$$",
- "Now suppose that $\\mathbf{U}_0$ is in $T$ and is a limit point of $T,$",
- "$\\mathbf{G}$ is continuous at $\\mathbf{U}_0,$ and $f$ is continuous at",
- "$\\mathbf{X}_0=\\mathbf{G}(\\mathbf{U}_0).$ Then $h$ is continuous at",
- "$\\mathbf{U}_0.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $\\epsilon>0$. Since $f$ is continuous at",
- "$\\mathbf{X}_0=\\mathbf{G}(\\mathbf{U}_0)$, there is an $\\epsilon_1>0$",
- "such that",
- "\\begin{equation}\\label{eq:5.2.17}",
- "|f(\\mathbf{X})-f(\\mathbf{G}(\\mathbf{U}_0))|<\\epsilon",
- "\\end{equation}",
- "if",
- "\\begin{equation}\\label{eq:5.2.18}",
- "|\\mathbf{X}-\\mathbf{G}(\\mathbf{U}_0)|<\\epsilon_1\\mbox{\\quad and\\quad}",
- "\\mathbf{X}\\in D_f.",
- "\\end{equation}",
- "Since $\\mathbf{G}$ is continuous at $\\mathbf{U}_0$, there is a $\\delta>0$",
- "such that",
- "$$",
- "|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|<\\epsilon_1",
- "\\mbox{\\quad if\\quad} |\\mathbf{U}-\\mathbf{U}_0|<",
- "\\delta\\mbox{\\quad and\\quad}\\mathbf{U}\\in D_\\mathbf{G}.",
- "$$",
- "By taking $\\mathbf{X}=\\mathbf{G}(\\mathbf{U})$ in \\eqref{eq:5.2.17} and",
- "\\eqref{eq:5.2.18}, we see that",
- "$$",
- "|h(\\mathbf{U})-h(\\mathbf{U}_0)|=|f(\\mathbf{G}(\\mathbf{U})",
- "-f(\\mathbf{G}(\\mathbf{U}_0))|<\\epsilon",
- "$$",
- "if",
- "$$",
- "|\\mathbf{U}-\\mathbf{U}_0|<\\delta\\mbox{\\quad and\\quad}\\mathbf{U}\\in T.",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 151,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.11",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is continuous on a compact set $S$ in $\\R^n,$ then $f$",
- "is bounded on~$S.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 152,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.12",
- "categories": [],
- "title": "",
- "contents": [
- "Let $f$ be continuous on a compact set $S$ in $\\R^n$ and",
- "$$",
- "\\alpha=\\inf_{\\mathbf{X}\\in S}f(\\mathbf{X}),\\quad\\beta=",
- "\\sup_{\\mathbf{X}\\in S}f(\\mathbf{X}).",
- "$$",
- "Then",
- "$$",
- "f(\\mathbf{X}_1)=\\alpha\\mbox{\\quad and\\quad} f(\\mathbf{X}_2)=\\beta",
- "$$",
- "for some $\\mathbf{X}_1$ and $\\mathbf{X}_2$ in $S.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 153,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.13",
- "categories": [],
- "title": "Intermediate Value Theorem",
- "contents": [
- "Let $f$ be continuous on a region $S$ in $\\R^n.$ Suppose that",
- "$\\mathbf{A}$ and $\\mathbf{B}$ are in $S$ and",
- "$$",
- "f(\\mathbf{A})u}.",
- "\\end{eqnarray*}",
- "If $\\mathbf{X}_0\\in R$, the continuity of $f$ implies that there is a",
- "$\\delta>0$ such that $f(\\mathbf{X})0$. Choose $\\delta>0$ so that",
- "the open square",
- "\\newpage",
- "$$",
- "S_\\delta=\\set{(x,y)}{|x-x_0|<\\delta, |y-y_0|<\\delta}",
- "$$",
- "is in $N$ and",
- "\\begin{equation}\\label{eq:5.3.6}",
- "|f_{xy}(\\widehat{x},\\widehat{y})-f_{xy}(x_0,y_0)|<\\epsilon\\quad",
- "\\mbox{\\quad if\\quad}(\\widehat{x},\\widehat{y})\\in S_\\delta.",
- "\\end{equation}",
- "This is possible because of the continuity of $f_{xy}$ at $(x_0,y_0)$.",
- "The function",
- "\\begin{equation}\\label{eq:5.3.7}",
- "A(h,k)=f(x_0+h, y_0+k)-f(x_0+h,y_0)-f(x_0,y_0+k)+f(x_0,y_0)",
- "\\end{equation}",
- "is defined if $-\\delta0$. Our assumptions imply that there is",
- "a $\\delta>0$ such that $f_{x_1}, f_{x_2}, \\dots, f_{x_n}$ are defined",
- "in the $n$-ball",
- "$$",
- "S_\\delta (\\mathbf{X}_0)=\\set{\\mathbf{X}}{|\\mathbf{X}-\\mathbf{X}_0|<\\delta}",
- "$$",
- "and",
- "\\begin{equation}\\label{eq:5.3.24}",
- "|f_{x_j}(\\mathbf{X})-f_{x_j}(\\mathbf{X}_0)|<\\epsilon\\mbox{\\quad if\\quad}",
- "|\\mathbf{X}-\\mathbf{X}_0|<\\delta,\\quad 1\\le j\\le n.",
- "\\end{equation}",
- "Let $\\mathbf{X}=(x_1,x_, \\dots,x_n)$ be in $S_\\delta(\\mathbf{X}_0)$.",
- "Define",
- "$$",
- "\\mathbf{X}_j=(x_1, \\dots,x_j, x_{j+1,0}, \\dots,x_{n0}),\\quad 1\\le j\\le n-1,",
- "$$",
- "and",
- "$\\mathbf{X}_n=\\mathbf{X}$.",
- "Thus, for $1\\le j\\le n$, $\\mathbf{X}_j$ differs from $\\mathbf{X}_{j-1}$",
- " in the",
- "$j$th component only, and the line segment from $\\mathbf{X}_{j-1}$ to",
- "$\\mathbf{X}_j$ is in $S_\\delta (\\mathbf{X}_0)$.",
- "Now write",
- "\\begin{equation}\\label{eq:5.3.25}",
- "f(\\mathbf{X})-f(\\mathbf{X}_0)=f(\\mathbf{X}_n)-f(\\mathbf{X}_0)=",
- "\\sum^n_{j=1}\\,[f(\\mathbf{X}_j)-f(\\mathbf{X}_{j-1})],",
- "\\end{equation}",
- "and consider the auxiliary functions",
- "\\begin{equation}\\label{eq:5.3.26}",
- "\\begin{array}{rcl}",
- "g_1(t)\\ar=f(t,x_{20}, \\dots,x_{n0}),\\\\[2\\jot]",
- "g_j(t)\\ar=f(x_1, \\dots,x_{j-1},t,x_{j+1,0}, \\dots,x_{n0}),\\quad 2\\le j\\le",
- "n-1,\\\\[2\\jot]",
- "g_n(t)\\ar=f(x_1, \\dots,x_{n-1},t),",
- "\\end{array}",
- "\\end{equation}",
- "where, in each case, all variables except $t$ are temporarily regarded",
- "as constants. Since",
- "$$",
- "f(\\mathbf{X}_j)-f(\\mathbf{X}_{j-1})=g_j(x_j)-g_j(x_{j0}),",
- "$$",
- "the mean value theorem implies that",
- "$$",
- "f(\\mathbf{X}_j)-f(\\mathbf{X}_{j-1})=g'_j(\\tau_j)(x_j-x_{j0}),",
- "$$",
- "\\newpage",
- "\\noindent",
- "where $\\tau_j$ is between $x_j$ and $x_{j0}$. From \\eqref{eq:5.3.26},",
- "$$",
- "g'_j(\\tau_j)=f_{x_j}(\\widehat{\\mathbf{X}}_j),",
- "$$",
- "where $\\widehat{\\mathbf{X}}_j$ is on the line segment from $\\mathbf{X}_{j-1}$ to",
- "$\\mathbf{X}_j$. Therefore,",
- "$$",
- "f(\\mathbf{X}_j)-f(\\mathbf{X}_{j-1})=f_{x_j}(\\widehat{\\mathbf{X}}_j)(x_j-x_{j0}),",
- "$$",
- "and \\eqref{eq:5.3.25} implies that",
- "\\begin{eqnarray*}",
- "f(\\mathbf{X})-f(\\mathbf{X}_0)\\ar=\\sum^n_{j=1} f_{x_j} (\\widehat{\\mathbf{X}}_j)(x_j-x_{j0})\\\\",
- "\\ar=\\sum^n_{j=1} f_{x_j}(\\mathbf{X}_0) (x_j-x_{j0})+\\sum^n_{j=1}",
- "\\,[f_{x_j}(\\widehat{\\mathbf{X}}_j)-f_{x_j}(\\mathbf{X}_0)](x_j-x_{j0}).",
- "\\end{eqnarray*}",
- "From this and \\eqref{eq:5.3.24},",
- "$$",
- "\\left|f(\\mathbf{X})-f(\\mathbf{X}_0)-\\sum^n_{j=1}",
- "f_{x_j}(\\mathbf{X}_{0})",
- "(x_j-x_{j0})\\right|\\le",
- "\\epsilon\\sum^n_{j=1} |x_j-x_{j0}|\\le n\\epsilon |\\mathbf{X}-\\mathbf{X}_0|,",
- "$$",
- "which implies that $f$ is differentiable at $\\mathbf{X}_0$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 162,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.3.11",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f$ is defined in a neighborhood of $\\mathbf{X}_0$ in",
- "$\\R^n$ and $f_{x_1}(\\mathbf{X}_0),$ $f_{x_2}(\\mathbf{X}_{0}),$",
- " \\dots$,$ $f_{x_n}(\\mathbf{X}_{0})$",
- " exist$.$ Let $\\mathbf{X}_0$ be a local extreme point of $f.$ Then",
- "\\begin{equation}\\label{eq:5.3.42}",
- "f_{x_i}(\\mathbf{X}_0)=0,\\quad 1\\le i\\le n.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let",
- "$$",
- "\\mathbf{E}_1=(1,0, \\dots,0),\\quad \\mathbf{E}_{2}",
- "=(0,1,0, \\dots,0),\\dots,\\quad \\mathbf{E}_n=",
- "(0,0, \\dots,1),",
- "$$",
- "and",
- "$$",
- "g_i(t)=f(\\mathbf{X}_0+t\\mathbf{E}_i),\\quad 1\\le i\\le n.",
- "$$",
- "Then $g_i$ is differentiable at $t=0$, with",
- "$$",
- "g'_i(0)=f_{x_i}(\\mathbf{X}_0)",
- "$$",
- "\\newpage",
- "\\noindent",
- "(Definition~\\ref{thmtype:5.3.1}). Since $\\mathbf{X}_0$ is a local extreme",
- "point of $f$, $t_0=0$ is a local extreme point of $g_i$. Now",
- "Theorem~\\ref{thmtype:2.3.7} implies that $g'_i(0)=0$, and this",
- "implies \\eqref{eq:5.3.42}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.3.1",
- "TRENCH_REAL_ANALYSIS-thmtype:2.3.7"
- ],
- "ref_ids": [
- 349,
- 31
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 163,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.4.3",
- "categories": [],
- "title": "The Chain Rule",
- "contents": [
- "Suppose that the real-valued function $f$ is differentiable at",
- "$\\mathbf{X}_0$",
- "in $\\R^n,$ the vector-valued function $\\mathbf{G}",
- "=(g_1,g_2, \\dots,g_n)$ is differentiable at",
- "$\\mathbf{U}_0$ in $\\R^m,$ and $\\mathbf{X}_{0}",
- " = \\mathbf{G}(\\mathbf{U}_0).$ Then the real-valued composite function",
- "$h=f\\circ\\mathbf{G}$ defined by",
- "\\begin{equation} \\label{eq:5.4.3}",
- "h(\\mathbf{U})=f(\\mathbf{G}(\\mathbf{U}))",
- "\\end{equation}",
- "is differentiable at $\\mathbf{U}_0,$ and",
- "\\begin{equation} \\label{eq:5.4.4}",
- "d_{\\mathbf{U}_0}h=f_{x_1}(\\mathbf{X}_0) d_{\\mathbf{U}_0}g_1+f_{x_2}",
- "(\\mathbf{X}_0) d_{\\mathbf{U}_0}g_2+\\cdots",
- "+f_{x_n} (\\mathbf{X}_0) d_{\\mathbf{U}_0}g_n.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We leave it to you to show that $\\mathbf{U}_0$ is an interior point",
- "of the domain of $h$ (Exercise~\\ref{exer:5.4.1}), so it is legitimate to",
- "ask if $h$ is differentiable at $\\mathbf{U}_0$.",
- "Let $\\mathbf{X}_0=(x_{10},x_{20}, \\dots,x_{n0})$. Note that",
- "$$",
- "x_{i0}=g_i(\\mathbf{U}_0),\\quad",
- "1\\le i\\le n,",
- "$$",
- "by assumption.",
- "Since $f$ is differentiable at $\\mathbf{X}_0$,",
- "Lemma~\\ref{thmtype:5.3.8} implies that",
- "\\begin{equation} \\label{eq:5.4.5}",
- "f(\\mathbf{X})-f(\\mathbf{X}_0)=\\sum_{i=1}^n f_{x_i} (\\mathbf{X}_0)",
- "(x_i-x_{i0})+E(\\mathbf{X})|\\mathbf{X}-\\mathbf{X}_0|,",
- "\\end{equation}",
- "where",
- "$$",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0}E(\\mathbf{X})=0.",
- "$$",
- "\\newpage",
- "\\noindent",
- " Substituting $\\mathbf{X}=\\mathbf{G}(\\mathbf{U})$",
- " and $\\mathbf{X}_0=\\mathbf{G}(\\mathbf{U}_0)$ in \\eqref{eq:5.4.5} and recalling",
- "\\eqref{eq:5.4.3} yields",
- "\\begin{equation} \\label{eq:5.4.6}",
- "h(\\mathbf{U})-h(\\mathbf{U}_0)=\\dst{\\sum_{i=1}^n}\\, f_{x_i}(\\mathbf{X}_0)",
- "(g_i(\\mathbf{U})-g_i(\\mathbf{U}_0))",
- "+E(\\mathbf{G}(\\mathbf{U}))",
- "|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|.",
- "\\end{equation}",
- "Substituting \\eqref{eq:5.4.1} into \\eqref{eq:5.4.6} yields",
- "$$",
- "\\begin{array}{rcl}",
- "h(\\mathbf{U})-h(\\mathbf{U}_0)\\ar=\\dst{\\sum_{i=1}^n} f_{x_i}(\\mathbf{X}_0)",
- "(d_{\\mathbf{U}_0}g_i) (\\mathbf{U}-\\mathbf{U}_0)",
- "+\\dst{\\left(\\sum_{i=1}^n",
- "f_{x_i}(\\mathbf{X}_0)E_i(\\mathbf{U})\\right)} |\\mathbf{U}-\\mathbf{U}_0|",
- "\\\\\\\\",
- "\\ar{}+E(\\mathbf{G}(\\mathbf{U}))",
- "|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_{0}|.",
- "\\end{array}",
- "$$",
- "Since",
- "$$",
- "\\lim_{\\mathbf{U}\\to\\mathbf{U}_0}E(\\mathbf{G}(\\mathbf{U}))=\\lim_{\\mathbf{X}\\to\\mathbf{X}_0}E(\\mathbf{X})=0,",
- "$$",
- "\\eqref{eq:5.4.2} and Lemma~\\ref{thmtype:5.4.2} imply that",
- "$$",
- "\\frac{h(\\mathbf{U})-h(\\mathbf{U}_0)-\\dst\\sum_{i=1}^nf_{x_i}(\\mathbf{X}_{0}",
- "d_{\\mathbf{U}_0}g_i",
- "(\\mathbf{U}-\\mathbf{U}_0)}{|\\mathbf{U}-\\mathbf{U}_0|}=0.",
- "$$",
- "Therefore, $h$ is differentiable at $\\mathbf{U}_0$, and $d_{\\mathbf{U}_0}h$",
- "is given by \\eqref{eq:5.4.4}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.3.8",
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.2"
- ],
- "ref_ids": [
- 254,
- 255
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 164,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.4.5",
- "categories": [],
- "title": "Mean Value Theorem for Functions of $\\mathbf n$ Variables",
- "contents": [
- "Let $f$ be continuous at $\\mathbf{X}_1=(x_{11},x_{21}, \\dots, x_{n1})$",
- "and $\\mathbf{X}_2=(x_{12},x_{22}, \\dots,x_{n2})$ and differentiable on the",
- "line segment $L$ from $\\mathbf{X}_1$ to $\\mathbf{X}_2.$ Then",
- "\\begin{equation} \\label{eq:5.4.21}",
- "f(\\mathbf{X}_2)-f(\\mathbf{X}_1)=\\sum_{i=1}^n f_{x_i} (\\mathbf{X}_0)(x_{i2}-x_{i1})=(d_{\\mathbf{X}_0}f)(\\mathbf{X}_2",
- "-\\mathbf{X}_1)",
- "\\end{equation}",
- "for some $\\mathbf{X}_0$ on $L$ distinct",
- "from $\\mathbf{X}_1$ and $\\mathbf{X}_2$."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "An equation of $L$ is",
- "$$",
- "\\mathbf{X}=\\mathbf{X}(t)=t\\mathbf{X}_2+(1-t)\\mathbf{X}_1,\\quad 0\\le t\\le1.",
- "$$",
- "Our hypotheses imply that the function",
- "$$",
- "h(t)=f(\\mathbf{X}(t))",
- "$$",
- "is continuous on $[0,1]$ and differentiable on $(0,1)$. Since",
- "$$",
- "x_i(t)=tx_{i2}+(1-t)x_{i1},",
- "$$",
- "\\eqref{eq:5.4.20} implies that",
- "$$",
- "h'(t)=\\sum_{i=1}^n f_{x_i}(\\mathbf{X}(t))(x_{i2}-x_{i1}),\\quad 00$, there is a $\\delta>0$ such that",
- "$B_\\delta (\\mathbf{X}_0)\\subset N$ and all $k$th-order partial",
- "derivatives of $f$ satisfy the inequality",
- "\\begin{equation} \\label{eq:5.4.32}",
- "\\left|\\frac{\\partial^kf(\\widetilde{\\mathbf{X}})}{\\partial x_{i_k}\\partial",
- "x_{i_{k-1}} \\cdots\\partial x_{i_1}}-",
- "\\frac{\\partial^kf(\\mathbf{X}_0)}{\\partial x_{i_k} \\partial",
- "x_{i_{k-1}}\\cdots\\partial",
- "x_{i_1}}\\right|<\\epsilon,\\quad \\widetilde{\\mathbf{X}}\\in B_\\delta (\\mathbf{X}_0).",
- "\\end{equation}",
- " Now suppose that $\\mathbf{X}\\in B_\\delta (\\mathbf{X}_0)$. From",
- "Theorem~\\ref{thmtype:5.4.8} with $k$ replaced by $k-1$,",
- "\\begin{equation} \\label{eq:5.4.33}",
- "f(\\mathbf{X})=T_{k-1}(\\mathbf{X})+\\frac{1}{ k!}",
- "(d^{(k)}_{\\widetilde{\\mathbf{X}}} f)(\\mathbf{X}-\\mathbf{X}_0),",
- "\\end{equation}",
- "where $\\widetilde{\\mathbf{X}}$ is some point",
- " on the line segment from $\\mathbf{X}_0$ to $\\mathbf{X}$ and is therefore",
- "in $B_\\delta(\\mathbf{X}_0)$. We can rewrite \\eqref{eq:5.4.33} as",
- "\\begin{equation} \\label{eq:5.4.34}",
- " f(\\mathbf{X})=T_k(\\mathbf{X})+\\frac{1}{",
- "k!}\\left[(d^{(k)}_{\\widetilde{\\mathbf{X}}} f)(\\mathbf{X}-\\mathbf{X}_0)-",
- "(d^{(k)}_{\\mathbf{X}_0} f)(\\mathbf{X}-\\mathbf{X}_0)\\right].",
- "\\end{equation}",
- "But \\eqref{eq:5.4.23} and",
- "\\eqref{eq:5.4.32} imply that",
- "\\begin{equation} \\label{eq:5.4.35}",
- "\\left|(d^{(k)}_{\\widetilde{\\mathbf{X}}}f)(\\mathbf{X}-\\mathbf{X}_0)-(d^{(k)}_{{\\mathbf{X}}_0}f)(\\mathbf{X}-\\mathbf{X}_0)\\right|< n^k\\epsilon |\\mathbf{X}-\\mathbf{X}_0|^k",
- "\\end{equation}",
- " (Exercise~\\ref{exer:5.4.17}), which",
- "implies that",
- "$$",
- "\\frac{|f(\\mathbf{X})-T_k(\\mathbf{X})|}",
- "{ |\\mathbf{X}-\\mathbf{X}_0|^k}<\\frac{n^k\\epsilon}{ k!}, \\quad\\mathbf{X}\\in",
- "B_\\delta (\\mathbf{X}_0),",
- "$$",
- "from \\eqref{eq:5.4.34}.",
- "This implies \\eqref{eq:5.4.31}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.8"
- ],
- "ref_ids": [
- 165
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 167,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.4.10",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f$ satisfies the hypotheses of Theorem~$\\ref{thmtype:5.4.9}$",
- "with $k\\ge2,$ and",
- " \\begin{equation} \\label{eq:5.4.38}",
- "d^{(r)}_{\\mathbf{X}_0} f\\equiv0\\quad (1\\le r\\le k-1),\\quad d^{(k)}_\\mathbf{X_0}",
- "f\\not\\equiv0.",
- "\\end{equation}",
- "Then",
- "\\begin{alist}",
- "\\item % (a)",
- "$\\mathbf{X}_0$ is not a local extreme point of $f$ unless $d^{(k)}_{\\mathbf{X}_0}f$ is semidefinite as a polynomial in $\\mathbf{X}-\\mathbf{X}_0.$",
- "In particular$,$",
- " $\\mathbf{X}_0$ is not a local extreme point of $f$ if",
- "$k$ is odd$.$",
- "\\item % (b)",
- " $\\mathbf{X}_0$ is a local minimum point of $f$ if $d^{(k)}_{\\mathbf{X}_0}",
- "f$ is positive definite$,$ or a local maximum point if $d^{(k)}_{\\mathbf{X}_0}f$ is",
- "negative definite$.$",
- "\\item % (c)",
- " If $d^{(k)}_{\\mathbf{X}_0}f$ is semidefinite$,$ then $\\mathbf{X}_0$ may be a",
- "local extreme point of $f,$ but it need not be$.$",
- "\\end{alist}"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.9"
- ],
- "proofs": [
- {
- "contents": [
- "From \\eqref{eq:5.4.38} and Theorem~\\ref{thmtype:5.4.9},",
- "\\begin{equation} \\label{eq:5.4.39}",
- "\\lim_{ \\mathbf{X}\\to\\mathbf{X}_0}",
- "\\frac{f(\\mathbf{X})-f(\\mathbf{X}_0)-\\dst\\frac{1}{k!}",
- "(d^{(k)}_{\\mathbf{X}_0})(\\mathbf{X}-\\mathbf{X}_0)}{ |\\mathbf{X}-\\mathbf{X}_0|^k}=0.",
- "\\end{equation}",
- "If $\\mathbf{X}=\\mathbf{X}_0+t\\mathbf{U}$, where $\\mathbf{U}$ is a constant",
- "vector, then",
- "$$",
- "(d^{(k)}_{\\mathbf{X}_0} f) (\\mathbf{X}-\\mathbf{X}_0)=",
- "t^k(d^{(k)}_{\\mathbf{X}_0} f)(\\mathbf{U}),",
- "$$",
- "so \\eqref{eq:5.4.39} implies that",
- "$$",
- "\\lim_{t\\to 0} \\frac{f(\\mathbf{X}_0+t\\mathbf{U})-",
- "f(\\mathbf{X}_0)-\\dst\\frac{t^k}{k!}(d^{(k)}_{\\mathbf{X}_0}f)(\\mathbf{U})}{",
- "t^k}=0,",
- "$$",
- "or, equivalently,",
- "\\begin{equation} \\label{eq:5.4.40}",
- "\\lim_{t\\to 0}\\frac{f(\\mathbf{X}_0+t\\mathbf{U})-f(\\mathbf{X}_0)}{ t^k}=\\frac{1}{ k!}",
- "(d^{(k)}_{\\mathbf{X}_0}f)(\\mathbf{U})",
- "\\end{equation}",
- "for any constant vector $\\mathbf{U}$.",
- "To prove \\part{a}, suppose that",
- "$d^{(k)}_{\\mathbf{X}_0}f$ is not semidefinite. Then there are vectors $\\mathbf{U}_1$ and",
- "$\\mathbf{U}_2$ such that",
- "$$",
- "(d^{(k)}_{\\mathbf{X}_0} f)(\\mathbf{U}_1)>0\\mbox{\\quad and\\quad} (d^{(k)}_\\mathbf{X_0}f)(\\mathbf{U}_2)<0.",
- "$$",
- "This and \\eqref{eq:5.4.40} imply that",
- "$$",
- "f(\\mathbf{X}_0+t\\mathbf{U}_1)>f(\\mathbf{X}_0)\\mbox{\\quad and\\quad}",
- " f(\\mathbf{X}_0+t\\mathbf{U}_2)0$ such that",
- "\\begin{equation} \\label{eq:5.4.41}",
- "\\frac{(d^{(k)}_{\\mathbf{X}_0} f)(\\mathbf{X}-\\mathbf{X}_0)}{ k!}\\ge\\rho",
- "|\\mathbf{X}-\\mathbf{X}_0|^k",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "for all $\\mathbf{X}$ (Exercise~\\ref{exer:5.4.19}). From \\eqref{eq:5.4.39}, there",
- "is a $\\delta>0$ such that",
- "$$",
- "\\frac{f(\\mathbf{X})-f(\\mathbf{X}_0)-\\dst\\frac{1}{k!} (d^{(k)}_{\\mathbf{X}_0}f)(\\mathbf{X}-\\mathbf{X}_0)}{ |\\mathbf{X}-\\mathbf{X}_0|^k}>-",
- "\\frac{\\rho}{2}\\mbox{\\quad if\\quad} |\\mathbf{X}-\\mathbf{X}_0|<\\delta.",
- "$$",
- "Therefore,",
- "$$",
- "f(\\mathbf{X})-f(\\mathbf{X}_0)>\\frac{1}{ k!}",
- "(d^{(k)}_{\\mathbf{X}_0})(\\mathbf{X}-\\mathbf{X}_0)-\\frac{\\rho}{2}",
- "|\\mathbf{X}-\\mathbf{X}_0|^k\\mbox{\\quad if\\quad}",
- "|\\mathbf{X}-\\mathbf{X}_0|<\\delta.",
- "$$",
- "This and \\eqref{eq:5.4.41} imply that",
- "$$",
- "f(\\mathbf{X})-f(\\mathbf{X}_0)>\\frac{\\rho}{2}",
- " |\\mathbf{X}-\\mathbf{X}_0|^k\\mbox{\\quad if\\quad} |\\mathbf{X}-\\mathbf{X}_0| <\\delta,",
- "$$",
- "which implies that $\\mathbf{X}_0$ is a local minimum point of $f$. This proves",
- "half of \\part{b}. We leave the other half to you",
- "(Exercise~\\ref{exer:5.4.20}).",
- "To prove \\part{c} merely requires examples; see Exercise~\\ref{exer:5.4.21}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.9"
- ],
- "ref_ids": [
- 166
- ]
- }
- ],
- "ref_ids": [
- 166
- ]
- },
- {
- "id": 168,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.2",
- "categories": [],
- "title": "",
- "contents": [
- " A transformation $\\mathbf{L}: \\R^n \\to \\R^m$",
- "defined on all of $\\R^n$ is linear if and only if",
- "\\begin{equation}\\label{eq:6.1.1}",
- "\\mathbf{L}(\\mathbf{X})=\\left[\\begin{array}{c} a_{11}x_1+a_{12}x_2+",
- "\\cdots+a_{1n}x_n\\\\a_{21}x_1+a_{22}x_2+\\cdots+a_{2n}x_n\\\\",
- "\\vdots\\\\a_{m1}x_1+a_{m2}x_2+\\cdots+a_{mn}x_n\\end{array}\\right],",
- "\\end{equation}",
- "where the $a_{ij}$'s are constants$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "If can be seen by induction (Exercise~\\ref{exer:6.1.1}) that if",
- "$\\mathbf{L}$ is linear, then",
- "\\begin{equation}\\label{eq:6.1.2}",
- "\\mathbf{L}(a_1\\mathbf{X}_1+a_2\\mathbf{X}_2+\\cdots+a_k\\mathbf{X}_k)=",
- "a_1\\mathbf{L}(\\mathbf{X}_1)+a_2\\mathbf{L}(\\mathbf{X}_2)+\\cdots+a_k\\mathbf{L}(\\mathbf{X}_k)",
- "\\end{equation}",
- "for any vectors $\\mathbf{X}_1$, $\\mathbf{X}_2$, \\dots, $\\mathbf{X}_k$ and real",
- "numbers",
- "$a_1$, $a_2$, \\dots, $a_k$. Any $\\mathbf{X}$ in $\\R^n$ can be",
- "written as",
- "\\begin{eqnarray*}",
- "\\mathbf{X}\\ar=\\left[\\begin{array}{c} x_1\\\\ x_2\\\\\\vdots\\\\ x_n\\end{array}\\right]",
- "=x_1\\left[\\begin{array}{c} 1\\\\ 0\\\\\\vdots\\\\ 0\\end{array}\\right]",
- "+x_2\\left[\\begin{array}{c} 0\\\\ 1\\\\\\vdots\\\\ 0\\end{array}\\right]+\\cdots",
- "+x_n\\left[\\begin{array}{c} 0\\\\ 0\\\\\\vdots\\\\ 1\\end{array}\\right]\\\\",
- "\\ar=x_1\\mathbf{E}_1+x_2\\mathbf{E}_2+\\cdots+x_n\\mathbf{E}_n.",
- "\\end{eqnarray*}",
- "Applying \\eqref{eq:6.1.2} with $k=n$, $\\mathbf{X}_i=\\mathbf{E}_i$, and",
- "$a_i=x_i$ yields",
- "\\begin{equation}\\label{eq:6.1.3}",
- "\\mathbf{L}(\\mathbf{X})=x_1\\mathbf{L}(\\mathbf{E}_1)+x_2\\mathbf{L}(\\mathbf{E}_2)",
- "+\\cdots+x_n\\mathbf{L}(\\mathbf{E}_n).",
- "\\end{equation}",
- "Now denote",
- "$$",
- "\\mathbf{L}(\\mathbf{E}_j)=\\left[\\begin{array}{c} a_{1j}\\\\ a_{2j}\\\\",
- "\\vdots\\\\ a_{mj}\\end{array}\\right],",
- "$$",
- "so \\eqref{eq:6.1.3} becomes",
- "$$",
- "\\mathbf{L}(\\mathbf{X})=x_1\\left[\\begin{array}{c} a_{11}\\\\ a_{21}\\\\\\vdots\\\\ a_{m1}",
- "\\end{array}\\right]",
- "+x_2\\left[\\begin{array}{c} a_{12}\\\\ a_{22}\\\\\\vdots\\\\ a_{m2}\\end{array}",
- "\\right]+\\cdots",
- "+x_n\\left[\\begin{array}{c} a_{1n}\\\\ a_{2n}\\\\\\vdots\\\\ a_{mn}\\end{array}",
- "\\right],",
- "$$",
- "which is equivalent to \\eqref{eq:6.1.1}. This proves that if $\\mathbf{L}$ is",
- "linear, then $\\mathbf{L}$ has the form \\eqref{eq:6.1.1}. We leave the proof of the",
- "converse to you (Exercise~\\ref{exer:6.1.2})."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 169,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.4",
- "categories": [],
- "title": "",
- "contents": [
- " If $\\mathbf{A},$ $\\mathbf{B},$ and $\\mathbf{C}$ are",
- "$m\\times n$ matrices$,$ then",
- "$$",
- "(\\mathbf{A}+\\mathbf{B})+\\mathbf{C}=\\mathbf{A}+(\\mathbf{B}",
- "+\\mathbf{C}).",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 170,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.5",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{A}$ and $\\mathbf{B}$ are $m\\times n$",
- "matrices and $r$ and $s$ are real numbers$,$ then \\part{a}",
- "$r(s\\mathbf{A})",
- "=(rs)\\mathbf{A};$ \\part{b} $(r+s)\\mathbf{A}=r\\mathbf{A}+s\\mathbf{A};$",
- "\\part{c} $r(\\mathbf{A}+\\mathbf{B})=r\\mathbf{A}+r\\mathbf{B}.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 171,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.6",
- "categories": [],
- "title": "",
- "contents": [
- " If $\\mathbf{A},$ $\\mathbf{B},$ and $\\mathbf{C}$ are",
- "$m\\times p,$ $p\\times q,$ and $q\\times n$ matrices$,$ respectively$,$",
- "then",
- "$(\\mathbf{AB})\\mathbf{C}=\\mathbf{A}(\\mathbf{BC}).$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 172,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.7",
- "categories": [],
- "title": "",
- "contents": [
- "\\begin{alist}",
- "\\item % (a)",
- "If we regard the vector",
- "$$",
- "\\mathbf{X}=\\left[\\begin{array}{c} x_1\\\\ x_2\\\\\\vdots\\\\",
- "x_n\\end{array}\\right]",
- "$$",
- "as an $n\\times 1$ matrix$,$ then the linear transformation",
- "$\\eqref{eq:6.1.1}$ can be written as",
- "$$",
- "\\mathbf{L}(\\mathbf{X})=\\mathbf{AX}.",
- "$$",
- "\\newpage",
- "\\noindent",
- "\\item % (b)",
- "If $\\mathbf{L}_1$ and $\\mathbf{L}_2$ are linear transformations from",
- "$\\R^n$ to $\\R^m$ with matrices $\\mathbf{A}_1$ and $\\mathbf{A}_{2}$",
- "respectively$,$ then $c_1\\mathbf{L}_1+c_2\\mathbf{L}_2$ is the linear",
- "transformation",
- "from $\\R^n$ to $\\R^m$ with matrix $c_1\\mathbf{A}_1+c_2\\mathbf{A}_{2}.$",
- "\\item % (c)",
- "If $\\mathbf{L}_1: \\R^n\\to \\R^p$ and $\\mathbf{L}_2: \\R^p\\to",
- "\\R^m$ are linear transformations with matrices $\\mathbf{A}_1$ and",
- "$\\mathbf{A}_2,$ respectively$,$ then the composite function",
- "$\\mathbf{L}_3=\\mathbf{L}_2\\circ\\mathbf{L}_1,$ defined by",
- "$$",
- "\\mathbf{L}_3(\\mathbf{X})=\\mathbf{L}_2(\\mathbf{L}_1(\\mathbf{X})),",
- "$$",
- "is the linear transformation from $\\R^n$ to $\\R^m$ with",
- "matrix $\\mathbf{A}_2\\mathbf{A}_1.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 173,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.9",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{A}$ and $\\mathbf{B}$ are $n\\times n$ matrices$,$ then",
- "$$",
- "\\det(\\mathbf{A}\\mathbf{B})=\\det(\\mathbf{A})\\det(\\mathbf{B}).",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 174,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.11",
- "categories": [],
- "title": "",
- "contents": [
- "Let $\\mathbf{A}$ be an $n\\times n$ matrix$.$",
- "\\begin{alist}",
- "\\item % (a)",
- "The sum of the products of the entries of a row of $\\mathbf{A}$",
- "and their cofactors equals $\\det(\\mathbf{A}),$ while the",
- " sum of the products of the entries of a row of $\\mathbf{A}$",
- "and the cofactors of the entries of a different row equals zero$;$",
- "that is$,$",
- "\\begin{equation} \\label{eq:6.1.8}",
- "\\sum^n_{k=1} a_{ik}c_{jk}=\\left\\{\\casespace\\begin{array}{ll}\\det(\\mathbf{A}),&i=j,\\\\",
- " 0,&i\\ne j.\\end{array}\\right.",
- "\\end{equation}",
- "\\item % (b)",
- "The sum of the products of the entries of a column of $\\mathbf{A}$",
- "and their cofactors equals $\\det(\\mathbf{A}),$ while the",
- " sum of the products of the entries of a column of $\\mathbf{A}$",
- "and the cofactors of the entries of a different column equals zero$;$",
- "that is$,$",
- "\\begin{equation} \\label{eq:6.1.9}",
- "\\sum^n_{k=1} c_{ki}a_{kj}=\\left\\{\\casespace\\begin{array}{ll}",
- "\\det(\\mathbf{A}),",
- "&i=j,\\\\",
- " 0,&i\\ne j.\\end{array}\\right.",
- "\\end{equation}",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 175,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.12",
- "categories": [],
- "title": "",
- "contents": [
- "Let $\\mathbf{A}$ be an $n\\times n$ matrix$.$",
- "If $\\det(\\mathbf{A})=0,$ then $\\mathbf{A}$ is singular$.$ If",
- "$\\det(\\mathbf{A})\\ne0,$ then $\\mathbf{A}$ is nonsingular$,$ and $\\mathbf{A}$",
- "has the unique inverse",
- "\\begin{equation} \\label{eq:6.1.10}",
- "\\mathbf{A}^{-1}=\\frac{1}{\\det(\\mathbf{A})}\\adj(\\mathbf{A}).",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "If $\\det(\\mathbf{A})=0$, then $\\det(\\mathbf{A}\\mathbf{B})=0$ for any $n\\times",
- "n$ matrix, by Theorem~\\ref{thmtype:6.1.9}. Therefore, since",
- "$\\det(\\mathbf{I})=1$,",
- " there is no matrix $n\\times n$ matrix $\\mathbf{B}$ such that",
- "$\\mathbf{A}\\mathbf{B}=\\mathbf{I}$; that is, $\\mathbf{A}$ is singular if",
- " $\\det(\\mathbf{A})=0$.",
- " Now suppose that $\\det(\\mathbf{A})\\ne0$. Since \\eqref{eq:6.1.8} implies",
- "that",
- "$$",
- " \\mathbf{A}\\adj(\\mathbf{A})=\\det(\\mathbf{A})\\mathbf{I}",
- "$$",
- "and \\eqref{eq:6.1.9} implies that",
- "$$",
- " \\adj(\\mathbf{A})\\mathbf{A}=\\det(\\mathbf{A})\\mathbf{I},",
- "$$",
- "dividing both sides of these two equations by $\\det(\\mathbf{A})$",
- "shows that",
- " if $\\mathbf{A}^{-1}$ is as defined in \\eqref{eq:6.1.10},",
- "then $\\mathbf{A}\\mathbf{A}^{-1}=\\mathbf{A}^{-1}\\mathbf{A}=\\mathbf{I}$. Therefore,",
- "$\\mathbf{A}^{-1}$ is an inverse of $\\mathbf{A}$. To see that it is the only",
- "inverse, suppose that $\\mathbf{B}$ is an $n\\times n$ matrix such that",
- "$\\mathbf{A}\\mathbf{B}=\\mathbf{I}$. Then",
- " $\\mathbf{A}^{-1}(\\mathbf{A}\\mathbf{B})=\\mathbf{A}^{-1}$,",
- " so $(\\mathbf{A}^{-1}\\mathbf{A})\\mathbf{B}=\\mathbf{A}^{-1}$. Since",
- "$\\mathbf{A}\\mathbf{A}^{-1}=\\mathbf{I}$ and $\\mathbf{I}\\mathbf{B}=\\mathbf{B}$, it follows",
- "that $\\mathbf{B}=\\mathbf{A}^{-1}$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:6.1.9"
- ],
- "ref_ids": [
- 173
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 176,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.13",
- "categories": [],
- "title": "",
- "contents": [
- "The system $\\eqref{eq:6.1.11}$ has a solution $\\mathbf{X}$ for any given",
- "$\\mathbf{Y}$ if and only if $\\mathbf{A}$ is nonsingular$.$ In this case$,$",
- "the",
- "solution is unique and is given by $\\mathbf{X}=\\mathbf{A}^{-1}\\mathbf{Y}$."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $\\mathbf{A}$ is nonsingular, and let",
- "$\\mathbf{X}=\\mathbf{A}^{-1}\\mathbf{Y}$. Then",
- "$$",
- "\\mathbf{A}\\mathbf{X}=\\mathbf{A}(\\mathbf{A}^{-1}\\mathbf{Y})=",
- "(\\mathbf{A}\\mathbf{A}^{-1})\\mathbf{Y}",
- "=\\mathbf{I}\\mathbf{Y}=\\mathbf{Y};",
- "$$",
- "that is, $\\mathbf{X}$ is a solution of \\eqref{eq:6.1.11}.",
- "To see that $\\mathbf{X}$ is the only solution of \\eqref{eq:6.1.11},",
- "suppose that $\\mathbf{A}\\mathbf{X}_1=\\mathbf{Y}$.",
- " Then $\\mathbf{A}\\mathbf{X}_1=\\mathbf{A}",
- "\\mathbf{X}$, so",
- "\\begin{eqnarray*}",
- "\\mathbf{A}^{-1}(\\mathbf{A}\\mathbf{X})\\ar=",
- "\\mathbf{A}^{-1}(\\mathbf{A}\\mathbf{X}_1)\\\\",
- "\\arraytext{and}\\\\",
- "(\\mathbf{A}^{-1}\\mathbf{A})\\mathbf{X}\\ar=",
- "(\\mathbf{A}^{-1}\\mathbf{A})\\mathbf{X}_1,",
- "\\end{eqnarray*}",
- "which is equivalent to $\\mathbf{I}\\mathbf{X}=\\mathbf{I}\\mathbf{X}_1$, or",
- "$\\mathbf{X}=\\mathbf{X}_1$.",
- "Conversely, suppose that \\eqref{eq:6.1.11} has a solution for every",
- "$\\mathbf{Y}$, and let",
- " $\\mathbf{X}_i$",
- "satisfy $\\mathbf{A}\\mathbf{X}_i=\\mathbf{E}_i$, $1\\le i\\le n$. Let",
- "$$",
- "\\mathbf{B}=",
- "[\\mathbf{X}_1\\,\\mathbf{X}_2\\,\\cdots\\,\\mathbf{X}_n];",
- "$$",
- "that is, $\\mathbf{X}_1$, $\\mathbf{X}_2$, \\dots, $\\mathbf{X}_n$ are the columns",
- "of $\\mathbf{B}$. Then",
- "$$",
- "\\mathbf{A}\\mathbf{B}=",
- "[\\mathbf{A}\\mathbf{X}_1\\,\\mathbf{A}\\mathbf{X}_2\\,\\cdots\\,\\mathbf{A}\\mathbf{X}_n]=",
- "[\\mathbf{E}_1\\,\\mathbf{E}_2\\,\\cdots\\,\\mathbf{E}_n]",
- "=\\mathbf{I}.",
- "$$",
- "To show that $\\mathbf{B}=\\mathbf{A}^{-1}$, we must still show",
- "that $\\mathbf{B}\\mathbf{A}=\\mathbf{I}$. We first note that,",
- "since $\\mathbf{A}\\mathbf{B}",
- "=\\mathbf{I}$ and $\\det(\\mathbf{B}\\mathbf{A})=\\det(\\mathbf{A}\\mathbf{B})=1$",
- "(Theorem~\\ref{thmtype:6.1.9}), $\\mathbf{B}\\mathbf{A}$ is nonsingular",
- "(Theorem~\\ref{thmtype:6.1.12}). Now note that",
- "$$",
- "(\\mathbf{B}\\mathbf{A})(\\mathbf{B}\\mathbf{A})=",
- "\\mathbf{B}(\\mathbf{A}\\mathbf{B})\\mathbf{A})=\\mathbf{B}\\mathbf{I}\\mathbf{A};",
- "$$",
- "that is,",
- "$$",
- "(\\mathbf{B}\\mathbf{A})(\\mathbf{B}\\mathbf{A})=(\\mathbf{B}\\mathbf{A}).",
- "$$",
- "Multiplying both sides of this equation on the left by",
- "$\\mathbf{B}\\mathbf{A})^{-1}$ yields $\\mathbf{B}\\mathbf{A}=\\mathbf{I}$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:6.1.9",
- "TRENCH_REAL_ANALYSIS-thmtype:6.1.12"
- ],
- "ref_ids": [
- 173,
- 175
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 177,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.14",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{A}=[a_{ij}]$ is nonsingular$,$ then the solution of",
- " the system",
- "\\begin{eqnarray*}",
- "a_{11}x_1+a_{12}x_2+\\cdots+a_{1n}x_n\\ar=y_1\\\\",
- "a_{21}x_1+a_{22}x_2+\\cdots+a_{2n}x_n\\ar=y_2\\\\",
- "&\\vdots& \\\\",
- "a_{n1}x_1+a_{n2}x_2+\\cdots+a_{nn}x_n\\ar=y_n",
- "\\end{eqnarray*}",
- "$($or$,$ in matrix form$,$ $\\mathbf{AX}=\\mathbf{Y}$$)$ is given",
- "by",
- "$$",
- "x_i=\\frac{D_i}{\\det(\\mathbf{A})},\\quad 1\\le i\\le n,",
- "$$",
- "where $D_i$ is the determinant of the matrix obtained by replacing the",
- "$i$th column of $\\mathbf{A}$ with $\\mathbf{Y};$ thus$,$",
- "$$",
- "D_1=\\left|\\begin{array}{cccc} y_1&a_{12}&\\cdots&a_{1n}\\\\",
- "y_2&a_{22}&\\dots&a_{2n}\\\\",
- "\\vdots&\\vdots&\\ddots&\\vdots\\\\",
- "y_n&a_{n2}&\\cdots&a_{nn}\\end{array}\\right|,\\quad",
- "D_2=\\left|\\begin{array}{ccccc} a_{11}&y_1&a_{13}&\\cdots&a_{1n}\\\\",
- "a_{21}&y_2&a_{23}&\\cdots&a_{2n}\\\\",
- "\\vdots&\\vdots&\\vdots&\\ddots&\\vdots\\\\",
- "a_{n1}&y_n&a_{n3}&\\cdots&a_{nn}\\end{array}\\right|,\\quad\\cdots,",
- "$$",
- "$$",
- "D_n=\\left|\\begin{array}{cccc} a_{11}&\\cdots&a_{1,n-1}&y_1\\\\",
- "a_{21}&\\cdots&a_{2,n-1}&y_2\\\\",
- "\\vdots&\\vdots&\\ddots&\\vdots\\\\",
- "a_{n1}&\\cdots&a_{n,n-1}&y_n\\end{array}\\right|.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "From Theorems~\\ref{thmtype:6.1.12} and \\ref{thmtype:6.1.13}, the solution of",
- "$\\mathbf{A}\\mathbf{X}=\\mathbf{Y}$ is",
- "\\begin{eqnarray*}",
- "\\left[\\begin{array}{c}",
- "x_1\\\\x_2\\\\\\vdots\\\\x_n",
- "\\end{array}\\right]",
- "=\\mathbf{A}^{-1}\\mathbf{Y}",
- "\\ar=\\frac{1}{\\det(\\mathbf{A})}",
- "\\left[\\begin{array}{cccc}",
- "c_{11}&c_{21}&\\cdots&c_{n1}\\\\",
- "c_{12}&c_{22}&\\cdots&c_{n2}\\\\",
- "\\cdots&\\cdots&\\ddots&\\cdots\\\\",
- "c_{1n}&c_{2n}&\\cdots&c_{nn}",
- "\\end{array}\\right]",
- "\\left[\\begin{array}{c}",
- "y_1\\\\y_2\\\\\\vdots\\\\y_n",
- "\\end{array}\\right]\\\\",
- "\\ar=",
- "\\left[\\begin{array}{c}",
- "c_{11}y_1+c_{21}y_2+\\cdots+c_{n1}y_n\\\\",
- "c_{12}y_1+c_{22}y_2+\\cdots+c_{n2}y_n\\\\",
- "\\vdots\\\\",
- "c_{1n}y_1+c_{2n}y_2+\\cdots+c_{nn}y_n",
- "\\end{array}\\right].",
- "\\end{eqnarray*}",
- "But",
- "$$",
- "c_{11}y_1+c_{21}y_2+\\cdots+c_{n1}y_n=",
- "\\left|\\begin{array}{cccc} y_1&a_{12}&\\cdots&a_{1n}\\\\",
- "y_2&a_{22}&\\dots&a_{2n}\\\\",
- "\\vdots&\\vdots&\\ddots&\\vdots\\\\",
- "y_n&a_{n2}&\\cdots&a_{nn}\\end{array}\\right|,",
- "$$",
- "\\newpage",
- "\\noindent",
- "as can be seen by expanding the determinant on the right",
- "in cofactors of its first column. Similarly,",
- "$$",
- "c_{12}y_1+c_{22}y_2+\\cdots+c_{n2}y_n=",
- "\\left|\\begin{array}{ccccc} a_{11}&y_1&a_{13}&\\cdots&a_{1n}\\\\",
- "a_{21}&y_2&a_{23}&\\cdots&a_{2n}\\\\",
- "\\vdots&\\vdots&\\vdots&\\ddots&\\vdots\\\\",
- "a_{n1}&y_n&a_{n3}&\\cdots&a_{nn}\\end{array}\\right|,",
- "$$",
- "as can be seen by expanding the determinant on the right",
- "in cofactors of its second column. Continuing in this way completes",
- "the proof."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:6.1.12",
- "TRENCH_REAL_ANALYSIS-thmtype:6.1.13"
- ],
- "ref_ids": [
- 175,
- 176
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 178,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.15",
- "categories": [],
- "title": "",
- "contents": [
- "The homogeneous system $\\eqref{eq:6.1.12}$ of $n$ equations in $n$",
- "unknowns has a nontrivial solution if and only if $\\det(\\mathbf{A})=0.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 179,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.16",
- "categories": [],
- "title": "",
- "contents": [
- "If $A_1,$ $A_2,$ \\dots$,$ $A_k$ are nonsingular $n\\times n$",
- "matrices$,$ then so is $A_1A_2\\cdots A_k,$ and",
- "$$",
- "(A_1A_2\\cdots A_k)^{-1}=A_k^{-1}A_{k-1}^{-1}\\cdots A_1^{-1}.",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 180,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.2.1",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{X}_0$ is in$,$ and a limit point of$,$ the domain",
- "of",
- "$\\mathbf{F}: \\R^n\\to\\R^m.$ Then $\\mathbf{F}$ is continuous at",
- "$\\mathbf{X}_0$ if and only if for each $\\epsilon>0$ there is a $\\delta>0$",
- "such that",
- "\\begin{equation}\\label{eq:6.2.1}",
- "|\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{X}_0)|<\\epsilon",
- "\\mbox{\\quad if \\quad} |\\mathbf{X}-\\mathbf{X}_0|<\\delta",
- "\\mbox{\\quad and \\quad} \\mathbf{X}\\in D_\\mathbf{F}.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 181,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.2.2",
- "categories": [],
- "title": "",
- "contents": [
- "A transformation",
- "$\\mathbf{F}=(f_1,f_2, \\dots,f_m)$ defined in a neighborhood of",
- "$\\mathbf{X}_0\\in\\R^n$",
- " is differentiable at $\\mathbf{X}_0$ if and only if",
- "there is a constant $m\\times n$ matrix $\\mathbf{A}$ such that",
- "\\begin{equation}\\label{eq:6.2.2}",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0}",
- "\\frac{",
- "\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{X}_0)-\\mathbf{A} (\\mathbf{X}-\\mathbf{X}_0)}",
- "{|\\mathbf{X}-\\mathbf{X}_0|}=\\mathbf{0}.",
- " \\end{equation}",
- "If $\\eqref{eq:6.2.2}$ holds$,$ then $\\mathbf{A}$ is given uniquely by",
- "\\begin{equation}\\label{eq:6.2.3}",
- "\\mathbf{A}=\\left[\\frac{\\partial f_i(\\mathbf{X}_0)}{\\partial x_j}\\right]=",
- "\\left[\\begin{array}{cccc}\\dst{\\frac{\\partial f_1(\\mathbf{X}_0)}{\\partial",
- "x_1}}&",
- "\\dst{\\frac{\\partial f_1(\\mathbf{X}_0)}{\\partial x_2}}&\\cdots&",
- "\\dst{\\frac{\\partial f_1(\\mathbf{X}_0)}{\\partial x_n}}\\\\",
- "[3\\jot]",
- "\\dst{\\frac{\\partial f_2(\\mathbf{X}_0)}{\\partial x_1}}&",
- "\\dst{\\frac{\\partial f_2(\\mathbf{X}_0)}{\\partial x_2}}&",
- "\\cdots&\\dst{\\frac{\\partial f_2(\\mathbf{X}_0)}{\\partial x_n}}\\\\",
- "\\vdots&\\vdots&\\ddots&\\vdots\\\\",
- "\\dst{\\frac{\\partial f_m(\\mathbf{X}_0)}{\\partial x_1}}&",
- "\\dst{\\frac{\\partial f_m(\\mathbf{X}_0)}{\\partial x _2}}&",
- "\\cdots&\\dst{\\frac{\\partial f_m(\\mathbf{X}_0)}{\\partial x_n}}",
- "\\end{array}\\right].",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $\\mathbf{X}_0=(x_{10},x_{20}, \\dots,x_{n0})$.",
- " If $\\mathbf{F}$ is differentiable at $\\mathbf{X}_0$, then so are",
- "$f_1$, $f_2$, \\dots, $f_m$ (Definition~\\ref{thmtype:5.4.1}).",
- "Hence,",
- "$$",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0} \\frac{\\dst{f_i(\\mathbf{X})-f_i(\\mathbf{X}_0) -",
- "\\sum_{j=1}^n \\frac{\\partial",
- "f_i(\\mathbf{X}_0)}{\\partial x_j} (x_j-x_{j0})}}",
- "{ |\\mathbf{X}-\\mathbf{X}_{0}|}=0,",
- "\\quad 1\\le i\\le m,",
- "$$",
- "which implies \\eqref{eq:6.2.2} with $\\mathbf{A}$ as in",
- "\\eqref{eq:6.2.3}.",
- "Now suppose that \\eqref{eq:6.2.2} holds",
- "with $\\mathbf{A}=[a_{ij}]$. Since",
- "each component of the vector in \\eqref{eq:6.2.2}",
- " approaches zero as $\\mathbf{X}$",
- " approaches $\\mathbf{X}_0$, it follows that",
- "$$",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0}",
- " \\frac{\\dst{f_i(\\mathbf{X})-f_i(\\mathbf{X}_0)",
- "-\\dst{\\sum_{j=1}^n} a_{ij}",
- "(x_j-x_{j0})}}{ |\\mathbf{X}-\\mathbf{X}_0|}",
- "=0,\\quad 1\\le i\\le m,",
- "$$",
- "so each $f_i$ is differentiable at $\\mathbf{X}_0$, and therefore so",
- "is $\\mathbf{F}$ (Definition~\\ref{thmtype:5.4.1}).",
- "By Theorem~\\ref{thmtype:5.3.6},",
- "$$",
- "a_{ij}=\\frac{\\partial f_i (\\mathbf{X}_0)}{\\partial x_j},\\quad 1\\le i\\le m,",
- "\\quad 1\\le j\\le n,",
- "$$",
- "which implies \\eqref{eq:6.2.3}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.1",
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.1",
- "TRENCH_REAL_ANALYSIS-thmtype:5.3.6"
- ],
- "ref_ids": [
- 351,
- 351,
- 158
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 182,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.2.3",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{F}: \\R^n\\to\\R^m$ is differentiable at",
- "$\\mathbf{X}_0,$ then $\\mathbf{F}$ is continuous at~$\\mathbf{X}_0.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 183,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.2.4",
- "categories": [],
- "title": "",
- "contents": [
- "Let $\\mathbf{F}=(f_1,f_2, \\dots,f_m):\\R^n\\to\\R^m,$ and",
- "suppose that the partial derivatives",
- "\\begin{equation}\\label{eq:6.2.7}",
- "\\frac{\\partial f_i}{\\partial x_j},\\quad 1\\le i\\le m,\\quad 1\\le j\\le",
- "n,",
- "\\end{equation}",
- "exist on a neighborhood of $\\mathbf{X}_0$ and",
- "are continuous at $\\mathbf{X}_0.$ Then $\\mathbf{F}$ is differentiable at",
- "$\\mathbf{X}_0.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Consider the auxiliary function",
- "\\begin{equation} \\label{eq:6.2.9}",
- "\\mathbf{G}(\\mathbf{X})=\\mathbf{F}(\\mathbf{X})-\\mathbf{F}'(\\mathbf{X}_0)\\mathbf{X}.",
- "\\end{equation}",
- "The components of $\\mathbf{G}$ are",
- "$$",
- "g_i(\\mathbf{X})=f_i(\\mathbf{X})-\\sum_{j=1}^n",
- "\\frac{\\partial f_i(\\mathbf{X}_{0})",
- "\\partial x_j} x_j,",
- "$$",
- "so",
- "$$",
- "\\frac{\\partial g_i(\\mathbf{X})}{\\partial x_j}=",
- "\\frac{\\partial f_i(\\mathbf{X})}",
- "{\\partial x_j}-\\frac{\\partial f_i(\\mathbf{X}_0)}{\\partial x_j}.",
- "$$",
- "\\newpage",
- "\\noindent",
- "Thus, $\\partial g_i/\\partial x_j$ is continuous on $N$ and zero at",
- "$\\mathbf{X}_0$. Therefore, there is a $\\delta>0$ such that",
- "\\begin{equation}\\label{eq:6.2.10}",
- "\\left|\\frac{\\partial g_i(\\mathbf{X})}{\\partial x_j}\\right|<\\frac{\\epsilon}{",
- "\\sqrt{mn}}\\mbox{\\quad for \\quad}1\\le i\\le m,\\quad 1\\le j\\le n,",
- "\\mbox{\\quad if \\quad}",
- "|\\mathbf{X}-\\mathbf{X}_0|<\\delta.",
- "\\end{equation}",
- "Now suppose that $\\mathbf{X}$, $\\mathbf{Y}\\in B_\\delta(\\mathbf{X}_0)$. By",
- "Theorem~\\ref{thmtype:5.4.5},",
- "\\begin{equation}\\label{eq:6.2.11}",
- "g_i(\\mathbf{X})-g_i(\\mathbf{Y})=\\sum_{j=1}^n",
- "\\frac{\\partial g_i(\\mathbf{X}_i)}{\\partial x_j}(x_j-y_j),",
- "\\end{equation}",
- "where $\\mathbf{X}_i$ is on the line segment from $\\mathbf{X}$ to $\\mathbf{Y}$,",
- "so $\\mathbf{X}_i\\in B_\\delta(\\mathbf{X}_0)$. From \\eqref{eq:6.2.10},",
- "\\eqref{eq:6.2.11}, and Schwarz's inequality,",
- "$$",
- "(g_i(\\mathbf{X})-g_i(\\mathbf{Y}))^2\\le\\left(\\sum_{j=1}^n\\left[\\frac{\\partial",
- "g_i",
- "(\\mathbf{X}_i)}{\\partial x_j}\\right]^2\\right)",
- "|\\mathbf{X}-\\mathbf{Y}|^2",
- "<\\frac{\\epsilon^2}{ m} |\\mathbf{X}-\\mathbf{Y}|^2.",
- "$$",
- "Summing this from $i=1$ to $i=m$ and taking square roots yields",
- "\\begin{equation}\\label{eq:6.2.12}",
- "|\\mathbf{G}(\\mathbf{X})-\\mathbf{G}(\\mathbf{Y})|<\\epsilon",
- "|\\mathbf{X}-\\mathbf{Y}|",
- "\\mbox{\\quad if\\quad}\\mathbf{X}, \\mathbf{Y}\\in B_\\delta(\\mathbf{X}_0).",
- "\\end{equation}",
- "To complete the proof, we note that",
- "\\begin{equation}\\label{eq:6.2.13}",
- "\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{Y})=",
- "\\mathbf{G}(\\mathbf{X})-\\mathbf{G}(\\mathbf{Y})+\\mathbf{F}'(\\mathbf{X}_0)(\\mathbf{X}-\\mathbf{Y}),",
- "\\end{equation}",
- " so \\eqref{eq:6.2.12} and the triangle inequality imply \\eqref{eq:6.2.8}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.5"
- ],
- "ref_ids": [
- 164
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 184,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.2.8",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{F}: \\R^n\\to\\R^m$ is differentiable at",
- "$\\mathbf{X}_0,$ $\\mathbf{G}:\\R^k\\to\\R^n$ is differentiable at",
- "$\\mathbf{U}_0,$ and $\\mathbf{X}_0=\\mathbf{G}(\\mathbf{U}_0).$ Then the composite",
- "function $\\mathbf{H}=\\mathbf{F}\\circ\\mathbf{G}:\\R^k\\to\\R^m,$",
- "defined by",
- "$$",
- "\\mathbf{H}(\\mathbf{U})=\\mathbf{F}(\\mathbf{G}(\\mathbf{U})),",
- "$$",
- "is differentiable at $\\mathbf{U}_0.$ Moreover$,$",
- "\\begin{equation}\\label{eq:6.2.22}",
- "\\mathbf{H}'(\\mathbf{U}_0)=\\mathbf{F}'(\\mathbf{G}(\\mathbf{U}_0))",
- "\\mathbf{G}'(\\mathbf{U}_0)",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:6.2.23}",
- "d_{\\mathbf{U}_0}\\mathbf{H}=d_{\\mathbf{X}_0}\\mathbf{F}\\circ d_{\\mathbf{U}_0}\\mathbf{G},",
- "\\end{equation}",
- "where $\\circ$ denotes composition$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "The components of $\\mathbf{H}$ are $h_1$, $h_2$, \\dots, $h_m$, where",
- "$$",
- "h_i(\\mathbf{U})=f_i(\\mathbf{G}(\\mathbf{U})).",
- "$$",
- "Applying Theorem~\\ref{thmtype:5.4.3} to $h_i$ yields",
- "\\begin{equation}\\label{eq:6.2.24}",
- "d_{\\mathbf{U}_0}h_i=\\sum_{j=1}^n \\frac{\\partial f_i(\\mathbf{X}_{0})}",
- "{\\partial x_j} d_{\\mathbf{U}_0}g_j,\\quad 1\\le i\\le m.",
- "\\end{equation}",
- "\\newpage",
- "\\enlargethispage{\\baselineskip}",
- "\\noindent Since",
- "$$",
- "d_{\\mathbf{U}_0}\\mathbf{H}=\\left[\\begin{array}{c}",
- "d_{\\mathbf{U}_0}h_1\\\\ d_{\\mathbf{U}_0}h_2\\\\",
- "\\vdots\\\\",
- "d_{\\mathbf{U}_0} h_m\\end{array}\\right]\\mbox{",
- "\\quad and\\quad} d_{\\mathbf{U}_0}\\mathbf{G}=",
- "\\left[\\begin{array}{c} d_{\\mathbf{U}_0}g_1\\\\ d_{\\mathbf{U}_0}g_2\\\\",
- "\\vdots\\\\ d_{\\mathbf{U}_0}g_n",
- "\\end{array}\\right],",
- "$$",
- "\\vskip5pt",
- "\\noindent the $m$ equations in \\eqref{eq:6.2.24} can be",
- "written in matrix form as",
- "\\begin{equation}\\label{eq:6.2.25}",
- "d_{\\mathbf{U}_0}\\mathbf{H}=\\mathbf{F}'(\\mathbf{X}_0)d_{\\mathbf{U}_0}\\mathbf{G}=",
- "\\mathbf{F}'(\\mathbf{G}(\\mathbf{U}_0)) d_{\\mathbf{U}_0}\\mathbf{G}.",
- "\\end{equation}",
- "But",
- "$$",
- "d_{\\mathbf{U}_0}\\mathbf{G}=\\mathbf{G}'(\\mathbf{U}_0)\\,d\\mathbf{U},",
- "$$",
- "where",
- "$$",
- "d\\mathbf{U}=\\left[\\begin{array}{c} du_1\\\\ du_2\\\\\\vdots\\\\",
- "du_k\\end{array}\\right],",
- "$$",
- "so \\eqref{eq:6.2.25} can be rewritten as",
- "$$",
- "d_{\\mathbf{U}_0}\\mathbf{H}=",
- "\\mathbf{F}'(\\mathbf{G}(\\mathbf{U}_0))",
- "\\mathbf{G}'(\\mathbf{U}_0)\\,d\\mathbf{U}.",
- "$$",
- "On the other hand,",
- "$$",
- "d_{\\mathbf{U}_0}\\mathbf{H}=\\mathbf{H}'(\\mathbf{U}_0)\\,d\\mathbf{U}.",
- "$$",
- "Comparing the last two equations yields \\eqref{eq:6.2.22}.",
- "Since $\\mathbf{G}'(\\mathbf{U}_0)$ is the matrix of $d_{\\mathbf{U}_0}\\mathbf{G}$",
- "and $\\mathbf{F}'(\\mathbf{G}(\\mathbf{U}_0))=\\mathbf{F}'(\\mathbf{X}_0)$ is the matrix",
- "of $d_{\\mathbf{X}_0}\\mathbf{F}$, Theorem~\\ref{thmtype:6.1.7}\\part{c}",
- "and",
- "\\eqref{eq:6.2.22} imply~\\eqref{eq:6.2.23}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.3",
- "TRENCH_REAL_ANALYSIS-thmtype:6.1.7"
- ],
- "ref_ids": [
- 163,
- 172
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 185,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.3.1",
- "categories": [],
- "title": "",
- "contents": [
- "The linear transformation",
- "$$",
- "\\mathbf{U}=\\mathbf{L}(\\mathbf{X})=\\mathbf{A}\\mathbf{X}\\quad (\\R^n\\to",
- "\\R^n)",
- "$$",
- "is invertible if and only if $\\mathbf{A}$ is nonsingular$,$ in which case",
- "$R(\\mathbf{L})= \\R^n$ and",
- "$$",
- "\\mathbf{L}^{-1}(\\mathbf{U})=\\mathbf{A}^{-1}\\mathbf{U}.",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 186,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.3.3",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{F}: \\R^n\\to \\R^n$ is regular on an open",
- "set $S,$ and let $\\mathbf{G}=\\mathbf{F}^{-1}_S.$ Then $\\mathbf{F}(S)$ is",
- "open$,$",
- "$\\mathbf{G}$ is continuously differentiable on $\\mathbf{F}(S),$ and",
- "$$",
- "\\mathbf{G}'(\\mathbf{U})=(\\mathbf{F}'(\\mathbf{X}))^{-1},",
- "\\mbox{\\quad where\\quad}\\mathbf{U}=\\mathbf{F}(\\mathbf{X}).",
- "$$",
- "Moreover$,$ since $\\mathbf{G}$ is one-to-one on $\\mathbf{F}(S),$",
- " $\\mathbf{G}$ is regular on $\\mathbf{F}(S).$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We first show that if $\\mathbf{X}_{0} \\in S$,",
- " then a neighborhood of $\\mathbf{F}(\\mathbf{X}_0)$ is in",
- "$\\mathbf{F}(S)$.",
- "This implies that $\\mathbf{F}(S)$ is open.",
- "Since $S$ is open, there is a $\\rho>0$ such that",
- " $\\overline{B_\\rho(\\mathbf{X}_0)}\\subset S$. Let $B$",
- "be the boundary of $B_\\rho(\\mathbf{X}_0)$; thus,",
- "\\begin{equation} \\label{eq:6.3.20}",
- "B=\\set\\mathbf{X}{|\\mathbf{X}-\\mathbf{X}_0|=\\rho}.",
- "\\end{equation}",
- "The function",
- "$$",
- "\\sigma(\\mathbf{X})=|\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{X}_0)|",
- "$$",
- "is continuous on $S$ and therefore on $B$, which is compact. Hence,",
- "by Theorem~\\ref{thmtype:5.2.12}, there is a point $\\mathbf{X}_1$",
- "in $B$ where $\\sigma(\\mathbf{X})$ attains its minimum value, say $m$, on",
- "$B$. Moreover, $m>0$, since $\\mathbf{X}_1\\ne\\mathbf{X}_0$ and $\\mathbf{F}$ is",
- "one-to-one on $S$. Therefore,",
- "\\begin{equation} \\label{eq:6.3.21}",
- "|\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{X}_0)|\\ge m>0\\mbox{\\quad if\\quad}",
- "|\\mathbf{X}-\\mathbf{X}_0|=\\rho.",
- "\\end{equation}",
- "The set",
- "$$",
- "\\set{\\mathbf{U}}{|\\mathbf{U}-\\mathbf{F}(\\mathbf{X}_0)|0$",
- "and an open neighborhood $N$ of $\\mathbf{X}_0$ such that $N\\subset S$ and",
- "\\begin{equation} \\label{eq:6.3.24}",
- "|\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{X}_0)|\\ge\\lambda |\\mathbf{X}-\\mathbf{X}_0|",
- "\\mbox{\\quad if\\quad}\\mathbf{X}\\in N.",
- "\\end{equation}",
- "(Exercise~\\ref{exer:6.2.18} also implies this.) Since $\\mathbf{F}$",
- "satisfies the hypotheses of the present theorem on $N$, the first part",
- "of this proof shows that $\\mathbf{F}(N)$ is an open set containing",
- "$\\mathbf{U}_0=\\mathbf{F} (\\mathbf{X}_0)$. Therefore, there is a",
- "$\\delta>0$ such that",
- "$\\mathbf{X}=\\mathbf{G}(\\mathbf{U})$ is in $N$ if $\\mathbf{U}\\in",
- "B_\\delta(\\mathbf{U}_{0})$.",
- " Setting $\\mathbf{X}=\\mathbf{G}(\\mathbf{U})$ and $\\mathbf{X}_0 =",
- "\\mathbf{G}(\\mathbf{U}_0)$ in \\eqref{eq:6.3.24} yields",
- "$$",
- "|\\mathbf{F}(\\mathbf{G}(\\mathbf{U}))-\\mathbf{F}(\\mathbf{G}(\\mathbf{U}_0))",
- "|\\ge\\lambda",
- "|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|\\mbox{\\quad if \\quad}",
- "\\mathbf{U}\\in B_\\delta (\\mathbf{U}_0).",
- "$$",
- "Since $\\mathbf{F}(\\mathbf{G}(\\mathbf{U}))=\\mathbf{U}$, this can be rewritten as",
- "\\begin{equation} \\label{eq:6.3.25}",
- "|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|\\le\\frac{1}{\\lambda} |\\mathbf{U}-",
- "\\mathbf{U}_0|\\mbox{\\quad if\\quad}\\mathbf{U}\\in B_\\delta(\\mathbf{U}_0),",
- "\\end{equation}",
- "which means that $\\mathbf{G}$ is continuous at $\\mathbf{U}_0$.",
- "Since $\\mathbf{U}_0$ is an arbitrary point in $\\mathbf{F}(S)$, it follows",
- "that $\\mathbf{G}$ is continous on $\\mathbf{F}(S)$.",
- "We will now show that $\\mathbf{G}$ is differentiable at $\\mathbf{U}_0$.",
- "Since",
- "$$",
- "\\mathbf{G}(\\mathbf{F}(\\mathbf{X}))=\\mathbf{X},\\quad\\mathbf{X}\\in S,",
- "$$",
- "the chain rule (Theorem~\\ref{thmtype:6.2.8}) implies that",
- "{\\it if\\/} $\\mathbf{G}$ is differentiable at $\\mathbf{U}_0$, then",
- "$$",
- "\\mathbf{G}'(\\mathbf{U}_0)\\mathbf{F}'(\\mathbf{X}_0)=\\mathbf{I}",
- "$$",
- "\\newpage",
- "\\noindent",
- "(Example~\\ref{example:6.2.3}).",
- " Therefore, if",
- "$\\mathbf{G}$ is differentiable at $\\mathbf{U}_0$, the differential matrix",
- "of $\\mathbf{G}$",
- "must be",
- "$$",
- "\\mathbf{G}'(\\mathbf{U}_0)=[\\mathbf{F}'(\\mathbf{X}_0)]^{-1},",
- "$$",
- "so to show that $\\mathbf{G}$ is differentiable at",
- "$\\mathbf{U}_0$, we must show that if",
- "\\begin{equation} \\label{eq:6.3.26}",
- "\\mathbf{H}(\\mathbf{U})=",
- "\\frac{\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)-",
- "[\\mathbf{F}'(\\mathbf{X}",
- "_0)]^{-1} (\\mathbf{U}-\\mathbf{U}_0)}{ |\\mathbf{U}-\\mathbf{U}_0|}\\quad",
- "(\\mathbf{U}\\ne\\mathbf{U}_0),",
- "\\end{equation}",
- "then",
- "\\begin{equation} \\label{eq:6.3.27}",
- "\\lim_{\\mathbf{U}\\to\\mathbf{U}_0}\\mathbf{H}(\\mathbf{U})=\\mathbf{0}.",
- "\\end{equation}",
- "Since $\\mathbf{F}$ is one-to-one on $S$ and $\\mathbf{F}",
- "(\\mathbf{G}(\\mathbf{U}))",
- "=\\mathbf{U}$, it follows that if $\\mathbf{U}\\ne\\mathbf{U}_0$, then",
- "$\\mathbf{G}(\\mathbf{U})\\ne\\mathbf{G}(\\mathbf{U}_0)$. Therefore, we can multiply",
- "the numerator and denominator of \\eqref{eq:6.3.26}",
- " by $|\\mathbf{G}(\\mathbf{U})",
- "-\\mathbf{G}(\\mathbf{U}_0)|$ to obtain",
- "$$",
- "\\begin{array}{rcl}",
- "\\mathbf{H}(\\mathbf{U})\\ar=",
- "\\dst\\frac{|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_{0}|}",
- "{|\\mathbf{U}-\\mathbf{U}_0|}",
- "\\left(\\frac{\\mathbf{G}(\\mathbf{U})-\\mathbf{G}",
- "(\\mathbf{U}_0)-",
- "\\left[\\mathbf{F}'(\\mathbf{X}_{0})",
- "\\right]^{-1}(\\mathbf{U}-\\mathbf{U}_0)}",
- "{|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|}\\right)\\\\\\\\",
- "\\ar=-\\dst\\frac{|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|}{",
- "|\\mathbf{U}-\\mathbf{U}_0|}",
- "\\left[\\mathbf{F}'(\\mathbf{X}_0)\\right]^{-1}",
- "\\left(\\frac{\\mathbf{U}-\\mathbf{U}_0-\\mathbf{F}'(\\mathbf{X}_0)",
- "(\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0))",
- "}{|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|}\\right)",
- "\\end{array}",
- "$$",
- " if $0<|\\mathbf{U}-\\mathbf{U}_0|<\\delta$.",
- "Because of \\eqref{eq:6.3.25}, this implies that",
- "$$",
- "|\\mathbf{H}(\\mathbf{U})|\\le\\frac{1}{\\lambda}",
- "\\|[\\mathbf{F}'(\\mathbf{X}_0)]^{-1}\\|",
- "\\left|\\frac{\\mathbf{U}-\\mathbf{U}_0-\\mathbf{F}'(\\mathbf{X}_0)",
- "(\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0))}{",
- "|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|}\\right|",
- "$$",
- " if $0<|\\mathbf{U}-\\mathbf{U}_0|<\\delta$.",
- "Now let",
- "$$",
- "\\mathbf{H}_1(\\mathbf{U})=\\frac{\\mathbf{U}-\\mathbf{U}_0-\\mathbf{F}'(\\mathbf{X}_0)",
- "(\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0))}{",
- "|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|}",
- "$$",
- "To complete the proof of \\eqref{eq:6.3.27}, we must show that",
- "\\begin{equation} \\label{eq:6.3.28}",
- "\\lim_{\\mathbf{U}\\to\\mathbf{U}_0}\\mathbf{H}_1(\\mathbf{U})=\\mathbf{0}.",
- "\\end{equation}",
- "Since $\\mathbf{F}$ is differentiable at $\\mathbf{X}_0$, we know that if",
- "$$",
- "\\mathbf{H}_2(\\mathbf{X})=",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0}",
- "\\frac{\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{X}_0)-\\mathbf{F}'(\\mathbf{X}_0)",
- "(\\mathbf{X}-\\mathbf{X}_0)}{",
- "|\\mathbf{X}-\\mathbf{X}_0|},",
- "$$",
- "then",
- "\\begin{equation} \\label{eq:6.3.29}",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0}\\mathbf{H}_2(\\mathbf{X})=\\mathbf{0}.",
- "\\end{equation}",
- "Since $\\mathbf{F}(\\mathbf{G}(\\mathbf{U}))=\\mathbf{U}$ and $\\mathbf{X}_0=",
- "\\mathbf{G}(\\mathbf{U}_0)$,",
- "$$",
- "\\mathbf{H}_1(\\mathbf{U})=\\mathbf{H}_2(\\mathbf{G}(\\mathbf{U})).",
- "$$",
- "\\newpage",
- "\\noindent",
- "Now suppose that $\\epsilon>0$. From \\eqref{eq:6.3.29}, there is a",
- "$\\delta_1>0$ such that",
- "\\begin{equation} \\label{eq:6.3.30}",
- "|\\mathbf{H}_2(\\mathbf{X})|<\\epsilon\\mbox{\\quad if \\quad} 0<",
- "|\\mathbf{X}-\\mathbf{X}_{0}|",
- "=|\\mathbf{X}-\\mathbf{G}(\\mathbf{U}_0)|<\\delta_1.",
- "\\end{equation}",
- "Since $\\mathbf{G}$ is continuous at $\\mathbf{U}_0$, there is a",
- "$\\delta_2\\in(0,\\delta)$ such that",
- "$$",
- "|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|<\\delta_1\\mbox{\\quad if \\quad}",
- "0<|\\mathbf{U}-\\mathbf{U}_0|<\\delta_2.",
- "$$",
- "This and \\eqref{eq:6.3.30} imply",
- "that",
- "$$",
- "|\\mathbf{H}_1(\\mathbf{U})|=|\\mathbf{H}_2(\\mathbf{G}(\\mathbf{U}))|<\\epsilon",
- "\\mbox{\\quad if \\quad} 0<|\\mathbf{U}-\\mathbf{U}_0|<\\delta_2.",
- "$$",
- "Since this implies",
- "\\eqref{eq:6.3.28}, $\\mathbf{G}$",
- "is differentiable at $\\mathbf{X}_0$.",
- "Since $\\mathbf{U}_0$ is an arbitrary member of $\\mathbf{F}(N)$, we",
- "can now drop the zero subscript and conclude that $\\mathbf{G}$",
- "is continuous and differentiable on $\\mathbf{F}(N)$, and",
- "$$",
- "\\mathbf{G}'(\\mathbf{U})=[\\mathbf{F}'(\\mathbf{X})]^{-1},\\quad\\mathbf{U}\\in\\mathbf{F}(N).",
- "$$",
- "To see that $\\mathbf{G}$ is \\emph{continuously differentiable} on",
- "$\\mathbf{F}(N)$, we observe that by",
- "Theorem~\\ref{thmtype:6.1.14}, each",
- "entry of $\\mathbf{G}'(\\mathbf{U})$ (that is, each partial derivative",
- "$\\partial g_i(\\mathbf{U})/\\partial u_j$, $1\\le i, j\\le n$) can be written",
- "as the ratio, with nonzero denominator, of determinants with",
- "entries of the form",
- "\\begin{equation} \\label{eq:6.3.31}",
- "\\frac{\\partial f_r(\\mathbf{G}(\\mathbf{U}))}{\\partial x_s}.",
- "\\end{equation}",
- "Since $\\partial f_r/\\partial x_s$ is continuous on $N$ and $\\mathbf{G}$",
- "is continuous on $\\mathbf{F}(N)$, Theorem~\\ref{thmtype:5.2.10}",
- "implies that \\eqref{eq:6.3.31} is continuous on $\\mathbf{F}(N)$. Since a",
- "determinant is a continuous function of its entries, it now follows",
- "that the entries of $\\mathbf{G}'(\\mathbf{U})$ are continuous on",
- "$\\mathbf{F}(N)$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.2.12",
- "TRENCH_REAL_ANALYSIS-thmtype:5.2.12",
- "TRENCH_REAL_ANALYSIS-thmtype:5.3.11",
- "TRENCH_REAL_ANALYSIS-thmtype:6.1.13",
- "TRENCH_REAL_ANALYSIS-thmtype:6.2.6",
- "TRENCH_REAL_ANALYSIS-thmtype:6.2.8",
- "TRENCH_REAL_ANALYSIS-thmtype:6.1.14",
- "TRENCH_REAL_ANALYSIS-thmtype:5.2.10"
- ],
- "ref_ids": [
- 152,
- 152,
- 162,
- 176,
- 257,
- 184,
- 177,
- 150
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 187,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.3.4",
- "categories": [],
- "title": "The Inverse Function Theorem",
- "contents": [
- "Let $\\mathbf{F}: \\R^n\\to \\R^n$ be continuously",
- "differentiable on an open set $S,$ and",
- "suppose that $J\\mathbf{F}(\\mathbf{X})\\ne0$ on $S.$ Then$,$ if $\\mathbf{X}_0\\in S,$",
- "there is an open neighborhood $N$ of $\\mathbf{X}_0$ on which $\\mathbf{F}$ is",
- "regular$.$ Moreover$,$ $\\mathbf{F}(N)$ is open and $\\mathbf{G}=",
- "\\mathbf{F}^{-1}_N$ is continuously differentiable on $\\mathbf{F}(N),$",
- "with",
- "$$",
- "\\mathbf{G}'(\\mathbf{U})=\\left[\\mathbf{F}'(\\mathbf{X})\\right]^{-1}\\quad",
- "\\mbox{ $($where",
- "$\\mathbf{U}=\\mathbf{F}(\\mathbf{X})$$)$},\\quad \\mathbf{U}\\in\\mathbf{F}(N).",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Lemma~\\ref{thmtype:6.2.6} implies that there is an open neighborhood",
- "$N$ of $\\mathbf{X}_0$ on which $\\mathbf{F}$ is one-to-one. The rest of the",
- "conclusions then follow from applying Theorem~\\ref{thmtype:6.3.3}",
- " to $\\mathbf{F}$",
- " on $N$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:6.2.6",
- "TRENCH_REAL_ANALYSIS-thmtype:6.3.3"
- ],
- "ref_ids": [
- 257,
- 186
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 188,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.4.1",
- "categories": [],
- "title": "The Implicit Function Theorem",
- "contents": [
- "Suppose that $\\mathbf{F}:\\R^{n+m}\\to \\R^m$ is continuously",
- "differentiable on an open set $S$ of $\\R^{n+m}$ containing",
- "$(\\mathbf{X}_0,\\mathbf{U}_0).$ Let $\\mathbf{F}(\\mathbf{X}_0,\\mathbf{U}_0)=\\mathbf{0},$",
- "and suppose that $\\mathbf{F}_\\mathbf{U}(\\mathbf{X}_0,\\mathbf{U}_0)$ is",
- "nonsingular$.$ Then there is a neighborhood $M$ of",
- " $(\\mathbf{X}_0,\\mathbf{U}_{0}),$",
- " contained in $S,$ on which",
- " $\\mathbf{F}_\\mathbf{U}(\\mathbf{X},\\mathbf{U})$",
- " is nonsingular",
- " and a neighborhood $N$ of $\\mathbf{X}_0$ in",
- "$\\R^n$ on which a unique continuously differentiable",
- " transformation",
- "$\\mathbf{G}:",
- "\\R^n\\to",
- "\\R^m$ is defined$,$ such that",
- "$\\mathbf{G}(\\mathbf{X}_0)=\\mathbf{U}_0$ and",
- "\\begin{equation} \\label{eq:6.4.6}",
- "(\\mathbf{ X},\\mathbf{G}(\\mathbf{X}))\\in M\\mbox{\\quad and \\quad}",
- "\\mathbf{F}(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))=0\\mbox{\\quad",
- " if}\\quad\\mathbf{X}\\in N.",
- "\\end{equation}",
- "Moreover$,$",
- "\\begin{equation} \\label{eq:6.4.7}",
- "\\mathbf{G}'(\\mathbf{X})=-[\\mathbf{F}_\\mathbf{U}(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))]^{-1}",
- "\\mathbf{F}_\\mathbf{X}(\\mathbf{X},\\mathbf{G}(\\mathbf{X})),\\quad \\mathbf{X}\\in N.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Define $\\boldsymbol{\\Phi}:\\R^{n+m}\\to \\R^{n+m}$ by",
- "\\begin{equation} \\label{eq:6.4.8}",
- "\\boldsymbol{\\Phi}(\\mathbf{X},\\mathbf{U})=\\left[\\begin{array}{c} x_1\\\\",
- "x_2\\\\\\vdots\\\\ x_n\\\\ f_1(\\mathbf{X},\\mathbf{U})\\\\",
- "[3\\jot]",
- "f_2(\\mathbf{X},\\mathbf{U})\\\\\\vdots\\\\ f_m(\\mathbf{X},\\mathbf{U})\\end{array}",
- "\\right]",
- "\\end{equation}",
- "or, in ``horizontal''notation by",
- "\\begin{equation} \\label{eq:6.4.9}",
- "\\boldsymbol{\\Phi}(\\mathbf{X},\\mathbf{U})=(\\mathbf{X},\\mathbf{F}(\\mathbf{X},\\mathbf{U})).",
- "\\end{equation}",
- "Then $\\boldsymbol{\\Phi}$ is continuously differentiable on $S$ and, since",
- "$\\mathbf{F}(\\mathbf{X}_0,\\mathbf{U}_0)=\\mathbf{0}$,",
- "\\begin{equation} \\label{eq:6.4.10}",
- "\\boldsymbol{\\Phi}(\\mathbf{X}_0,\\mathbf{U}_0)=(\\mathbf{X}_0,\\mathbf{0}).",
- "\\end{equation}",
- "The differential matrix of $\\boldsymbol{\\Phi}$ is",
- "$$",
- "\\boldsymbol{\\Phi}'=\\left[\\begin{array}{cccccccc}",
- "1&0&\\cdots&0&0&0&\\cdots&0\\\\",
- "[3\\jot]",
- "0&1&\\cdots&0&0&0&\\cdots&0\\\\",
- "\\vdots&\\vdots&\\ddots&\\vdots&\\vdots&\\vdots&\\ddots&\\vdots\\\\",
- "0&0&\\cdots&1&0&0&\\cdots&0\\\\",
- "[3\\jot]",
- "\\dst{\\frac{\\partial f_1}{\\partial x_1}}&",
- "\\dst{\\frac{\\partial f_1}{\\partial x_2}}&\\cdots&",
- "\\dst{\\frac{\\partial f_1}{\\partial x_n}}&",
- "\\dst{\\frac{\\partial f_1}{\\partial u_1}}&",
- "\\dst{\\frac{\\partial f_1}{\\partial u_2}}&\\cdots&",
- "\\dst{\\frac{\\partial f_1}{\\partial u_m}}\\\\",
- "[3\\jot]",
- "\\dst{\\frac{\\partial f_2}{\\partial x_1}}&",
- "\\dst{\\frac{\\partial f_2}{\\partial x_2}}&\\cdots&",
- "\\dst{\\frac{\\partial f_2}{\\partial x_n}}&",
- "\\dst{\\frac{\\partial f_2}{\\partial u_1}}&",
- "\\dst{\\frac{\\partial f_2}{\\partial u_2}}&\\cdots&",
- "\\dst{\\frac{\\partial f_2}{\\partial u_m}}\\\\",
- "[3\\jot]",
- "\\vdots&\\vdots&\\ddots&\\vdots&\\vdots&\\vdots&\\ddots&\\vdots\\\\",
- "[3\\jot]",
- "\\dst{\\frac{\\partial f_m}{\\partial x_1}}&",
- "\\dst{\\frac{\\partial f_m}{\\partial x_2}}&\\cdots&",
- "\\dst{\\frac{\\partial f_m}{\\partial x_n}}&",
- "\\dst{\\frac{\\partial f_m}{\\partial u_1}}&",
- "\\dst{\\frac{\\partial f_m}{\\partial u_2}}&\\cdots&",
- "\\dst{\\frac{\\partial f_m}{\\partial u_m}}\\end{array}\\right]=",
- "\\left[\\begin{array}{cc}\\mathbf{I}&\\mathbf{0}\\\\\\mathbf{F}_\\mathbf{X}&\\mathbf{F}_\\mathbf{U}",
- "\\end{array}\\right],",
- "$$",
- "\\newpage",
- "\\noindent",
- "where $\\mathbf{I}$ is the $n\\times n$ identity matrix, $\\mathbf{0}$ is the",
- "$n\\times m$ matrix with all zero entries, and $\\mathbf{F}_\\mathbf{X}$ and",
- "$\\mathbf{F}_\\mathbf{U}$ are as in \\eqref{eq:6.4.5}. By expanding",
- "$\\det(\\boldsymbol{\\Phi}')$ and the determinants that evolve from it in terms",
- "of the cofactors of their first rows, it can be shown in $n$ steps",
- "that",
- "\\vskip.5pc",
- "$$",
- "J\\boldsymbol{\\Phi}=\\det(\\boldsymbol{\\Phi}')=\\left|\\begin{array}{cccc}",
- "\\dst{\\frac{\\partial f_1}{\\partial u_1}}&",
- "\\dst{\\frac{\\partial f_1}{\\partial u_2}}&\\cdots&",
- "\\dst{\\frac{\\partial f_1}{\\partial u_m}}\\\\",
- "[3\\jot]",
- "\\dst{\\frac{\\partial f_2}{\\partial u_1}}&",
- "\\dst{\\frac{\\partial f_2}{\\partial u_2}}&\\cdots&",
- "\\dst{\\frac{\\partial f_2}{\\partial u_m}}\\\\",
- "[3\\jot]",
- "\\vdots&\\vdots&\\ddots&\\vdots\\\\",
- "\\dst{\\frac{\\partial f_m}{\\partial u_1}}&",
- "\\dst{\\frac{\\partial f_m}{\\partial u_2}}&\\cdots&",
- "\\dst{\\frac{\\partial f_m}{\\partial u_m}}\\end{array}\\right|=",
- "\\det(\\mathbf{F}_\\mathbf{U}).",
- "$$",
- "\\vskip.5pc",
- "In particular,",
- "$$",
- "J\\boldsymbol{\\Phi}(\\mathbf{X}_0,\\mathbf{U}_0)=\\det(\\mathbf{F}_\\mathbf{U}",
- "(\\mathbf{X}_0,\\mathbf{U}_{0})\\ne0.",
- "$$",
- "Since $\\boldsymbol{\\Phi}$ is continuously differentiable on $S$,",
- "Corollary~\\ref{thmtype:6.3.5} implies that $\\boldsymbol{\\Phi}$ is regular",
- "on some open neighborhood $M$ of $(\\mathbf{X}_0,\\mathbf{U}_0)$ and that",
- "$\\widehat{M}=\\boldsymbol{\\Phi}(M)$ is open.",
- "Because of the form of $\\boldsymbol{\\Phi}$ (see \\eqref{eq:6.4.8} or",
- "\\eqref{eq:6.4.9}),",
- "we can write points of $\\widehat{M}$ as $(\\mathbf{X},\\mathbf{V})$,",
- " where $\\mathbf{V}\\in \\R^m$.",
- "Corollary~\\ref{thmtype:6.3.5} also",
- "implies that $\\boldsymbol{\\Phi}$ has a a continuously differentiable",
- "inverse $\\boldsymbol{\\Gamma}(\\mathbf{X},\\mathbf{V})$",
- "defined on $\\widehat{M}$",
- "with values in $M$. Since $\\boldsymbol{\\Phi}$ leaves the ``$\\mathbf{X}$",
- "part\"",
- "of $(\\mathbf{X},\\mathbf{U})$ fixed, a local inverse of $\\boldsymbol{\\Phi}$",
- "must also have this property.",
- " Therefore, $\\boldsymbol{\\Gamma}$ must",
- "have the form",
- "\\vskip.5pc",
- "$$",
- "\\boldsymbol{\\Gamma}(\\mathbf{X},\\mathbf{V})=\\left[\\begin{array}{c} x_1\\\\",
- "x_2\\\\\\vdots\\\\ x_n\\\\[3\\jot]",
- "h_1(\\mathbf{X},\\mathbf{V})\\\\[3\\jot] h_2(\\mathbf{X},\\mathbf{V})\\\\",
- "\\vdots\\\\",
- "[3\\jot]",
- "h_m(\\mathbf{X},\\mathbf{V})\\end{array}\\right]",
- "$$",
- "\\vskip1pc",
- "\\noindent or, in ``horizontal'' notation,",
- "$$",
- "\\boldsymbol{\\Gamma}(\\mathbf{X},\\mathbf{V})=(\\mathbf{X},\\mathbf{H}(\\mathbf{X},\\mathbf{V})),",
- "$$",
- "\\noindent where $\\mathbf{H}:\\R^{n+m}\\to \\R^m$ is continuously",
- "differentiable on $\\widehat{M}$.",
- "We will show that",
- "$\\mathbf{G}(\\mathbf{X})=\\mathbf{H}(\\mathbf{X},\\mathbf{0})$",
- "has the stated properties.",
- "\\enlargethispage{.5\\baselineskip}",
- "From \\eqref{eq:6.4.10}, $(\\mathbf{X}_0,\\mathbf{0})\\in\\widehat{M}$ and, since",
- "$\\widehat{M}$ is open, there is a neighborhood $N$ of $\\mathbf{X}_0$ in",
- "$\\R^n$ such that $(\\mathbf{X},\\mathbf{0})\\in\\widehat{M}$ if $\\mathbf{X}\\in",
- "N$ (Exercise~\\ref{exer:6.4.2}).",
- "Therefore, $(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))",
- "=\\boldsymbol{\\Gamma}(\\mathbf{X},\\mathbf{0})\\in M$ if $\\mathbf{X}\\in N$.",
- " Since $\\boldsymbol{\\Gamma}=\\boldsymbol{\\Phi}^{-1}$,",
- "$(\\mathbf{X},\\mathbf{0})",
- "=\\boldsymbol{\\Phi}(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))$. Setting",
- "$\\mathbf{X}=\\mathbf{X}_0$ and recalling \\eqref{eq:6.4.10}",
- "shows that $\\mathbf{G}(\\mathbf{X}_0)=\\mathbf{U}_0$, since $\\boldsymbol{\\Phi}$",
- "is one-to-one on $M$.",
- "\\newpage",
- "Henceforth we assume that $\\mathbf{X}\\in N$.",
- "Now,",
- "$$",
- "\\begin{array}{rcll}",
- "(\\mathbf{X},\\mathbf{0})\\ar=",
- "\\boldsymbol{\\Phi}(\\boldsymbol{\\Gamma}(\\mathbf{X},\\mathbf{0}))",
- "&\\mbox{",
- "(since",
- "$\\boldsymbol{\\Phi}=\\boldsymbol{\\Gamma}^{-1})$}\\\\",
- "\\ar=\\boldsymbol{\\Phi}(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))&\\mbox{ (since",
- "$\\boldsymbol{\\Gamma}(\\mathbf{X},\\mathbf{0})=(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))$)}\\\\",
- "\\ar=(\\mathbf{X},\\mathbf{F}(\\mathbf{X},\\mathbf{G}(\\mathbf{X})))&\\mbox{ (since",
- "$\\boldsymbol{\\Phi}(\\mathbf{X},\\mathbf{U})=",
- "(\\mathbf{X},\\mathbf{F}(\\mathbf{X},\\mathbf{U} ))$)}.",
- "\\end{array}",
- "$$",
- "Therefore, $\\mathbf{F}(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))=\\mathbf{0}$; that is,",
- "$\\mathbf{G}$ satisfies",
- "\\eqref{eq:6.4.6}.",
- "To see that $\\mathbf{G}$ is unique,",
- "suppose that $\\mathbf{G}_1:\\R^n\\to \\R^m$ also satisfies",
- "\\eqref{eq:6.4.6}. Then",
- "$$",
- "\\boldsymbol{\\Phi}(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))=",
- "(\\mathbf{X},\\mathbf{F}",
- "(\\mathbf{X},\\mathbf{G}(\\mathbf{X})))=(\\mathbf{X},\\mathbf{0})",
- "$$",
- "and",
- "$$",
- "\\boldsymbol{\\Phi}(\\mathbf{X},\\mathbf{G}_1(\\mathbf{X}))=(\\mathbf{X},\\mathbf{F}",
- "(\\mathbf{X},\\mathbf{G}_1(\\mathbf{X})))=(\\mathbf{X},\\mathbf{0})",
- "$$",
- "for all $\\mathbf{X}$ in $N$.",
- "Since $\\boldsymbol{\\Phi}$ is one-to-one on $M$,",
- "this implies that $\\mathbf{G}(\\mathbf{X})=",
- "\\mathbf{G}_1(\\mathbf{X})$.",
- "Since the partial derivatives",
- "$$",
- "\\frac{\\partial h_i}{\\partial x_j},\\quad 1\\le i\\le m,\\quad 1\\le j\\le",
- "n,",
- "$$",
- "are continuous functions of $(\\mathbf{X},\\mathbf{V})$ on $\\widehat{M}$, they",
- "are continuous with respect to $\\mathbf{X}$ on the subset",
- "$\\set{(\\mathbf{X},\\mathbf{0})}{\\mathbf{X} \\in N}$ of $\\widehat{M}$.",
- "Therefore,",
- "$\\mathbf{G}$ is",
- "continuously differentiable on $N$. To verify \\eqref{eq:6.4.7}, we write",
- "$\\mathbf{F}(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))=\\mathbf{0}$ in terms of components;",
- "thus,",
- "$$",
- "f_i(x_1,x_2, \\dots,x_n,g_1(\\mathbf{X}),g_2(\\mathbf{X}), \\dots,g_m(\\mathbf{X}))",
- "=0,\\quad 1\\le i\\le m,\\quad\\mathbf{X}\\in N.",
- "$$",
- "Since $f_i$ and $g_1$, $g_2$, \\dots, $g_m$ are continuously",
- "differentiable on their respective domains, the chain rule",
- "(Theorem~\\ref{thmtype:5.4.3}) implies that",
- "\\begin{equation} \\label{eq:6.4.11}",
- "\\frac{\\partial f_i(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))}{\\partial x_j}+",
- "\\sum^m_{r=1}",
- "\\frac{\\partial f_i(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))}{\\partial u_r}",
- "\\frac{\\partial g_r(\\mathbf{X})",
- "}{\\partial x_j}=0,\\quad 1\\le i\\le m,\\ 1\\le j\\le n,",
- "\\end{equation}",
- "or, in matrix form,",
- "\\begin{equation} \\label{eq:6.4.12}",
- "\\mathbf{F}_\\mathbf{X}(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))+\\mathbf{F}_\\mathbf{U}",
- "(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))\\mathbf{G}'(\\mathbf{X})=\\mathbf{0}.",
- "\\end{equation}",
- "Since $(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))\\in M$ for all $\\mathbf{X}$",
- "in $N$ and $\\mathbf{F}_\\mathbf{U}(\\mathbf{X},\\mathbf{U})$ is nonsingular when",
- "$(\\mathbf{X},\\mathbf{U})\\in M$, we can multiply \\eqref{eq:6.4.12} on the left by",
- "$\\mathbf{F}^{-1}_\\mathbf{U}(\\mathbf{X},\\mathbf{G}(\\mathbf{X}))$ to obtain",
- "\\eqref{eq:6.4.7}. This completes the proof."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:6.3.5",
- "TRENCH_REAL_ANALYSIS-thmtype:6.3.5",
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.3"
- ],
- "ref_ids": [
- 293,
- 293,
- 163
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 189,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.3",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is unbounded on the nondegenerate rectangle $R$ in",
- "$\\R^n,$ then $f$ is not integrable on $R.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We will show that if $f$ is unbounded on $R$, ${\\bf",
- "P}=\\{R_1,R_2, \\dots,R_k\\}$ is",
- "any partition of $R$, and $M>0$, then there are Riemann sums $\\sigma$",
- "and $\\sigma'$ of $f$ over ${\\bf P}$ such that",
- "\\begin{equation} \\label{eq:7.1.11}",
- "|\\sigma-\\sigma'|\\ge M.",
- "\\end{equation}",
- "This implies that",
- "$f$ cannot satisfy Definition~\\ref{thmtype:7.1.2}. (Why?)",
- "Let",
- "$$",
- "\\sigma=\\sum_{j=1}^kf(\\mathbf{X}_j)V(R_j)",
- "$$",
- "be a Riemann sum of $f$ over ${\\bf P}$. There must be",
- "an integer $i$ in $\\{1,2, \\dots,k\\}$ such that",
- "\\begin{equation} \\label{eq:7.1.12}",
- "|f(\\mathbf{X})-f(\\mathbf{X}_i)|\\ge\\frac{M }{ V(R_i)}",
- "\\end{equation}",
- "for some $\\mathbf{X}$ in $R_i$, because if this were not so, we",
- "would have",
- "$$",
- "|f(\\mathbf{X})-f(\\mathbf{X}_j)|<\\frac{M}{ V(R_j)},\\quad \\mathbf{X}\\in R_j,\\quad",
- "\\quad 1\\le j\\le k.",
- "$$",
- "If this is so, then",
- "\\begin{eqnarray*}",
- "|f(\\mathbf{X})|\\ar=|f(\\mathbf{X}_j)+f(\\mathbf{X})-f(\\mathbf{X}_j)|\\le|f(\\mathbf{X}_j)|+|f(\\mathbf{X})-f(\\mathbf{X}_j)|\\\\",
- "\\ar\\le |f(\\mathbf{X}_j)|+\\frac{M}{ V(R_j)},\\quad \\mathbf{X}\\in R_j,\\quad",
- "1\\le j\\le k.",
- "\\end{eqnarray*}",
- "However, this implies that",
- "$$",
- "|f(\\mathbf{X})|\\le\\max\\set{|f(\\mathbf{X}_j)|+\\frac{M}{ V(R_j)}}{1\\le j\\le k},",
- "\\quad \\mathbf{X}\\in R,",
- "$$",
- "which contradicts the assumption that $f$ is unbounded on $R$.",
- " Now suppose that $\\mathbf{X}$ satisfies \\eqref{eq:7.1.12}, and",
- "consider the Riemann sum",
- "$$",
- "\\sigma'=\\sum_{j=1}^nf(\\mathbf{X}_j')V(R_j)",
- "$$",
- "over the same partition ${\\bf P}$, where",
- "$$",
- "\\mathbf{X}_j'=\\left\\{\\casespace\\begin{array}{ll}",
- "\\mathbf{X}_j,&j \\ne i,\\\\",
- "\\mathbf{X},&j=i.\\end{array}\\right.",
- "$$",
- "Since",
- "$$",
- "|\\sigma-\\sigma'|=|f(\\mathbf{X})-f(\\mathbf{X}_i)|V(R_i),",
- "$$",
- "\\eqref{eq:7.1.12} implies \\eqref{eq:7.1.11}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.2"
- ],
- "ref_ids": [
- 359
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 190,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.5",
- "categories": [],
- "title": "",
- "contents": [
- "Let $f$ be bounded on a rectangle $R$ and let $\\mathbf{P}$",
- "be a partition of $R.$ Then",
- "\\begin{alist}",
- "\\item % (a)",
- " The upper sum $S(\\mathbf{P})$ of $f$ over $\\mathbf{P}$ is the supremum",
- "of the set of all Riemann sums of $f$ over $\\mathbf{P}.$",
- "\\item % (b)",
- " The lower sum $s(\\mathbf{P})$ of $f$ over $\\mathbf{P}$ is the infimum",
- " of the set of all Riemann sums of $f$ over $\\mathbf{P}.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.5}.",
- "If",
- "$$",
- "m\\le f(\\mathbf{X})\\le M\\mbox{\\quad for $\\mathbf{X}$ in $R$},",
- "$$",
- "then",
- "$$",
- "mV(R)\\le s({\\bf P})\\le S({\\bf P})\\le MV(R);",
- "$$",
- "therefore, $\\overline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}$ and",
- "$\\underline{\\int_R}\\, f(\\mathbf{X})\\, d\\mathbf{X}$ exist, are unique, and",
- "satisfy the inequalities",
- "$$",
- "mV(R)\\le\\overline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}\\le MV(R)",
- "$$",
- "and",
- "$$",
- "mV(R)\\le\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}\\le MV(R).",
- "$$",
- "The upper and lower integrals are also written as",
- "$$",
- "\\overline{\\int_R}\\, f(x,y) \\,d(x,y)\\mbox{\\quad and\\quad}\\underline{\\int_R}\\,",
- "f(x,y) \\,d(x,y)\\quad (n=2),",
- "$$",
- "$$",
- "\\overline{\\int_R}\\, f(x,y,z) \\,d(x,y,z)\\mbox{\\quad and\\quad}",
- "\\underline{\\int_R}\\, f(x,y,z) \\,d(x,y,z)\\quad (n=3),",
- "$$",
- "or",
- "$$",
- "\\overline{\\int_R}\\, f(x_1,x_2, \\dots,x_n) \\,d(x_1,x_2, \\dots,x_n)",
- "$$",
- "and",
- "$$",
- "\\underline{\\int_R}\\, f(x_1,x_2, \\dots,x_n)\\,d(x_1,x_2, \\dots,x_n)\\quad",
- "\\mbox{\\quad ($n$ arbitrary)}.",
- "$$",
- "\\begin{example}\\label{example:7.1.2}\\rm",
- "Find $\\underline{\\int_R}\\,f(x,y)\\,d(x,y)$ and",
- " $\\overline{\\int_R}\\,f(x,y)\\,d(x,y)$, with",
- "$R=[a,b]\\times [c,d]$ and",
- "$$",
- "f(x,y)=x+y,",
- "$$",
- "as in Example~\\ref{example:7.1.1}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 191,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.7",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is bounded on a rectangle $R,$ then",
- "$$",
- "\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}",
- "\\le\\overline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.8}.",
- "The next theorem is analogous to Theorem~3.2.3."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 192,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.8",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is integrable on a rectangle $R,$ then",
- "$$",
- "\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}=",
- "\\overline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X} =\\int_R f(\\mathbf{X})\\,d\\mathbf{X}.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.9}.",
- "\\newpage",
- "\\enlargethispage{\\baselineskip}",
- "\\begin{lemma}\\label{thmtype:7.1.9}",
- "If $f$ is bounded on a rectangle $R$ and $\\epsilon>0,$ there is",
- " a $\\delta>0$ such that",
- "\\vspace{4pt}",
- "$$",
- "\\overline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}\\le S({\\bf P})<\\overline{\\int_R}\\,",
- "f(\\mathbf{X})\\,d\\mathbf{X}+\\epsilon",
- "$$",
- "\\vspace{4pt}",
- "and",
- "\\vspace{4pt}",
- "$$",
- "\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}\\ge s({\\bf P})>",
- "\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}-\\epsilon",
- "$$",
- "\\vspace{4pt}",
- "if $\\|{\\bf P}\\|<\\delta.$",
- "\\end{lemma}"
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 193,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.10",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is bounded on a rectangle $R$ and",
- "\\vspace{2pt}",
- "$$",
- "\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}=",
- "\\overline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}=L,",
- "$$",
- "\\vspace{2pt}",
- "then $f$ is integrable on $R,$ and",
- "\\vspace{2pt}",
- "$$",
- "\\int_R f(\\mathbf{X})\\,d\\mathbf{X}=L.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.11}.",
- "Theorems~\\ref{thmtype:7.1.8} and \\ref{thmtype:7.1.10}",
- " imply the following theorem, which is analogous to",
- "Theorem~\\ref{thmtype:3.2.6}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.8",
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.10",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.6"
- ],
- "ref_ids": [
- 192,
- 193,
- 49
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 194,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.11",
- "categories": [],
- "title": "",
- "contents": [
- "A bounded",
- "function $f$ is integrable on a rectangle $R$ if and only if",
- "$$",
- "\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}=\\overline{\\int_R}\\, f(\\mathbf{X})\\,",
- "d\\mathbf{X}.",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 195,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.12",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is bounded on a rectangle $R,$ then $f$ is integrable on $R$",
- "if and only if for every $\\epsilon>0$ there is a partition ${\\bf P}$",
- "of $R$ such that",
- "$$",
- "S({\\bf P})-s({\\bf P})<\\epsilon.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.12}.",
- "Theorem~\\ref{thmtype:7.1.12} provides a useful criterion for",
- "integrability. The next theorem is an important application.",
- "It is analogous to",
- "Theorem~\\ref{thmtype:3.2.8}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.12",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.8"
- ],
- "ref_ids": [
- 195,
- 51
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 196,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.13",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is continuous on a rectangle $R$ in $\\R^n,$ then $f$ is",
- "integrable on~$R.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $\\epsilon>0$. Since $f$ is uniformly continuous on $R$",
- "(Theorem~\\ref{thmtype:5.2.14}), there is a $\\delta>0$ such that",
- "\\begin{equation} \\label{eq:7.1.23}",
- "|f(\\mathbf{X})-f(\\mathbf{X}')|<\\frac{\\epsilon}{ V({\\bf R})}",
- "\\end{equation}",
- "if $\\mathbf{X}$ and $\\mathbf{X}'$ are in $R$ and",
- " $|\\mathbf{X}-\\mathbf{X}'|<\\delta$. Let ${\\bf P}=\\{R_1,R_2, \\dots,R_k\\}$ be a partition of",
- "$R$ with $\\|P\\|<\\delta/\\sqrt n$. Since $f$ is continuous on $R$, there",
- "are points $\\mathbf{X}_j$ and $\\mathbf{X}_j'$ in $R_j$ such that",
- "$$",
- "f(\\mathbf{X}_j)=M_j=\\sup_{\\mathbf{X}\\in R_j}f(\\mathbf{X})",
- "\\mbox{\\quad and \\quad}",
- "f(\\mathbf{X}_j')=m_j=\\inf_{\\mathbf{X}\\in R_j}f(\\mathbf{X})",
- "$$",
- "(Theorem~\\ref{thmtype:5.2.12}).",
- "Therefore,",
- "$$",
- "S(\\mathbf{P})-s(\\mathbf{P})=\\sum_{j=1}^n(f(\\mathbf{X}_j)-",
- "f(\\mathbf{X}_j'))V(R_j).",
- "$$",
- "Since $\\|{\\bf P}\\|<\\delta/\\sqrt n$,",
- "$|\\mathbf{X}_j-\\mathbf{X}_j'|<\\delta$, and, from \\eqref{eq:7.1.23}",
- "with $\\mathbf{X}=\\mathbf{X}_j$ and $\\mathbf{X}'=\\mathbf{X}_j'$,",
- "$$",
- " S(\\mathbf{P})-s(\\mathbf{P})<\\frac{\\epsilon}{ V(R)}",
- "\\sum_{j=1}^kV(R_j)=\\epsilon.",
- "$$",
- "Hence, $f$ is integrable",
- "on $R$, by Theorem~\\ref{thmtype:7.1.12}.",
- "\\boxit{Sets with Zero Content}",
- "The next definition will enable us to establish the existence",
- "of $\\int_Rf(\\mathbf{X})\\,d\\mathbf{X}$ in cases where $f$ is bounded on the",
- "rectangle $R$, but is not necessarily continuous for all $\\mathbf{X}$",
- "in $R$.",
- "\\begin{definition}\\label{thmtype:7.1.14}",
- "A subset $E$ of $\\R^n$ has zero content if for each",
- "$\\epsilon>0$",
- "there is a finite set of rectangles $T_1$, $T_2$, \\dots, $T_m$ such",
- "that",
- "\\begin{equation}\\label{eq:7.1.24}",
- "E\\subset\\bigcup_{j=1}^m T_j",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:7.1.25}",
- "\\sum_{j=1}^m V(T_j)<\\epsilon.",
- "\\end{equation}",
- "\\end{definition}",
- "\\begin{example}\\label{example:7.1.3}\\rm Since the empty set is contained",
- "in every rectangle, the empty set has zero content. If $E$ consists of",
- "finitely",
- "many points $\\mathbf{X}_1$, $\\mathbf{X}_2$, \\dots,",
- "$\\mathbf{X}_m$, then $\\mathbf{X}_j$ can be enclosed in a rectangle $T_j$",
- "such that",
- "$$",
- "V(T_j)<\\frac{\\epsilon}{ m},\\quad 1\\le j\\le m.",
- "$$",
- "Then \\eqref{eq:7.1.24} and \\eqref{eq:7.1.25} hold, so $E$ has zero content.",
- "\\end{example}",
- "\\begin{example}\\label{example:7.1.4}\\rm Any bounded set $E$ with only",
- "finitely many limit points has zero content. To see this, we first",
- "observe that if $E$ has no limit points, then it must be finite, by",
- "the Bolzano--Weierstrass theorem (Theorem~\\ref{thmtype:1.3.8}), and",
- "therefore must have zero content,",
- "by Example~\\ref{example:7.1.3}. Now suppose that the limit points of $E$ are",
- "$\\mathbf{X}_1$, $\\mathbf{X}_2$, \\dots, $\\mathbf{X}_m$. Let $R_1$, $R_2$,",
- "\\dots, $R_m$ be rectangles such that",
- "$\\mathbf{X}_i\\in R^0_i$ and",
- "\\begin{equation}\\label{eq:7.1.26}",
- "V(R_i)<\\frac{\\epsilon}{2m},\\quad 1\\le i\\le m.",
- "\\end{equation}",
- "The set of points of $E$ that are not in $\\cup_{j=1}^mR_j$ has no",
- "limit points (why?) and, being bounded, must be finite (again by the",
- "Bolzano--Weierstrass theorem). If this set contains $p$ points,",
- "then it can be covered by rectangles",
- "$R_1'$, $R_2'$, \\dots, $R_p'$ with",
- "\\begin{equation}\\label{eq:7.1.27}",
- "V(R_j')<\\frac{\\epsilon}{2p},\\quad 1\\le j\\le p.",
- "\\end{equation}",
- "Now,",
- "$$",
- "E\\subset\\left(\\bigcup_{i=1}^mR_i\\right)\\bigcup\\left(\\bigcup^p_{j=1}",
- "R_j'\\right)",
- "$$",
- "and, from \\eqref{eq:7.1.26} and \\eqref{eq:7.1.27},",
- "$$",
- "\\sum_{i=1}^m V(R_i)+\\sum_{j=1}^p V(R_j')<\\epsilon.",
- "$$",
- "\\end{example}",
- "\\begin{example}\\label{example:7.1.5}\\rm",
- " If $f$ is continuous on $[a,b]$,",
- "then the curve",
- "\\begin{equation}\\label{eq:7.1.28}",
- "y=f(x),\\quad a\\le x\\le b",
- "\\end{equation}",
- "(that is, the set $\\set{(x,y)}{y=f(x),\\ a\\le x\\le b})$, has zero",
- "content in $\\R^2$. To see this, suppose that $\\epsilon>0$, and",
- "choose $\\delta>0$ such that",
- "\\begin{equation}\\label{eq:7.1.29}",
- "|f(x)-f(x')|<\\epsilon\\mbox{\\quad if\\quad} x, x'\\in [a,b]",
- "\\mbox{\\quad and\\quad} |x-x'|<\\delta.",
- "\\end{equation}",
- "This is possible because $f$ is uniformly continuous on $[a,b]$",
- "(Theorem~\\ref{thmtype:2.2.12}). Let",
- "$$",
- "P: a=x_00$. Since $E$ has zero content, there are",
- "rectangles",
- "$T_1$, $T_2$, \\dots, $T_m$ such that",
- "\\begin{equation} \\label{eq:7.1.31}",
- "E\\subset\\bigcup_{j=1}^m T_j",
- "\\end{equation}",
- "and",
- "\\begin{equation} \\label{eq:7.1.32}",
- "\\sum_{j=1}^m V(T_j)<\\epsilon.",
- "\\end{equation}",
- " We may assume that",
- "$T_1$, $T_2$, \\dots, $T_m$ are contained in $R$, since, if not, their",
- "intersections with",
- "$R$ would be contained in $R$, and still satisfy \\eqref{eq:7.1.31}",
- "and \\eqref{eq:7.1.32}.",
- " We may also assume that if $T$ is any rectangle such",
- "that",
- "\\begin{equation}\\label{eq:7.1.33}",
- "T\\bigcap\\left(\\bigcup_{j=1}^m T_j^0\\right)=\\emptyset, \\mbox{\\quad",
- "then",
- "\\quad}T\\cap E=\\emptyset",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "since if this were not so, we could make it so by enlarging",
- "$T_1$, $T_2$, \\dots, $T_m$",
- "slightly while maintaining \\eqref{eq:7.1.32}. Now suppose that",
- "\\vspace*{1pt}",
- "$$",
- "T_j=[a_{1j},b_{1j}]\\times [a_{2j},b_{2j}]\\times\\cdots\\times",
- "[a_{nj},b_{nj}],\\quad 1\\le j\\le m,",
- "$$",
- "\\vspace*{1pt}",
- "\\noindent let $P_{i0}$ be the partition of $[a_i,b_i]$ (see",
- "\\eqref{eq:7.1.30}) with partition points",
- "$$",
- "a_i,b_i,a_{i1},b_{i1},a_{i2},b_{i2}, \\dots,a_{im},b_{im}",
- "\\vspace*{1pt}",
- "$$",
- "(these are not in increasing order), $1\\le i\\le n$, and let",
- "\\vspace*{1pt}",
- "$$",
- "{\\bf P}_0=P_{10}\\times P_{20}\\times\\cdots\\times P_{n0}.",
- "$$",
- "\\vspace*{1pt}",
- "\\noindent\\hskip-.3em Then ${\\bf P}_0$ consists of rectangles whose",
- "union equals $\\cup_{j=1}^m T_j$",
- "and other rectangles",
- "$T'_1$, $T'_2$, \\dots, $T'_k$ that do not intersect $E$. (We need",
- "\\eqref{eq:7.1.33} to be sure that $T'_i\\cap E=\\emptyset,",
- "1\\le i\\le k.)$ If we let",
- "$$",
- "B=\\bigcup_{j=1}^m T_j\\mbox{\\quad and\\quad} C=\\bigcup^k_{i=1} T'_i,",
- "$$",
- "then $R=B\\cup C$ and $f$ is continuous on the compact set $C$.",
- "If ${\\bf P}=\\{R_1,R_2, \\dots,R_k\\}$ is a refinement of ${\\bf P}_0$,",
- "then every subrectangle $R_j$ of ${\\bf P}$ is contained entirely in",
- "$B$ or entirely in $C$. Therefore, we can write",
- "\\vspace*{1pt}",
- "\\begin{equation}\\label{eq:7.1.34}",
- "S({\\bf P})-s({\\bf P})=\\Sigma_1(M_j-m_j)",
- "V(R_j)+\\Sigma_2(M_j-m_j)V(R_j),",
- "\\end{equation}",
- "\\vspace*{1pt}",
- "\\noindent \\hskip-.3em",
- "where $\\Sigma_1$ and $\\Sigma_2$ are summations over values of $j$ for",
- "which $R_j\\subset B$ and $R_j\\subset C$, respectively. Now suppose that",
- "$$",
- "|f(\\mathbf{X})|\\le M\\mbox{\\quad for $\\mathbf{X}$ in $R$}.",
- "$$",
- "Then",
- "\\begin{equation}\\label{eq:7.1.35}",
- "\\Sigma_1(M_j-m_j) V(R_j)\\le2M\\,\\Sigma_1 V(R_j)=2M\\sum_{j=1}^m V(T_j)<",
- "2M\\epsilon,",
- "\\end{equation}",
- "from \\eqref{eq:7.1.32}.",
- "Since $f$ is uniformly continuous on the compact set $C$",
- "(Theorem~\\ref{thmtype:5.2.14}),",
- "there is a $\\delta>0$ such that $M_j-m_j<\\epsilon$ if",
- "$\\|{\\bf P}\\|< \\delta$ and $R_j\\subset C$; hence,",
- "$$",
- "\\Sigma_2(M_j-m_j)V(R_j)<\\epsilon\\Sigma_2\\, V(R_j)\\le\\epsilon V(R).",
- "$$",
- "This, \\eqref{eq:7.1.34}, and \\eqref{eq:7.1.35} imply that",
- "$$",
- "S({\\bf P})-s({\\bf P})<[2M+V(R)]\\epsilon",
- "$$",
- "if $\\|{\\bf P}\\|<\\delta$ and ${\\bf P}$ is a refinement of ${\\bf P}_0$.",
- "Therefore, Theorem~\\ref{thmtype:7.1.12} implies that $f$ is integrable on",
- "$R$.",
- "\\enlargethispage{4\\baselineskip}"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.2.14",
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.12"
- ],
- "ref_ids": [
- 154,
- 195
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 198,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.19",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f$ is bounded on a bounded set $S$ and continuous",
- "except on a subset $E$ of $S$ with zero content. Suppose also that",
- "$\\partial S$ has zero content$.$ Then $f$ is integrable on $S.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $f_S$ be as in \\eqref{eq:7.1.36}. Since a discontinuity of",
- "$f_S$ is either a discontinuity of $f$ or a point of $\\partial S$, the",
- "set of discontinuities of $f_S$ is the union of two sets of zero",
- "content and therefore is of zero content (Lemma~\\ref{thmtype:7.1.15}).",
- "Therefore, $f_S$ is integrable on any rectangle containing $S$",
- "(from Theorem~\\ref{thmtype:7.1.16}), and consequently on $S$",
- "(Definition~\\ref{thmtype:7.1.17})."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.15",
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.16",
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.17"
- ],
- "ref_ids": [
- 261,
- 197,
- 362
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 199,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.21",
- "categories": [],
- "title": "",
- "contents": [
- "A differentiable surface in $\\R^n$ has zero content$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $S$, $D$, and $\\mathbf{G}$ be as in Definition~\\ref{thmtype:7.1.20}.",
- "From Lemma~\\ref{thmtype:6.2.7}, there is a constant $M$ such",
- "that",
- "\\begin{equation}\\label{eq:7.1.37}",
- "|\\mathbf{G}(\\mathbf{X})-\\mathbf{G}(\\mathbf{Y})|\\le",
- "M|\\mathbf{X}-\\mathbf{Y}|\\mbox{\\quad if\\quad}\\mathbf{X},\\mathbf{Y}\\in D.",
- "\\end{equation}",
- "Since $D$ is bounded, $D$ is contained in a cube",
- "$$",
- "C=[a_1,b_1]\\times [a_2,b_2]\\times\\cdots\\times [a_m,b_m],",
- "$$",
- "where",
- "$$",
- "b_i-a_i=L,\\quad 1\\le i\\le m.",
- "$$",
- "Suppose that we partition $C$ into $N^m$ smaller cubes by partitioning",
- "each of the intervals $[a_i,b_i]$ into $N$ equal subintervals. Let",
- "$R_1$, $R_2$, \\dots, $R_k$ be the smaller cubes so produced that",
- "contain",
- "points of $D$, and select points $\\mathbf{X}_1$, $\\mathbf{X}_2$, \\dots,",
- "$\\mathbf{X}_k$",
- "such that $\\mathbf{X}_i\\in D\\cap R_i$, $1\\le i\\le k$. If $\\mathbf{Y}",
- "\\in D\\cap R_i$, then \\eqref{eq:7.1.37} implies that",
- "\\begin{equation}\\label{eq:7.1.38}",
- "|\\mathbf{G}(\\mathbf{X}_i)-\\mathbf{G}(\\mathbf{Y})|\\le M|\\mathbf{X}_i-\\mathbf{Y}|.",
- "\\end{equation}",
- "Since $\\mathbf{X}_i$ and $\\mathbf{Y}$ are both in the cube $R_i$ with",
- "edge length $L/N$,",
- "$$",
- "|\\mathbf{X}_i-\\mathbf{Y}|\\le\\frac{L\\sqrt{m}}{ N}.",
- "$$",
- " This and \\eqref{eq:7.1.38} imply that",
- "$$",
- "|\\mathbf{G}(\\mathbf{X}_i)-\\mathbf{G}(\\mathbf{Y})|\\le\\frac{ML\\sqrt m}{ N},",
- "$$",
- "which in turn implies that",
- "$\\mathbf{G}(\\mathbf{Y})$ lies in a cube $\\widetilde{R}_i$ in $\\R^n$",
- " centered at $\\mathbf{G}(\\mathbf{X}_i)$,",
- "with",
- "sides of length $2ML\\sqrt{m}/N$.",
- " Now",
- "$$",
- "\\sum_{i=1}^k V(\\widetilde{R}_i)= k\\left(\\frac{2ML\\sqrt{m}}{",
- "N}\\right)^n\\le",
- "N^m\\left(\\frac{2ML\\sqrt{m}}{ N}\\right)^n=(2ML\\sqrt{m})^n",
- "N^{m-n}.",
- "$$",
- "Since $n>m$, we can make the sum on the left arbitrarily small by",
- "taking $N$ sufficiently large. Therefore, $S$ has zero content."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.20",
- "TRENCH_REAL_ANALYSIS-thmtype:6.2.7"
- ],
- "ref_ids": [
- 364,
- 258
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 200,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.22",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $S$ is a bounded set in $\\R^n,$ with boundary",
- "consisting of a finite number of differentiable surfaces$.$ Let $f$ be",
- "bounded on $S$ and continuous except on a set of zero content. Then",
- "$f$ is integrable on $S.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 201,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.23",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ and $g$ are integrable on $S,$ then so is $f+g,$ and",
- "$$",
- "\\int_S(f+g)(\\mathbf{X})\\,d\\mathbf{X}=\\int_S f(\\mathbf{X})\\,d\\mathbf{X}+",
- "\\int_S g(\\mathbf{X})\\,d\\mathbf{X}.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.20}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 202,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.24",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is integrable on $S$ and $c$ is a constant$,$ then $cf$ is",
- "integrable on $S,$ and",
- "$$",
- "\\int_S(cf)(\\mathbf{X})\\,d\\mathbf{X}=c\\int_S f(\\mathbf{X})\\,d\\mathbf{X}.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.21}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 203,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.25",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ and $g$ are integrable on $S$ and $f(\\mathbf{X})\\le g(\\mathbf{X})$",
- "for $\\mathbf{X}$ in $S,$ then",
- "$$",
- "\\int_S f(\\mathbf{X})\\,d\\mathbf{X}\\le\\int_S g(\\mathbf{X})\\,d\\mathbf{X}.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.22}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 204,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.26",
- "categories": [],
- "title": "",
- "contents": [
- " If $f$ is integrable on $S,$",
- "then so is $|f|,$ and",
- "$$",
- "\\left|\\int_S f(\\mathbf{X})\\,d\\mathbf{X}\\right|\\le\\int_S |f(\\mathbf{X})|\\,d\\mathbf{X}.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.23}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 205,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.27",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ and $g$ are integrable on $S,$ then so is the product $fg.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.24}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 206,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.28",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $u$ is continuous and $v$ is integrable and nonnegative",
- "on a rectangle $R.$ Then",
- "$$",
- "\\int_R u(\\mathbf{X})v(\\mathbf{X})\\,d\\mathbf{X}=",
- "u(\\mathbf{X}_0)\\int_R v(\\mathbf{X})\\,d\\mathbf{X}",
- "$$",
- "for some $\\mathbf{X}_0$ in $R.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.25}.",
- "\\begin{lemma}\\label{thmtype:7.1.29}",
- "Suppose that $S$ is contained in a bounded set $T$ and $f$ is integrable",
- "on $S.$ Then",
- " $f_S$ $($see $\\eqref{eq:7.1.36})$ is integrable on $T,$ and",
- "$$",
- "\\int_T f_S(\\mathbf{X})\\,d\\mathbf{X}=\\int_S f(\\mathbf{X})\\,d\\mathbf{X}.",
- "$$",
- "\\end{lemma}",
- "\\nopagebreak"
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 207,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.30",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is integrable on disjoint sets $S_1$ and $S_2,$ then $f$ is",
- "integrable on $S_1\\cup S_2,$ and",
- "\\begin{equation}\\label{eq:7.1.39}",
- "\\int_{S_1\\cup S_2} f(\\mathbf{X})\\,d\\mathbf{X}=",
- "\\int_{S_1} f(\\mathbf{X})\\,d\\mathbf{X}+",
- "\\int_{S_2} f(\\mathbf{X})\\,d\\mathbf{X}.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "For $i=1$, $2$, let",
- "$$",
- "f_{S_i}(\\mathbf{X})=\\left\\{\\casespace\\begin{array}{ll} f(\\mathbf{X}),&\\mathbf{X}\\in",
- "S_i,\\\\[2\\jot]",
- " 0,&\\mathbf{X}\\not\\in S_i.\\end{array}\\right.",
- "$$",
- "From Lemma~\\ref{thmtype:7.1.29} with $S=S_i$ and $T=S_1\\cup S_2$,",
- "$f_{S_i}$ is integrable on $S_1\\cup S_2$, and",
- "$$",
- "\\int_{S_1\\cup S_2} f_{S_i}(\\mathbf{X})\\,d\\mathbf{X}",
- "=\\int_{S_i} f(\\mathbf{X})\\,d\\mathbf{X},\\quad i=1,2.",
- "$$",
- "Theorem~\\ref{thmtype:7.1.23} now implies that $f_{S_1}+f_{S_2}$ is integrable on",
- "$S_1\\cup S_2$ and",
- "\\begin{equation}\\label{eq:7.1.40}",
- "\\int_{S_1\\cup S_2} (f_{S_1}+f_{S_2})(\\mathbf{X})\\,d\\mathbf{X}=\\int_{S_1}",
- "f(\\mathbf{X})\\,d\\mathbf{X}+\\int_{S_2} f(\\mathbf{X})\\, d\\mathbf{X}.",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "Since $S_1\\cap S_2=\\emptyset$,",
- "$$",
- "\\left(f_{S_1}+f_{S_2}\\right)(\\mathbf{X})=",
- "f_{S_1}(\\mathbf{X})+f_{S_2}(\\mathbf{X})",
- "=f(\\mathbf{X}),\\quad \\mathbf{X}\\in S_1\\cup S_2.",
- "$$",
- " Therefore,",
- "\\eqref{eq:7.1.40} implies \\eqref{eq:7.1.39}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.29",
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.23"
- ],
- "ref_ids": [
- 262,
- 201
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 208,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.2.1",
- "categories": [],
- "title": "",
- "contents": [
- "$R= [a,b]\\times [c,d]$ and",
- "$$",
- " F(y)=\\int_a^b f(x,y)\\,dx",
- "$$",
- "exists for each $y$ in $[c,d].$ Then $F$ is integrable on $[c,d],$",
- "and",
- "\\begin{equation}\\label{eq:7.2.1}",
- "\\int_c^d F(y)\\,dy=\\int_R f(x,y)\\,d(x,y);",
- "\\end{equation}",
- "that is$,$",
- "\\begin{equation}\\label{eq:7.2.2}",
- "\\int_c^d dy\\int_a^b f(x,y)\\,dx=\\int_R f(x,y)\\,d(x,y).",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let",
- "$$",
- "P_1: a=x_00$ a",
- "partition $\\mathbf{P}$ of $R$ such that $S_f(\\mathbf{P})-s_f(\\mathbf{P})<\\epsilon$,",
- "from Theorem~\\ref{thmtype:7.1.12}. Consequently, from",
- "\\eqref{eq:7.2.6}, there is",
- "a partition $P_2$ of $[c,d]$ such that",
- "$S_F(P_2)-s_F(P_2)<\\epsilon$,",
- " so $F$ is integrable on $[c,d]$, from",
- "Theorem~\\ref{thmtype:3.2.7}.",
- "It remains to verify \\eqref{eq:7.2.1}. From \\eqref{eq:7.2.4} and the",
- "definition of $\\int_c^dF(y)\\,dy$,",
- "there is for each $\\epsilon>0$ a $\\delta>0$ such that",
- "$$",
- "\\left|\\int_c^d F(y)\\,dy-\\sigma\\right|<\\epsilon\\mbox{\\quad if\\quad}",
- "\\|P_2\\|<\\delta;",
- "$$",
- "that is,",
- "$$",
- "\\sigma-\\epsilon<\\int_c^d F(y)\\,dy<\\sigma+\\epsilon\\mbox{\\quad if \\quad}",
- "\\|P_2\\|<\\delta.",
- "$$",
- "This and \\eqref{eq:7.2.5} imply that",
- "$$",
- "s_f(\\mathbf{P})-\\epsilon<\\int_c^d F(y)\\,dy0$ a",
- "partition $\\mathbf{P}$ of $R$ such that $S_f(\\mathbf{P})-s_f(\\mathbf{P})<\\epsilon$,",
- "from Theorem~\\ref{thmtype:7.1.12}. Consequently, from \\eqref{eq:7.2.11},",
- "there",
- "is a partition $\\mathbf{Q}$ of $T$ such that",
- "$S_{F_p}(\\mathbf{Q})-s_{F_p}(\\mathbf{Q})<\\epsilon$, so $F_p$ is integrable",
- "on $T$, from Theorem~\\ref{thmtype:7.1.12}.",
- "It remains to verify that",
- "\\begin{equation} \\label{eq:7.2.12}",
- "\\int_R f(\\mathbf{X})\\,d\\mathbf{X}=",
- "\\int_TF_p(\\mathbf{Y})\\,d\\mathbf{Y}.",
- "\\end{equation}",
- "From \\eqref{eq:7.2.9} and the definition of $\\int_TF_p(\\mathbf{Y})\\,d\\mathbf{Y}$, there",
- "is for each $\\epsilon>0$ a $\\delta>0$ such that",
- "$$",
- "\\left|\\int_TF_p(\\mathbf{Y})\\,d\\mathbf{Y}",
- "-\\sigma\\right|<\\epsilon\\mbox{\\quad",
- "if\\quad}",
- "\\|\\mathbf{Q}\\|<\\delta;",
- "$$",
- "that is,",
- "$$",
- "\\sigma-\\epsilon<\\int_TF_p(\\mathbf{Y})\\,d\\mathbf{Y}",
- "<\\sigma+",
- "\\epsilon\\mbox{\\quad if \\quad}\\|\\mathbf{Q}\\|<\\delta.",
- "$$",
- "This and \\eqref{eq:7.2.10} imply that",
- "$$",
- "s_f(\\mathbf{P})-\\epsilon<",
- "\\int_TF_p(\\mathbf{Y})\\,d\\mathbf{Y}",
- "2$ and the proposition is true with $n$ replaced",
- "by $n-1$. Holding $x_n$ fixed and applying this assumption",
- "yields",
- "$$",
- "F_n(x_n)=",
- "\\int^{b_{n-1}}_{a_{n-1}}",
- "dx_{n-1}\\int_{a_{n-2}}^{b_{n-2}}dx_{n-2}\\cdots",
- "\\int^{b_2}_{a_2} dx_2\\int^{b_1}_{a_1} f(\\mathbf{X})\\,dx_1.",
- "$$",
- "Now Theorem~\\ref{thmtype:7.2.3} with $p=n-1$ completes the induction."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.2.1",
- "TRENCH_REAL_ANALYSIS-thmtype:7.2.3"
- ],
- "ref_ids": [
- 208,
- 209
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 211,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.2.5",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is continuous on",
- "$$",
- "R=[a_1,b_1]\\times [a_2,b_2]\\times\\cdots\\times [a_n,b_n],",
- "$$",
- "then $\\int_R f(\\mathbf{X})\\,d\\mathbf{X}$ can be evaluated by iterated",
- "integrals in any of the $n!$ ways indicated in $\\eqref{eq:7.2.16}.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 212,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.2.6",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is integrable on the set $S$ in $\\eqref{eq:7.2.17}$ and the",
- "integral $\\eqref{eq:7.2.19}$ exists for $c\\le y\\le d,$ then",
- "\\begin{equation}\\label{eq:7.2.20}",
- "\\int_S f(x,y) \\,d(x,y)=\\int_c^d dy\\int^{v(y)}_{u(y)} f(x,y)\\,dx.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 213,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.2.7",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f$ is integrable on",
- "$$",
- "S=\\set{(x,y,z)}{u_1(y,z)\\le x\\le v_1(y,z),\\ u_2(z)\\le y\\le v_2(z),\\",
- "c\\le z\\le d},",
- "$$",
- "and let",
- "$$",
- "S(z)=\\set{(x,y)}{u_1(y,z)\\le x\\le v_1(y,z),\\ u_2(z)\\le y\\le v_2(z)}",
- "$$",
- "for each $z$ in $[c,d].$ Then",
- "$$",
- "\\int_S f(x,y,z)\\,d(x,y,z)=\\int_c^d dz\\int^{v_2(z)}_{u_2(z)} dy",
- "\\int^{v_1(y,z)}_{u_1(y,z)} f(x,y,z)\\,dx,",
- "$$",
- "provided that",
- "$$",
- "\\int^{v_1(y,z)}_{u_1(y,z)} f(x,y,z)\\,dx",
- "$$",
- "exists for all $(y,z)$ such that",
- "$$",
- "c\\le z\\le d\\mbox{\\quad and\\quad} u_2(z)\\le y\\le v_2(z),",
- "$$",
- "and",
- "$$",
- "\\int_{S(z)} f(x,y,z)\\,d(x,y)",
- "$$",
- "exists for all $z$ in $[c,d].$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 214,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.1",
- "categories": [],
- "title": "",
- "contents": [
- "A bounded set $S$ is Jordan measurable if and only if the boundary",
- "of $S$ has",
- "zero content$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $R$ be a rectangle containing $S$. Suppose that $V(\\partial S)=0$.",
- "Since",
- "$\\psi_{S}$ is bounded on $R$ and discontinuous only on",
- "$\\partial S$",
- "(Exercise~\\ref{exer:2.2.9}), Theorem~\\ref{thmtype:7.1.19}",
- "implies that $\\int_R\\psi_S (\\mathbf{X})\\,d\\mathbf{X}$ exists.",
- " For the converse, suppose that",
- "$\\partial S$ does not have zero content",
- "and let ${\\bf P}=\\{R_1, R_2,\\dots, R_k\\}$ be a partition",
- "of $R$. For each $j$ in $\\{1,2,\\dots,k\\}$ there are three",
- "possibilities:",
- "\\begin{description}",
- " \\item{1.} $R_j\\subset S$; then",
- "$$",
- "\\min\\set{\\psi_S(\\mathbf{X})}{\\mathbf{X}\\in R_j}=",
- "\\max\\set{\\psi_S(\\mathbf{X})}{\\mathbf{X}\\in R_j}=1.",
- "$$",
- "\\item{2.} $R_j\\cap S\\ne\\emptyset$ and $R_j\\cap S^c\\ne",
- "\\emptyset$; then",
- "$$",
- "\\min\\set{\\psi_S (\\mathbf{X})}{\\mathbf{X}\\in R_j}=0\\mbox{\\quad and\\quad}",
- "\\max\\set{\\psi_S(\\mathbf{X})}{\\mathbf{X}\\in R_j}=1.",
- "$$",
- "\\item{3.} $R_j\\subset S^c$; then",
- "$$",
- "\\min\\set{\\psi_S(\\mathbf{X})}{\\mathbf{X}\\in R_j}=\\max\\set{\\psi_S(\\mathbf{X})}",
- "{\\mathbf{X}\\in R_j}=0.",
- "$$",
- "\\end{description}",
- "\\newpage",
- "\\noindent Let",
- "\\begin{equation} \\label{eq:7.3.2}",
- "{\\mathcal U}_1=\\set{j}{R_j\\subset S}",
- "\\mbox{\\quad and \\quad}",
- "{\\mathcal U}_2=\\set{j}{R_j\\cap S\\ne\\emptyset\\mbox{ and }R_j\\cap",
- "S^c\\ne\\emptyset}.",
- "\\end{equation}",
- "Then the upper and lower",
- "sums of $\\psi_S$ over ${\\bf P}$ are",
- "\\begin{equation}\\label{eq:7.3.3}",
- "\\begin{array}{rcl}",
- "S({\\bf P})\\ar=\\dst\\sum_{j\\in{\\mathcal U}_1} V(R_j)+\\sum_{j\\in{\\mathcal U}_2}",
- "V(R_j)\\\\[2\\jot]",
- "\\ar=\\mbox{total content of the subrectangles in ${\\bf P}$ that intersect",
- "$S$}",
- "\\end{array}",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:7.3.4}",
- "\\begin{array}{rcl}",
- "s({\\bf P})\\ar=\\dst\\sum_{j\\in{\\mathcal U}_1} V(R_j) \\\\",
- "\\ar=\\mbox{total content of the subrectangles in ${\\bf P}$",
- "contained in $S$}.",
- "\\end{array}",
- "\\end{equation}",
- "Therefore,",
- "$$",
- "S({\\bf P})-s({\\bf P})=\\sum_{j\\in {\\mathcal U}_2} V(R_j),",
- "$$",
- "which is the total content of the subrectangles in ${\\bf P}$ that",
- "intersect both $S$ and $S^c$.",
- " Since these subrectangles contain",
- "$\\partial S$,",
- "which does not have zero content, there is an",
- "$\\epsilon_0>0$ such that",
- "$$",
- "S({\\bf P})-s({\\bf P})\\ge\\epsilon_0",
- "$$",
- "for every partition ${\\bf P}$ of $R$. By",
- "Theorem~\\ref{thmtype:7.1.12}, this implies that $\\psi_S$ is not",
- "integrable on $R$, so $S$ is not Jordan measurable."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.19",
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.12"
- ],
- "ref_ids": [
- 198,
- 195
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 215,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.5",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{G}:\\R^n\\to \\R^n$ is regular on a compact",
- "Jordan measurable set $S.$ Then $\\mathbf{G}(S)$ is compact and",
- "Jordan measurable$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We leave it to you to prove that $\\mathbf{G}(S)$ is",
- "compact",
- "(Exercise~6.2.23). Since $S$ is",
- "Jordan measurable,",
- " $V(\\partial S)=0$, by Theorem~\\ref{thmtype:7.3.1}.",
- "Therefore, $V(\\mathbf{G}(\\partial S))=0$, by Lemma~\\ref{thmtype:7.3.4}.",
- "But $\\mathbf{G}(\\partial S)=",
- "\\partial(\\mathbf{G}(S))$ (Exercise~\\ref{exer:6.3.23}), so",
- "$V(\\partial(\\mathbf{G}(S)))=0$, which implies that",
- "$\\mathbf{G}(S)$ is Jordan measurable, again by Theorem~\\ref{thmtype:7.3.1}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.1",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.4",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.1"
- ],
- "ref_ids": [
- 214,
- 264,
- 214
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 216,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.7",
- "categories": [],
- "title": "",
- "contents": [
- "If $S$ is a compact Jordan measurable subset",
- " of $\\R^n$ and $\\mathbf{L}:\\R^n\\to \\R^n$ is the invertible linear",
- "transformation",
- "$\\mathbf{X}=\\mathbf{L}(\\mathbf{Y})=\\mathbf{AY},$ then",
- "\\begin{equation}\\label{eq:7.3.14}",
- "V(\\mathbf{L}(S))=|\\det(\\mathbf{A})| V(S).",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Theorem~\\ref{thmtype:7.3.5} implies that $\\mathbf{L}(S)$ is",
- "Jordan measurable. If",
- "\\begin{equation} \\label{eq:7.3.15}",
- "V(\\mathbf{L}(R))=|\\det(\\mathbf{A})| V(R)",
- "\\end{equation}",
- "whenever $R$ is a rectangle, then",
- " \\eqref{eq:7.3.14} holds if $S$",
- "is any compact Jordan measurable set. To see this, suppose that",
- "$\\epsilon>0$, let",
- "$R$ be a rectangle containing $S$, and let",
- "${\\bf P}=\\{R_1,R_2,\\dots,R_k\\}$ be a partition of $R$ such that the",
- "upper and lower sums of $\\psi_S$ over ${\\bf",
- "P}$ satisfy the inequality",
- "\\begin{equation}\\label{eq:7.3.16}",
- "S({\\bf P})-s({\\bf P})<\\epsilon.",
- "\\end{equation}",
- "Let ${\\mathcal U}_1$ and ${\\mathcal U}_2$ be as in \\eqref{eq:7.3.2}.",
- "From \\eqref{eq:7.3.3} and \\eqref{eq:7.3.4},",
- "\\begin{equation}\\label{eq:7.3.17}",
- "s({\\bf P})=\\sum_{j\\in{\\mathcal U}_1} V(R_j)\\le V(S)\\le\\sum_{j\\in{\\mathcal U}_1} V(R_j)+\\sum_{j\\in{\\mathcal U}_2}",
- "V(R_j)=S({\\bf P}).",
- "\\end{equation}",
- " Theorem~\\ref{thmtype:7.3.7}",
- "implies that $\\mathbf{L}(R_1)$, $\\mathbf{L}(R_2)$, \\dots, $\\mathbf{L}(R_k)$",
- "and",
- "$\\mathbf{L}(S)$ are all Jordan measurable.",
- "Since",
- "$$",
- "\\bigcup_{j\\in{\\mathcal U}_1}R_j\\subset S\\subset\\bigcup_{j\\in{\\mathcal",
- "S}_1\\cup{\\mathcal S_2}}R_j,",
- "$$",
- "it follows that",
- "$$",
- "L\\left(\\bigcup_{j\\in{\\mathcal U}_1}R_j\\right)\\subset",
- "L(S)\\subset L\\left(\\bigcup_{j\\in{\\mathcal S}_1\\cup{\\mathcal S_2}}R_j\\right).",
- "$$",
- "Since $L$ is one-to-one on $\\R^n$, this implies that",
- "\\begin{equation} \\label{eq:7.3.18}",
- "\\sum_{j\\in{\\mathcal U}_1} V(\\mathbf{L}(R_j))\\le V(\\mathbf{L}(S))\\le\\sum_{j\\in{\\mathcal U}_1}",
- "V(\\mathbf{L}(R_j))+\\sum_{j\\in{\\mathcal U}_2} V(\\mathbf{L}(R_j)).",
- "\\end{equation}",
- "If we assume that \\eqref{eq:7.3.15} holds whenever $R$ is a rectangle,",
- "then",
- "$$",
- "V(\\mathbf{L}(R_j))=|\\det(\\mathbf{A})|V(R_j),\\quad 1\\le j\\le k,",
- "$$",
- "so \\eqref{eq:7.3.18} implies that",
- "$$",
- "s({\\bf P})\\le \\frac{V(\\mathbf{L}(S))}{ |\\det(\\mathbf{A})|}\\le S({\\bf P}).",
- "$$",
- "This, \\eqref{eq:7.3.16} and \\eqref{eq:7.3.17} imply that",
- "$$",
- "\\left|V(S)-\\frac{V(\\mathbf{L}(S))}{ |\\det(\\mathbf{A})|}\\right|<\\epsilon;",
- "$$",
- "hence, since $\\epsilon$ can be made arbitrarily small, \\eqref{eq:7.3.14}",
- "follows for any Jordan measurable set.",
- "To complete the proof, we must verify \\eqref{eq:7.3.15} for every",
- "rectangle",
- "$$",
- "R=[a_1,b_1]\\times [a_2,b_2]\\times\\cdots\\times [a_n,b_n]=I_1\\times",
- "I_2\\times\\cdots\\times I_n.",
- "$$",
- " Suppose that $\\mathbf{A}$ in \\eqref{eq:7.3.12} is an elementary matrix;",
- "that is, let",
- "$$",
- "\\mathbf{X}=\\mathbf{L}(\\mathbf{Y})=\\mathbf{EY}.",
- "$$",
- "{\\sc Case 1}. If $\\mathbf{E}$ is obtained by interchanging the $i$th and",
- "$j$th rows of $\\mathbf{I}$, then",
- "$$",
- "x_r=\\left\\{\\casespace\\begin{array}{ll} y_r&\\mbox{if $r\\ne i$ and $r\\ne j$};\\\\",
- "y_j&\\mbox{if $r=i$};\\\\",
- "y_i&\\mbox{if $r=j$}.\\end{array}\\right.",
- "$$",
- "Then $\\mathbf{L}(R)$ is the Cartesian product of $I_1$,",
- "$I_2$, \\dots, $I_n$ with",
- "$I_i$ and $I_j$ interchanged, so",
- "$$",
- "V(\\mathbf{L}(R))=V(R)=|\\det(\\mathbf{E})|V(R)",
- "$$",
- "since $\\det(\\mathbf{E})=-1$ in this case (Exercise~\\ref{exer:7.3.7}\\part{a}).",
- "{\\sc Case 2}. If $\\mathbf{E}$ is obtained by multiplying the $r$th row of",
- "$\\mathbf{I}$ by $a$, then",
- "$$",
- "x_r=\\left\\{\\casespace\\begin{array}{ll} y_r&\\mbox{if $r\\ne i$},\\\\",
- "ay_i&\\mbox{if $r=i$}.\\end{array}\\right.",
- "$$",
- "Then",
- "$$",
- "\\mathbf{L}(R)=I_1\\times\\cdots\\times I_{i-1}\\times I'_i\\times I_{i+1}\\times",
- "\\cdots\\times I_n,",
- "$$",
- "where $I'_i$ is an interval with length equal to $|a|$ times the",
- "length of $I_i$, so",
- "$$",
- "V(\\mathbf{L}(R))=|a|V(R)=|\\det(\\mathbf{E})|V(R)",
- "$$",
- "since $\\det(\\mathbf{E})=a$ in this case (Exercise~\\ref{exer:7.3.7}\\part{a}).",
- "{\\sc Case 3}. If $\\mathbf{E}$ is obtained by adding $a$ times the $j$th",
- "row of $\\mathbf{I}$ to its $i$th row ($j\\ne i$), then",
- "$$",
- "x_r=\\left\\{\\casespace\\begin{array}{ll} y_r&\\mbox{if $r\\ne i$};\\\\",
- "y_i+ay_j&\\mbox{if $r=i$}.\\end{array}\\right.",
- "$$",
- "Then",
- "$$",
- "\\mathbf{L}(R)=\\set{(x_1,x_2,\\dots,x_n)}{a_i+ax_j\\le x_i\\le b_i+ax_j",
- "\\mbox{ and } a_r\\le x_r\\le b_r\\mbox{if } r\\ne i},",
- "$$",
- "which is a parallelogram if $n=2$ and a parallelepiped if $n=3$",
- "(Figure~\\ref{figure:7.3.1}). Now",
- "$$",
- "V(\\mathbf{L}(R))=\\int_{\\mathbf{L}(R)} d\\mathbf{X},",
- "$$",
- "which we can evaluate as an iterated integral in which the first",
- "integration is with respect to $x_i$. For example, if $i=1$, then",
- "\\begin{equation}\\label{eq:7.3.19}",
- "V(\\mathbf{L}(R))=\\int^{b_n}_{a_n} dx_n\\int^{b_{n-1}}_{a_{n-1}}",
- "dx_{n-1}\\cdots\\int^{b_2}_{a_2} dx_2\\int^{b_1+ax_j}_{a_1+ax_j} dx_1.",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "Since",
- "$$",
- "\\int^{b_1+ax_j}_{a_1+ax_j} dy_1=\\int^{b_1}_{a_1} dy_1,",
- "$$",
- "\\eqref{eq:7.3.19} can be rewritten as",
- "\\begin{eqnarray*}",
- "V(\\mathbf{L}(R))\\ar=\\int^{b_n}_{a_n} dx_n\\int^{b_{n-1}}_{a_{n-1}}",
- "dx_{n-1}\\cdots\\int^{b_2}_{a_2} dx_2\\int^{b_1}_{a_1} dx_1\\\\",
- "\\ar=(b_n-a_n)(b_{n-1}-a_{n-1})\\cdots (b_1-a_1)=V(R).",
- "\\end{eqnarray*}",
- " Hence,",
- "$V(\\mathbf{L}(R))=|\\det(\\mathbf{E})|V(R)$,",
- "since $\\det(\\mathbf{E})=1$ in this case (Exercise~\\ref{exer:7.3.7}\\part{a}).",
- "\\vskip12pt",
- " \\centereps{3.6in}{4.6in}{fig070301.eps}",
- " \\vskip6pt",
- " \\refstepcounter{figure}",
- " \\centerline{\\bf Figure \\thefigure} \\label{figure:7.3.1}",
- " \\vskip12pt",
- "From what we have shown so far, \\eqref{eq:7.3.14} holds if $\\mathbf{A}$ is an",
- "elementary matrix and $S$ is any compact Jordan measurable set. If",
- "$\\mathbf{A}$ is an arbitrary nonsingular matrix,",
- "\\newpage",
- "\\noindent",
- "\\hskip -.0em",
- "then we can write $\\mathbf{A}$",
- "as a product of elementary matrices \\eqref{eq:7.3.10} and apply our known",
- "result successively to $\\mathbf{L}_1$, $\\mathbf{L}_2$, \\dots, $\\mathbf{L}_k$",
- "(see",
- "\\eqref{eq:7.3.13}). This yields",
- "$$",
- "V(\\mathbf{L}(S))=|\\det(\\mathbf{E}_k)|\\,|\\det(\\mathbf{E}_{k-1})|\\cdots",
- "|\\det\\mathbf{E}_1| V(S)=|\\det(\\mathbf{A})|V(S),",
- "$$",
- "by Theorem~\\ref{thmtype:6.1.9} and induction."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.5",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.7",
- "TRENCH_REAL_ANALYSIS-thmtype:6.1.9"
- ],
- "ref_ids": [
- 215,
- 216,
- 173
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 217,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.8",
- "categories": [],
- "title": "",
- "contents": [
- "\\E^n\\to \\R^n$ is regular on a compact Jordan measurable set $S$ and",
- "$f$ is continuous on $\\mathbf{G}(S).$ Then",
- "\\begin{equation}\\label{eq:7.3.28}",
- "\\int_{\\mathbf{G}(S)} f(\\mathbf{X})\\,d\\mathbf{X}=",
- "\\int_S f(\\mathbf{G}(\\mathbf{Y}))",
- "|J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $s$ be the edge length of $C$. Let $\\mathbf{Y}_0=",
- "(c_1,c_2,\\dots,c_n)$ be the center of $C$, and suppose that",
- " $\\mathbf{H}=(y_1,y_2,\\dots,y_n)\\in C$.",
- "If $\\mathbf{H}= (h_1,h_2,\\dots,h_n)$ is continuously differentiable on",
- "$C$, then applying the mean value theorem",
- "(Theorem~\\ref{thmtype:5.4.5}) to the components of",
- "$\\mathbf{H}$ yields",
- "$$",
- "h_i(\\mathbf{Y})-h_i(\\mathbf{Y}_0)=\\sum_{j=1}^n",
- "\\frac{\\partial h_i(\\mathbf{Y}_i)}{\\partial y_j}(y_j-c_j),\\quad 1\\le i\\le n,",
- "$$",
- "where $\\mathbf{Y}_i\\in C$. Hence, recalling that",
- "$$",
- "\\mathbf{H}'(\\mathbf{Y})=\\left[\\frac{\\partial h_i}{\\partial",
- "y_j}\\right]_{i,j=1}^n,",
- "$$",
- "applying Definition~\\ref{thmtype:7.3.9}, and noting that $|y_j-c_j|\\le",
- "s/2$, $1\\le j\\le n$, we infer that",
- "$$",
- "|h_i(\\mathbf{Y})-h_i(\\mathbf{Y}_0)|\\le \\frac{s}{2}",
- "\\max\\set{\\|\\mathbf{H}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in C},\\quad 1\\le i\\le",
- "n.",
- "$$",
- "This means that $\\mathbf{H}(C)$ is",
- "contained in a cube with center $\\mathbf{X}_0=\\mathbf{H}(\\mathbf{Y}_0)$ and edge",
- " length",
- "$$",
- "s\\max\\set{\\|\\mathbf{H}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in C}.",
- "$$",
- "Therefore,",
- "\\begin{equation}\\label{eq:7.3.30}",
- "\\begin{array}{rcl}",
- "V(\\mathbf{H}(C))\\ar\\le",
- "\\left[\\max\\set{\\|\\mathbf{H}'(\\mathbf{Y})\\|_\\infty\\right]^n}{\\mathbf{Y}\\in",
- "C} s^n\\\\[2\\jot]",
- "\\ar=\\left[\\max\\set{\\|\\mathbf{H}'(\\mathbf{Y})\\|_\\infty\\right]^n}{\\mathbf{Y}\\in C}",
- "V(C).",
- "\\end{array}",
- "\\end{equation}",
- "Now let",
- "$$",
- "\\mathbf{L}(\\mathbf{X})=\\mathbf{A}^{-1}\\mathbf{X}",
- "$$",
- "and set $\\mathbf{H}=\\mathbf{L}\\circ\\mathbf{G}$; then",
- "$$",
- "\\mathbf{H}(C)=\\mathbf{L}(\\mathbf{G}(C))",
- "\\mbox{\\quad and\\quad}\\mathbf{H}'=\\mathbf{A}^{-1}\\mathbf{G}',",
- "$$",
- "so \\eqref{eq:7.3.30} implies that",
- "\\begin{equation}\\label{eq:7.3.31}",
- "V(\\mathbf{L}(\\mathbf{G}(C)))\\le",
- "\\left[\\max\\set{\\|\\mathbf{A}^{-1}\\mathbf{G}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in C}",
- "\\right]^nV(C).",
- "\\end{equation}",
- "Since $\\mathbf{L}$ is linear,",
- "Theorem~\\ref{thmtype:7.3.7} with $\\mathbf{A}$ replaced by $\\mathbf{A}^{-1}$ implies that",
- "$$",
- "V(\\mathbf{L}(\\mathbf{G}(C)))=|\\det(\\mathbf{A})^{-1}|V(\\mathbf{G}(C)).",
- "$$",
- "This and \\eqref{eq:7.3.31} imply that",
- "$$",
- "|\\det(\\mathbf{A}^{-1})|V(\\mathbf{G}(C))",
- "\\le\\left[\\max\\set{\\|\\mathbf{A}^{-1}\\mathbf{G}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in",
- "C}",
- "\\right]^nV(C).",
- "$$",
- "Since $\\det(\\mathbf{A}^{-1})=1/\\det(\\mathbf{A})$, this",
- "implies \\eqref{eq:7.3.29}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.5",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.9",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.7"
- ],
- "ref_ids": [
- 164,
- 365,
- 216
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 218,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.15",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{G}: \\E^n\\to \\R^n$ is continuously",
- "differentiable on a bounded open set $N$ containing the compact",
- "Jordan measurable set $S,$ and regular on $S^0.$ Suppose also that",
- "$\\mathbf{G}(S)$ is Jordan measurable$,$",
- "$f$ is continuous on $\\mathbf{G}(S),$ and $G(C)$ is Jordan measurable for",
- "every cube $C\\subset N$. Then",
- "\\begin{equation}\\label{eq:7.3.50}",
- "\\int_{\\mathbf{G}(S)} f(\\mathbf{X})\\,d\\mathbf{X}=",
- "\\int_S f(\\mathbf{G}(\\mathbf{Y})) |J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $f$ is continuous on $\\mathbf{G}(S)$ and",
- " $(|J\\mathbf{G}|) f\\circ\\mathbf{G}$ is continuous on $S$, the integrals",
- "in \\eqref{eq:7.3.50} both exist, by",
- "Corollary~\\ref{thmtype:7.3.2}.",
- "Now let",
- "$$",
- "\\rho=\\dist\\ (\\partial S, N^c)",
- "$$",
- "(Exercise~5.1.25), and",
- "$$",
- "P=\\set{\\mathbf{Y}}{\\dist(\\mathbf{Y}, \\partial S)}\\le",
- "\\frac{\\rho}{2}.",
- "$$",
- " Then $P$ is a",
- "compact subset of $N$ (Exercise~5.1.26) and",
- "$\\partial S\\subset P^0$",
- "(Figure~\\ref{figure:7.3.4}).",
- " Since $S$ is Jordan measurable, $V(\\partial S)=0$, by",
- "Theorem~\\ref{thmtype:7.3.1}. Therefore,",
- "if $\\epsilon>0$, we can choose cubes $C_1$, $C_2$, \\dots, $C_k$",
- " in $P^0$ such that",
- "\\begin{equation} \\label{eq:7.3.51}",
- "\\partial S\\subset\\bigcup_{j=1}^k C_j^0",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:7.3.52}",
- "\\sum_{j=1}^k V(C_j)<\\epsilon",
- "\\end{equation}",
- " Now let $S_1$ be the closure of the set of points in $S$",
- "that are not in any of the cubes $C_1$, $C_2$, \\dots, $C_k$; thus,",
- "$$",
- "S_1=\\overline{S\\cap\\left(\\cup_{j=1}^k C_j\\right)^c}.",
- "$$",
- "\\newpage",
- "\\noindent",
- "Because of \\eqref{eq:7.3.51}, $S_1\\cap \\partial S=\\emptyset$,",
- "so $S_1$ is a compact Jordan measurable subset of $S^0$. Therefore,",
- "$\\mathbf{G}$ is regular on $S_1$, and $f$ is continuous on",
- "$\\mathbf{G}(S_1)$.",
- "Consequently, if $Q$ is as defined in \\eqref{eq:7.3.37}, then $Q(S_1)=0$",
- "by Theorem~\\ref{thmtype:7.3.8}.",
- " \\vskip12pt",
- " \\centereps{2.1in}{2.8in}{fig070304.eps}",
- " \\vskip6pt",
- " \\refstepcounter{figure}",
- " \\centerline{\\bf Figure \\thefigure} \\label{figure:7.3.4}",
- " \\vskip12pt",
- "Now",
- "\\begin{equation}\\label{eq:7.3.53}",
- "Q(S)=Q(S_1)+Q(S\\cap S_1^c)=Q(S\\cap S_1^c)",
- "\\end{equation}",
- "(Exercise~\\ref{exer:7.3.11}) and",
- "$$",
- "|Q(S\\cap S_1^c)|\\le\\left|\\int_{\\mathbf{G}(S\\cap S_1^c)} f(\\mathbf{X})\\,d\\mathbf{X}\\right|+\\left|",
- "\\int_{S\\cap S_1^c} f(\\mathbf{G}(\\mathbf{Y}))|J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}\\right|.",
- "$$",
- " But",
- "\\begin{equation} \\label{eq:7.3.54}",
- "\\left|\\int_{S\\cap S_1^c} f(\\mathbf{G}(\\mathbf{Y})) |J\\mathbf{G}(\\mathbf{Y})|\\,",
- "d\\mathbf{Y}\\right|\\le M_1M_2 V(S\\cap S_1^c),",
- "\\end{equation}",
- "where $M_1$ and $M_2$ are as defined in \\eqref{eq:7.3.38} and",
- "\\eqref{eq:7.3.39}. Since",
- "$S\\cap S_1^c\\subset \\cup_{j=1}^k C_j$,",
- "\\eqref{eq:7.3.52} implies that $V(S\\cap S_1^k)<\\epsilon$; therefore,",
- "\\begin{equation} \\label{eq:7.3.55}",
- "\\left|\\int_{S\\cap S_1^c} f(\\mathbf{G}(\\mathbf{Y})) |J\\mathbf{G}(\\mathbf{Y})|\\,",
- "d\\mathbf{Y}\\right|\\le M_1M_2\\epsilon,",
- "\\end{equation}",
- "from \\eqref{eq:7.3.54}. Also",
- "\\begin{equation}\\label{eq:7.3.56}",
- "\\left|\\int_{\\mathbf{G}(S\\cap S_1^c)} f(\\mathbf{X})\\,d\\mathbf{X}\\right|\\le M_2",
- "V(\\mathbf{G}(S\\cap S_1^c))\\le M_2\\sum_{j=1}^k V(\\mathbf{G}(C_j)).",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "By the argument that led to \\eqref{eq:7.3.30} with",
- "${\\bf H}={\\bf G}$ and $C=C_{j}$,",
- "$$",
- "V(\\mathbf{G}(C_j))\\le\\left[\\max\\set{\\|\\mathbf{G}'(\\mathbf{Y})\\|_\\infty}",
- "{\\mathbf{Y}\\in C_j}\\right]^nV(C_j),",
- "$$",
- "so \\eqref{eq:7.3.56} can be rewritten as",
- "$$",
- "\\left|\\int_{\\mathbf{G}(S\\cap S_1^c)} f(\\mathbf{X})\\,d\\mathbf{X}\\right|\\le M_2",
- "\\left[\\max\\set{\\|\\mathbf{G}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in P}",
- "\\right]^n\\epsilon,",
- "$$",
- "because of \\eqref{eq:7.3.52}. Since $\\epsilon$ can be made arbitrarily",
- "small, this and \\eqref{eq:7.3.55} imply that $Q(S\\cap S_1^c)=0$. Now",
- "$Q(S)=0$, from \\eqref{eq:7.3.53}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.2",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.1",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.8"
- ],
- "ref_ids": [
- 297,
- 214,
- 217
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 219,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.4",
- "categories": [],
- "title": "",
- "contents": [
- "If $(A,N)$ is a normed vector space$,$ then",
- "\\begin{equation} \\label{eq:8.1.1}",
- "\\rho(x,y)=N(x-y)",
- "\\end{equation}",
- "is a metric on $A.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "From \\part{a} with $u=x-y$, $\\rho(x,y)=N(x-y)\\ge0$, with equality",
- "if and only if $x=y$. From \\part{b} with $u=x-y$ and $a=-1$,",
- "$$",
- "\\rho(y,x)=N(y-x)=N(-(x-y))=N(x-y)=\\rho(x,y).",
- "$$",
- "From \\part{c} with $u=x-z$ and $v=z-y$,",
- "$$",
- "\\rho(x,y)=N(x-y)\\le N(x-z)+N(z-y)=\\rho(x,z)+\\rho(z,y).",
- "$$",
- "\\vskip-2em"
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 220,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.5",
- "categories": [],
- "title": "",
- "contents": [
- "If $x$ and $y$ are vectors in a normed vector space $(A,N),$ then",
- "\\begin{equation} \\label{eq:8.1.2}",
- "|N(x)-N(y)|\\le N(x-y).",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since",
- "$$",
- "x=y+(x-y),",
- "$$",
- "Definition~\\ref{thmtype:8.1.3}\\part{c} with $u=y$ and $v=x-y$ implies that",
- "$$",
- "N(x)\\le N(y)+N(x-y),",
- "$$",
- "or",
- "$$",
- "N(x)-N(y)\\le N(x-y).",
- "$$",
- "Interchanging $x$ and $y$ yields",
- "$$",
- "N(y)-N(x)\\le N(y-x).",
- "$$",
- "Since $N(x-y)=N(y-x)$ (Definition~\\ref{thmtype:8.1.3}\\part{b} with",
- "$u=x-y$ and $a=-1$), the last two inequalities imply \\eqref{eq:8.1.2}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:8.1.3",
- "TRENCH_REAL_ANALYSIS-thmtype:8.1.3"
- ],
- "ref_ids": [
- 368,
- 368
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 221,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.9",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{X}\\in\\R^n$ and $p_2>p_1\\ge1,$ then",
- "\\begin{equation} \\label{eq:8.1.12}",
- "\\|\\mathbf{X}\\|_{p_2}\\le\\|\\mathbf{X}\\|_{p_1};",
- "\\end{equation}",
- "moreover,",
- "\\begin{equation} \\label{eq:8.1.13}",
- "\\lim_{p\\to\\infty}\\|\\mathbf{X}\\|_{p}=\\max\\set{|x_i|}{1\\le i\\le n}.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $u_1$, $u_2$, \\dots, $u_n$ be",
- "nonnegative and $M=\\max\\set{u_i}{1\\le i\\le n}$. Define",
- "$$",
- "\\sigma(p)=\\left(\\sum_{i=1}^n u_i^p\\right)^{1/p}.",
- "$$",
- "Since $u_i/\\sigma(p)\\le1$ and $p_2>p_1$,",
- "$$",
- "\\left(\\frac{u_i}{\\sigma(p_2)}\\right)^{p_1}\\ge",
- "\\left(\\frac{u_i}{\\sigma(p_2)}\\right)^{p_2};",
- "$$",
- " therefore,",
- "$$",
- "\\frac{\\sigma(p_1)}{\\sigma(p_2)}",
- "=\\left(\\sum_{i=1}^n\\left(\\frac{",
- "u_i}{\\sigma(p_2)}\\right)^{p_1}\\right)^{1/p_1}",
- "\\ge\\left(\\sum_{i=1}^n\\left(\\frac{",
- "u_i}{\\sigma(p_2)}\\right)^{p_2}\\right)^{1/p_1}=1,",
- "$$",
- "so $\\sigma(p_1)\\ge\\sigma(p_2)$.",
- "Since $M\\le\\sigma(p)\\le Mn^{1/p}$,",
- "$\\lim_{p\\to\\infty}\\sigma(p)= M$.",
- "Letting $u_i=|x_i|$ yields \\eqref{eq:8.1.12} and \\eqref{eq:8.1.13}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 222,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.11",
- "categories": [],
- "title": "",
- "contents": [
- "\\begin{alist}",
- "\\item % (a)",
- " The union of open sets is open.",
- "\\item % (b)",
- " The intersection of closed sets is closed.",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 223,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.13",
- "categories": [],
- "title": "",
- "contents": [
- "contains all its limit points$.$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 224,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.15",
- "categories": [],
- "title": "",
- "contents": [
- "\\begin{alist}",
- "\\item % (a)",
- "The limit of a convergent sequence is unique$.$",
- "\\item % (b)",
- "If $\\lim_{n\\to\\infty}u_n=u,$ then every subsequence of",
- "$\\{u_n\\}$ converges to $u.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 225,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.17",
- "categories": [],
- "title": "",
- "contents": [
- "If a sequence $\\{u_n\\}$ in a metric space $(A,\\rho)$ is convergent$,$",
- "then it is a Cauchy sequence."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $\\lim_{n\\to\\infty}u_n=u$. If $\\epsilon>0$, there is an integer",
- "$N$ such that",
- "$\\rho(u_n,u)<\\epsilon/2$ if $n>N$. Therefore, if $m$, $n>N$, then",
- "$$",
- "\\rho(u_n,u_m)\\le\\rho(u_n,u)+\\rho(u,u_m)<\\epsilon.",
- "$$",
- "\\vskip-2em"
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 226,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.19",
- "categories": [],
- "title": "The Principle of Nested Sets",
- "contents": [
- "A metric space $(A,\\rho)$ is complete if and only if every",
- "nested sequence",
- "$\\{T_n\\}$ of nonempty closed subsets of $A$ such that",
- " $\\lim_{n\\to\\infty}d(T_n)=0$",
- "has a nonempty intersection$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $(A,\\rho)$ is complete and $\\{T_n\\}$",
- "is a nested sequence",
- " of nonempty closed subsets of $A$ such that",
- " $\\lim_{n\\to\\infty}d(T_n)=0$.",
- "For each $n$, choose",
- " $t_n\\in T_n$. If $m\\ge n$,",
- "then $t_m$, $t_n\\in T_n$, so $\\rho(t_n,t_m)1$ and we have specified $n_1$, $n_2$, \\dots, $n_{j-1}$",
- "and",
- "$T_1$, $T_2$, \\dots, $T_{j-1}$. Choose $n_j>n_{j-1}$ so that",
- "$\\rho(t_n,t_{n_j})<2^{-j}$ if $n\\ge n_j$, and let",
- "$T_j=\\set{t}{\\rho(t,t_{n_j})\\le2^{-j+1}}$. Then $T_j$ is closed",
- "and nonempty, $T_{j+1}\\subset T_j$ for all $j$, and",
- "$\\lim_{j\\to\\infty}d(T_j)=0$. Moreover, $t_n\\in T_j$ if $n\\ge n_j$.",
- "Therefore, if $\\overline t\\in\\cap_{j=1}^\\infty T_j$, then",
- "$\\rho(t_n,\\overline t)<2^{-j}$, $n\\ge n_j$, so",
- "$\\lim_{n\\to\\infty}t_n=\\overline t$, contrary to our assumption.",
- "Hence, $\\cap_{j=1}^\\infty T_j=\\emptyset$.",
- "\\boxit{Equivalent Metrics}",
- "When considering more than one metric on a given set $A$",
- "we must be careful, for example, in saying that a set is open,",
- "or that a sequence converges, etc., since the truth or falsity",
- "of the statement will in general depend on the metric as well as the",
- "set on which it is imposed. In this situation we will alway",
- "refer to the metric space by its ``full name;\" that is, $(A,\\rho)$",
- "rather than just $A$.",
- "\\begin{definition} \\label{thmtype:8.1.20}",
- "If $\\rho$ and $\\sigma$ are both metrics on a set $A$, then $\\rho$",
- "and $\\sigma$ are {\\it equivalent \\/}",
- "\\hskip-.2em if there are positive constants $\\alpha$ and $\\beta$",
- "such that",
- "\\begin{equation} \\label{eq:8.1.18}",
- "\\alpha\\le\\frac{\\rho(x,y)}{\\sigma(x,y)}\\le\\beta",
- "\\mbox{\\quad for all \\quad}x,y\\in A\\mbox{\\quad such that \\quad}x\\ne y.",
- "\\end{equation}",
- "\\end{definition}"
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 227,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.21",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\rho$ and $\\sigma$ are equivalent metrics on a set $A,$ then",
- " $(A,\\rho)$ and $(A,\\sigma)$ have the same open sets."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that \\eqref{eq:8.1.18} holds. Let $S$ be an open set in",
- "$(A,\\rho)$ and let $x_0\\in S$. Then there is an $\\epsilon>0$ such",
- "that $x\\in S$ if $\\rho(x,x_0)<\\epsilon$, so the second",
- "inequality in \\eqref{eq:8.1.18}",
- "implies that $x_0\\in S$ if $\\sigma(x,x_0)\\le\\epsilon/\\beta$.",
- "Therefore, $S$ is open in $(A,\\sigma)$.",
- "Conversely, suppose that $S$ is open in $(A,\\sigma)$",
- "and let $x_0\\in S$. Then there is an $\\epsilon>0$ such",
- "that $x\\in S$ if $\\sigma(x,x_0)<\\epsilon$, so the first",
- "inequality in \\eqref{eq:8.1.18}",
- "implies that $x_0\\in S$ if $\\rho(x,x_0)\\le\\epsilon\\alpha$.",
- "Therefore, $S$ is open in $(A,\\rho)$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 228,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.22",
- "categories": [],
- "title": "",
- "contents": [
- "Any two norms $N_1$ and $N_2$ on $\\R^n$ induce equivalent",
- "metrics on~$\\R^n.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "It suffices to show that there are positive constants $\\alpha$",
- "and $\\beta$ such",
- "\\begin{equation} \\label{eq:8.1.19}",
- "\\alpha\\le\\frac{N_1(\\mathbf{X})}{N_2{(\\bf X})}\\le\\beta\\mbox{\\quad if",
- "\\quad}",
- "\\mathbf{X}\\ne\\mathbf{0}.",
- "\\end{equation}",
- "We will show that if $N$ is any norm on $\\R^n$, there are",
- "positive constants $a_N$ and $b_N$ such that",
- "\\begin{equation} \\label{eq:8.1.20}",
- "a_N\\|\\mathbf{X}\\|_2\\le N(\\mathbf{X})\\le b_N\\|\\mathbf{X}\\|_2 \\mbox{\\quad if",
- "\\quad}",
- "\\mathbf{X}\\ne\\mathbf{0}",
- "\\end{equation}",
- "and leave it to you to verify that this implies \\eqref{eq:8.1.19}",
- "with $\\alpha=a_{N_1}/b_{N_2}$ and $\\beta=b_{N_1}/a_{N_2}$.",
- "We write $\\mathbf{X}-\\mathbf{Y}=(x_1,x_2, \\dots,x_n)$ as",
- "$$",
- "\\mathbf{X}-\\mathbf{Y}=\\sum_{i=1}^n\\,(x_i-y_i)\\mathbf{E}_i,",
- "$$",
- "where $\\mathbf{E}_i$ is the vector with $i$th component equal to $1$",
- "and all other components equal to $0$. From",
- "Definition~\\ref{thmtype:8.1.3}\\part{b}, \\part{c}, and induction,",
- "$$",
- "N(\\mathbf{X}-\\mathbf{Y})\\le\\sum_{i=1}^n|x_i-y_i|N(\\mathbf{E_i});",
- "$$",
- "therefore, by Schwarz's inequality,",
- "\\begin{equation} \\label{eq:8.1.21}",
- "N(\\mathbf{X}-\\mathbf{Y})\\le K\\|\\mathbf{X}-\\mathbf{Y}\\|_2,",
- "\\end{equation}",
- "where",
- "$$",
- "K=\\left(\\sum_{i=1}^nN^2(\\mathbf{E_i})\\right)^{1/2}.",
- "$$",
- "From \\eqref{eq:8.1.21} and Theorem~\\ref{thmtype:8.1.5},",
- "$$",
- "|N(\\mathbf{X})-N(\\mathbf{Y})|\\le K\\|\\mathbf{X}-\\mathbf{Y}\\|_2,",
- "$$",
- "so $N$ is continuous on $\\R_2^n=\\R^n$.",
- "By Theorem~\\ref{thmtype:5.2.12}, there are vectors",
- "$\\mathbf{U}_1$ and $\\mathbf{U}_2$ such that $\\|\\mathbf{U}_1\\|_2=",
- "\\|\\mathbf{U}_2\\|_2=1$,",
- "$$",
- "N(\\mathbf{U}_1)=\\min\\set{N(\\mathbf{U})}{\\|\\mathbf{U}\\|_2=1},",
- "\\mbox{\\quad and \\quad}",
- "N(\\mathbf{U}_2)=\\max\\set{N(\\mathbf{U})}{\\|\\mathbf{U}\\|_2=1}.",
- "$$",
- "If",
- "$a_N=N(\\mathbf{U}_1)$ and $b_N=N(\\mathbf{U}_2)$, then",
- "$a_N$ and $b_N$ are positive",
- "(Definition~\\ref{thmtype:8.1.3}\\part{a}), and",
- "$$",
- "a_N\\le N\\left(\\frac{\\mathbf{X}}{\\|\\mathbf{X}\\|_2}\\right)\\le b_N",
- "\\mbox{\\quad if \\quad} \\mathbf{X}\\ne\\mathbf{0}.",
- "$$",
- "This and Definition~\\ref{thmtype:8.1.3}\\part{b} imply",
- "\\eqref{eq:8.1.20}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:8.1.3",
- "TRENCH_REAL_ANALYSIS-thmtype:8.1.5",
- "TRENCH_REAL_ANALYSIS-thmtype:5.2.12",
- "TRENCH_REAL_ANALYSIS-thmtype:8.1.3",
- "TRENCH_REAL_ANALYSIS-thmtype:8.1.3"
- ],
- "ref_ids": [
- 368,
- 220,
- 152,
- 368,
- 368
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 229,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.23",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\rho$ and $\\sigma$ are equivalent metrics on $A.$ Then",
- "\\begin{alist}",
- "\\item % (a)",
- "A sequence $\\{u_n\\}$ converges to $u$ in $(A,\\rho)$ if and only",
- "if it converges to $u$ in~$(A,\\sigma).$",
- "\\item % (a)",
- "A sequence $\\{u_n\\}$ is a Cauchy sequence in $(A,\\rho)$ if and only",
- "if it is a Cauchy sequence in $(A,\\sigma).$",
- "\\item % (b)",
- "$(A,\\rho)$ is complete if and only if $(A,\\sigma)$ is complete$.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 230,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.2.3",
- "categories": [],
- "title": "",
- "contents": [
- "An infinite subset $T$ of $A$ is compact",
- "if and only if every infinite subset of $T$ has a limit point in $T.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $T$ has an infinite",
- "subset $E$ with no limit point in $T$. Then, if $t\\in T$,",
- " there is an open set $H_t$ such that $t\\in H_t$ and $H_t$",
- "contains at most one member of $E$. Then ${\\mathcal",
- "H}=\\cup\\set{H_t}{t\\in T}$ is an open covering of $T$, but",
- " no finite collection $\\{H_{t_1},H_{t_2}, \\dots,H_{t_k}\\}$ of sets",
- "from ${\\mathcal H}$ can cover $E$, since $E$ is infinite. Therefore, no",
- "such collection can cover $T$;",
- "that is, $T$ is not compact.",
- "Now suppose that every infinite subset of $T$ has a limit point in",
- "$T$, and let",
- "${\\mathcal H}$ be an open covering of $T$.",
- "We first show that there is a sequence",
- "$\\{H_i\\}_{i=1}^\\infty$ of sets from ${\\mathcal H}$ that covers $T$.",
- "If $\\epsilon>0$, then $T$ can be covered by",
- " $\\epsilon$-neighborhoods of finitely many points of $T$.",
- "We prove this by contradiction.",
- "Let $t_1\\in T$. If",
- "$N_\\epsilon(t_1)$ does not cover $T$, there is a $t_2\\in T$ such",
- "that",
- "$\\rho(t_1,t_2)\\ge\\epsilon$.",
- "Now suppose that $n\\ge 2$ and we have chosen $t_1$, $t_2$, \\dots, $t_n$",
- "such that $\\rho(t_i,t_j)\\ge\\epsilon$, $1\\le i0$ such that",
- "$N_\\epsilon(t)\\subset H$. Since $t\\in G_j$ for infinitely",
- "many values of $j$ and $\\lim_{j\\to\\infty}d(G_j)=0$,",
- "$$",
- "G_j\\subset N_\\epsilon(t)\\subset H",
- "$$",
- "for some $j$. Therefore,",
- "if $\\{G_{j_i}\\}_{i=1}^\\infty$",
- "is the subsequence of $\\{G_j\\}$ such that $G_{j_i}$ is a subset of",
- "some $H_i$ in ${\\mathcal H}$ (the $\\{H_i\\}$ are not",
- "necessarily distinct), then",
- "\\begin{equation} \\label{eq:8.2.1}",
- "T\\subset\\bigcup_{i=1}^\\infty H_i.",
- "\\end{equation}",
- "We will now show that",
- "\\begin{equation} \\label{eq:8.2.2}",
- "T\\subset \\bigcup_{i=1}^N H_i.",
- "\\end{equation}",
- "for some integer $N$. If this is not so, there is an infinite",
- "sequence $\\{t_n\\}_{n=1}^\\infty$ in $T$ such that",
- "\\begin{equation} \\label{eq:8.2.3}",
- "t_n\\notin \\bigcup_{i=1}^n H_i, \\quad n\\ge 1.",
- "\\end{equation}",
- "From our assumption,",
- " $\\{t_n\\}_{n=1}^\\infty$",
- "has a limit $\\overline t$ in $T$. From \\eqref{eq:8.2.1},",
- "$\\overline t\\in H_k$ for some $k$, so",
- "$N_\\epsilon(\\overline t)\\subset H_k$ for some $\\epsilon>0$. Since",
- "$\\lim_{n\\to\\infty}t_n=\\overline t$, there is an integer $N$ such that",
- "$$",
- "t_n\\in N_\\epsilon(\\overline t)\\subset H_k\\subset \\bigcup_{i=1}^nH_i,\\quad",
- "n>k,",
- "$$",
- "which contradicts \\eqref{eq:8.2.3}. This verifies \\eqref{eq:8.2.2},",
- "so $T$ is compact."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 231,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.2.4",
- "categories": [],
- "title": "",
- "contents": [
- "A subset $T$ of a metric $A$ is compact if and only if",
- "every infinite sequence $\\{t_n\\}$ of members of $T$ has a",
- "subsequence that converges to a member of $T.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $T$ is compact and $\\{t_n\\}\\subset T$. If $\\{t_n\\}$",
- "has only finitely many distinct terms, there is a $\\overline t$",
- "in $T$ such that $t_n=\\overline t$ for infinitely many values of $n$;",
- "if this is so for $n_10$. Since $\\{t_n\\}$ is a Cauchy sequence,",
- "there is an integer $N$ such that $\\rho(t_n,t_m)<\\epsilon$,",
- " $n>m\\ge N$. From \\eqref{eq:8.2.4},",
- "there is an $m=n_j\\ge N$ such that $\\rho(t_m,\\overline t)<\\epsilon$.",
- "Therefore,",
- "$$",
- "\\rho(t_n,\\overline t)\\le \\rho(t_n,t_m)+\\rho(t_m,\\overline",
- "t)<2\\epsilon,\\quad n\\ge m.",
- "$$",
- "\\vskip-2em"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:8.2.4"
- ],
- "ref_ids": [
- 231
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 233,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.2.6",
- "categories": [],
- "title": "",
- "contents": [
- "If $T$ is",
- "compact$,$ then $T$ is closed and bounded."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that",
- " $\\overline t$ is a limit point of $T$. For each $n$, choose",
- "$t_n\\ne\\overline t\\in",
- "B_{1/n}(\\overline t)\\cap T$. Then $\\lim_{n\\to\\infty}t_n=\\overline t$.",
- "Since every subsequence of $\\{t_n\\}$ also converges to $\\overline t$,",
- " $\\overline t\\in T$, by",
- "Theorem~\\ref{thmtype:8.2.3}. Therefore, $T$ is closed.",
- "The family of unit open balls",
- "${\\mathcal H}=\\set{B_1(t)}{t\\in T}$",
- "is an open covering of $T$. Since $T$ is compact, there are",
- "finitely many members $t_1$, $t_2$, \\dots, $t_n$ of $T$ such that",
- "$S\\subset \\cup_{j=1}^nB_1(t_j)$. If $u$ and $v$ are arbitrary",
- "members of $T$, then $u\\in B_1(t_r)$ and $v\\in B_1(t_s)$ for some",
- "$r$ and $s$ in $\\{1,2, \\dots,n\\}$, so",
- "\\begin{eqnarray*}",
- "\\rho(u,v)\\ar\\le \\rho(u,t_r)+\\rho(t_r,t_s)+\\rho(t_s,v)\\\\",
- "\\ar\\le 2+\\rho(t_r,t_s)\\le2+\\max\\set{\\rho(t_i,t_j)}{1\\le i0$",
- "such that there is no finite $\\epsilon$-net for $T$.",
- "Let $t_1\\in T$. Then there must be a $t_2$ in $T$",
- "such that $\\rho(t_1,t_2)>\\epsilon$. (If not, the singleton",
- "set $\\{t_1\\}$ would be a finite $\\epsilon$-net for $T$.)",
- "Now suppose that $n\\ge 2$ and we have chosen $t_1$, $t_2$, \\dots, $t_n$",
- "such that $\\rho(t_i,t_j)\\ge\\epsilon$, $1\\le i1$ and we have chosen",
- "an infinite subsequence $\\{s_{i,n-1}\\}_{i=1}^\\infty$ of",
- "$\\{s_{i,n-2}\\}_{i=1}^\\infty$.",
- "Since $T_{1/n}$ is finite and $\\{s_{i,n-1}\\}_{i=1}^\\infty$",
- "is infinite,",
- "there must be member $t_n$ of $T_{1/n}$ such that",
- "$\\rho(s_{i,n-1},t_n)\\le1/n$ for infinitely many values of $i$.",
- "Let $\\{s_{in}\\}_{i=1}^\\infty$ be the subsequence of",
- "$\\{s_{i,n-1}\\}_{i=1}^\\infty$ such that $\\rho(s_{in},t_n)\\le1/n$.",
- "From the triangle inequality,",
- "\\begin{equation} \\label{eq:8.2.5}",
- "\\rho(s_{in},s_{jn})\\le2/n,\\quad i,j\\ge1,\\quad n\\ge 1.",
- "\\end{equation}",
- "Now let $\\widehat s_i=s_{ii}$, $i\\ge 1$. Then $\\{\\widehat s_i\\}_{i=1}^\\infty$",
- "is an infinite sequence of members of $T$. Moroever, if",
- "$i,j\\ge n$, then $\\widehat s_i$ and $\\widehat s_j$ are both included in",
- "$\\{s_{in}\\}_{i=1}^\\infty$, so \\eqref{eq:8.2.5} implies that",
- "$\\rho(\\widehat s_i,\\widehat s_j)\\le2/n$; that is, $\\{\\widehat s_i\\}_{i=1}^\\infty$",
- "is a Cauchy sequence and therefore has a limit, since $(A,\\rho)$",
- " is complete."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:8.2.4"
- ],
- "ref_ids": [
- 231
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 236,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.2.11",
- "categories": [],
- "title": "",
- "contents": [
- "A nonempty subset $T$ of $C[a,b]$ is compact if and only if",
- "it is closed$,$ uniformly bounded$,$ and equicontinuous."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "For necessity, suppose that $T$ is compact. Then $T$ is closed",
- "(Theorem~\\ref{thmtype:8.2.6}) and totally bounded",
- "(Theorem~\\ref{thmtype:8.2.8}). Therefore, if $\\epsilon>0$, there is",
- "a finite subset $T_\\epsilon=\\{g_1,g_2, \\dots,g_k\\}$ of $C[a,b]$",
- "such that if $f\\in T$, then",
- "$\\|f-g_i\\|\\le \\epsilon$",
- "for some $i$ in $\\{1,2, \\dots,k\\}$.",
- "If we temporarily let $\\epsilon=1$, this implies that",
- "$$",
- "\\|f\\|=\\|(f-g_i)+g_i\\|\\le\\|f-g_i\\|+\\|g_i\\|\\le 1+\\|g_i\\|,",
- "$$",
- "which implies \\eqref{eq:8.2.6} with",
- "$$",
- "M=1+\\max\\set{\\|g_i\\|}{1\\le i\\le k}.",
- "$$",
- "For \\eqref{eq:8.2.7}, we again let $\\epsilon$ be arbitary, and write",
- "\\begin{equation} \\label{eq:8.2.8}",
- "\\begin{array}{rcl}",
- "|f(x_1)-f(x_2)|",
- "\\ar\\le |f(x_1)-g_i(x_1)|+|g_i(x_1)-g_i(x_2)|+|g_i(x_2)-f(x_2)|\\\\",
- "\\ar\\le |g_i(x_1)-g_i(x_2)|+2\\|f-g_i\\|\\\\",
- "\\ar< |g_i(x_1)-g_i(x_2)|+2\\epsilon.",
- "\\end{array}",
- "\\end{equation}",
- "Since each of the finitely many functions $g_1$, $g_2$, \\dots, $g_k$",
- "is uniformly continuous on $[a,b]$",
- "(Theorem~\\ref{thmtype:2.2.12}), there is a $\\delta>0$ such that",
- "$$",
- "|g_i(x_1)-g_i(x_2)|<\\epsilon\\mbox{\\quad if \\quad}",
- "|x_1-x_2|<\\delta,\\quad 1\\le i\\le k.",
- "$$",
- "This and \\eqref{eq:8.2.8} imply \\eqref{eq:8.2.7} with $\\epsilon$",
- "replaced by $3\\epsilon$. Since this replacement is of no consequence,",
- "this proves necessity.",
- "For sufficiency, we will show that $T$ is totally bounded.",
- " Since $T$ is closed by assumption and",
- "$C[a,b]$ is complete, Theorem~\\ref{thmtype:8.2.9} will then imply that",
- "$T$ is compact.",
- "Let $m$ and $n$ be positive integers and let",
- "$$",
- "\\xi_r=a+\\frac{r}{m}(b-a),\\quad 0\\le r\\le m,",
- "\\mbox{\\quad and \\quad}",
- "\\eta_s=\\frac{sM}{n},\\quad -n\\le s\\le n;",
- "$$",
- "that is, $a=\\xi_0<\\xi_1<\\cdots<\\xi_m=b$ is a partition of $[a,b]$",
- "into subintervals of length $(b-a)/m$, and",
- "$-M=\\eta_{-n}<\\eta_{-n+1}<\\cdots<\\eta_{n-1}<\\eta_n=M$ is a partition",
- "of the \\phantom{segment}",
- "\\newpage",
- "\\noindent",
- " segment of the $y$-axis",
- "between $y=-M$ and $y=M$ into",
- "subsegments of length $M/n$.",
- "Let $S_{mn}$ be the subset of $C[a,b]$ consisting of functions $g$",
- "such that",
- "$$",
- "\\{g(\\xi_0), g(\\xi_1), \\dots, g(\\xi_m)\\}",
- "\\subset\\{\\eta_{-n},\\eta_{-n+1} \\dots,\\eta_{n-1}, \\eta_n\\}",
- "$$",
- " and $g$ is linear on",
- " $[\\xi_{i-1},\\xi_i]$,",
- "$1\\le i\\le m$.",
- " Since there are only $(m+1)(2n+1)$",
- "points",
- "of the form $(\\xi_r,\\eta_s)$, $S_{mn}$ is a finite subset of",
- "$C[a,b]$.",
- "Now suppose that $\\epsilon>0$, and choose $\\delta>0$ to satisfy",
- "\\eqref{eq:8.2.7}. Choose $m$ and $n$ so that $(b-a)/m<\\delta$",
- "and $2M/n<\\epsilon$. If $f$ is an arbitrary member of $T$,",
- "there is a $g$ in $S_{mn}$ such that",
- "\\begin{equation} \\label{eq:8.2.9}",
- "|g(\\xi_i)-f(\\xi_i)|<\\epsilon,\\quad",
- "0\\le i\\le m.",
- "\\end{equation}",
- "If $0\\le i\\le m-1$,",
- "\\begin{equation} \\label{eq:8.2.10}",
- "|g(\\xi_i)-g(\\xi_{i+1})|=|g(\\xi_i)-f(\\xi_i)|+|f(\\xi_i)-f(\\xi_{i+1})|",
- "+|f(\\xi_{i+1})-g(\\xi_{i+1})|.",
- "\\end{equation}",
- "Since $\\xi_{i+1}-\\xi_i<\\delta$, \\eqref{eq:8.2.7}, \\eqref{eq:8.2.9},",
- "and \\eqref{eq:8.2.10} imply that",
- "$$",
- "|g(\\xi_i)-g(\\xi_{i+1})|<3\\epsilon.",
- "$$",
- "Therefore,",
- "\\begin{equation} \\label{eq:8.2.11}",
- "|g(\\xi_i)-g(x)|<3\\epsilon,\\quad \\xi_i\\le x\\le \\xi_{i+1},",
- "\\end{equation}",
- "since $g$ is linear on $[\\xi_i,\\xi_{i+1}]$.",
- "Now let $x$ be an arbitrary point in $[a,b]$, and choose $i$",
- "so that $x\\in[\\xi_i,\\xi_{i+1}]$. Then",
- "$$",
- "|f(x)-g(x)|\\le|f(x)-f(\\xi_i)|+|f(\\xi_i)-g(\\xi_i)|+|g(\\xi_i)-g(x)|,",
- "$$",
- "so \\eqref{eq:8.2.7}, \\eqref{eq:8.2.9}, and \\eqref{eq:8.2.11} imply that",
- "$|f(x)-g(x)|<5\\epsilon$, $a\\le x\\le b$. Therefore,",
- "$S_{mn}$ is a finite $5\\epsilon$-net for $T$, so $T$ is totally",
- "bounded."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:8.2.6",
- "TRENCH_REAL_ANALYSIS-thmtype:8.2.8",
- "TRENCH_REAL_ANALYSIS-thmtype:2.2.12",
- "TRENCH_REAL_ANALYSIS-thmtype:8.2.9"
- ],
- "ref_ids": [
- 233,
- 234,
- 25,
- 235
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 237,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.2.12",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that ${\\mathcal F}$ is an infinite uniformly bounded and equicontinuous",
- "family of functions on $[a,b].$ Then there is a sequence $\\{f_n\\}$",
- "in ${\\mathcal F}$ that converges uniformly to a continuous function",
- " on $[a,b].$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $T$ be the closure of ${\\mathcal F}$; that is, $f\\in T$",
- "if and only if either $f\\in T$ or $f$ is the uniform limit",
- "of a sequence of members of ${\\mathcal F}$. Then $T$ is also",
- "uniformly bounded and equicontinuous (verify),",
- "and $T$ is closed. Hence, $T$ is compact, by",
- "Theorem~\\ref{thmtype:8.2.12}. Therefore, ${\\mathcal F}$ has a limit point",
- "in $T$. (In this context, the limit point is a function $f$ in",
- "$T$.) Since $f$ is a limit point of ${\\mathcal F}$, there is for each",
- "integer $n$ a function $f_n$ in ${\\mathcal F}$ such that $\\|f_n-f\\|<1/n$;",
- "that is $\\{f_n\\}$ converges uniformly to $f$ on $[a,b]$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:8.2.12"
- ],
- "ref_ids": [
- 237
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 238,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.3.3",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\widehat u\\in\\overline D_f.$ Then",
- "\\begin{equation} \\label{eq:8.3.3}",
- "\\lim_{u\\to \\widehat u}f(u)=\\widehat v",
- "\\end{equation}",
- "if and only if",
- "\\begin{equation} \\label{eq:8.3.4}",
- "\\lim_{n\\to\\infty}f(u_n)=\\widehat v",
- "\\end{equation}",
- "for every sequence $\\{u_n\\}$ in $D_f$ such that",
- "\\begin{equation} \\label{eq:8.3.5}",
- "\\lim_{n\\to\\infty}u_n=\\widehat u.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that \\eqref{eq:8.3.3} is true, and let $\\{u_n\\}$ be a sequence in",
- "$D_f$ that satisfies \\eqref{eq:8.3.5}. Let $\\epsilon>0$ and choose",
- "$\\delta>0$ to satisfy \\eqref{eq:8.3.1}. From \\eqref{eq:8.3.5}, there is",
- "an integer $N$ such that $\\rho(u_n,\\widehat u)<\\delta$ if $n\\ge N$.",
- "Therefore, $\\sigma(f(u_n),\\widehat v)<\\epsilon$ if $n\\ge N$, which implies",
- "\\eqref{eq:8.3.4}.",
- "For the converse, suppose that \\eqref{eq:8.3.3} is false.",
- "Then there is an $\\epsilon_0>0$ and a sequence $\\{u_n\\}$",
- "in $D_f$ such that $\\rho(u_n,\\widehat u)<1/n$ and $\\sigma(f(u_n),\\widehat",
- "v)\\ge\\epsilon_0$, so \\eqref{eq:8.3.4} is false.",
- "\\mbox{}\\hfill"
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 239,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.3.4",
- "categories": [],
- "title": "",
- "contents": [
- "A function $f$ is continuous at $\\widehat u$ if and",
- "only if",
- "$$",
- "\\lim_{u\\to\\widehat u} f(u)=f(\\widehat u).",
- "$$"
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 240,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.3.5",
- "categories": [],
- "title": "",
- "contents": [
- "A function $f$ is continuous at $\\widehat u$ if and",
- "only if",
- "$$",
- "\\lim_{n\\to\\infty} f(u_n)=f(\\widehat u)",
- "$$",
- "whenever $\\{u_n\\}$ is a sequence in $D_f$ that converges to $\\widehat",
- "u$."
- ],
- "refs": [],
- "proofs": [],
- "ref_ids": []
- },
- {
- "id": 241,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.3.6",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is continuous on a compact set $T,$ then $f(T)$ is compact."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $\\{v_n\\}$ be an infinite sequence in $f(T)$.",
- "For each $n$, $v_n=f(u_n)$ for some $u_n\\in T$. Since $T$",
- "is compact, $\\{u_n\\}$ has a subsequence",
- "$\\{u_{n_j}\\}$ such that $\\lim_{j\\to\\infty}u_{n_j}=\\widehat u\\in T$",
- "(Theorem~\\ref{thmtype:8.2.4}).",
- "From Theorem~\\ref{thmtype:8.3.5},",
- "$\\lim_{j\\to\\infty}f(u_{n_j})=f(\\widehat",
- "u)$; that is, $\\lim_{j\\to\\infty}v_{n_j}=f(\\widehat u)$. Therefore, $f(T)$",
- "is compact, again by",
- "Theorem~\\ref{thmtype:8.2.4}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:8.2.4",
- "TRENCH_REAL_ANALYSIS-thmtype:8.3.5",
- "TRENCH_REAL_ANALYSIS-thmtype:8.2.4"
- ],
- "ref_ids": [
- 231,
- 240,
- 231
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 242,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.3.8",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is continuous on a compact set $T,$",
- "then $f$ is uniformly continuous on $T$."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "If $f$ is not uniformly continuous on $T$,",
- "then for some",
- "$\\epsilon_0>0$",
- "there are sequences $\\{u_n\\}$ and $\\{v_n\\}$ in $T$ such that",
- "$\\rho(u_n,v_n)<1/n$ and",
- "\\begin{equation} \\label{eq:8.3.6}",
- "\\sigma(f(u_n),f(v_n))\\ge\\epsilon_0.",
- "\\end{equation}",
- "Since $T$ is compact,",
- " $\\{u_n\\}$ has a subsequence",
- "$\\{u_{n_k}\\}$ that converges to a limit $\\widehat u$ in",
- "$T$ (Theorem~\\ref{thmtype:8.2.4}). Since",
- "$\\rho(u_{n_k},v_{n_k})<1/n_k$,",
- "$\\lim_{k\\to\\infty}v_{n_k}=\\widehat u$ also.",
- " Then",
- "$$",
- "\\lim_{k\\to\\infty}f(u_{n_k})=\\dst\\lim_{k\\to",
- "\\infty}f(v_{n_k})=f(\\widehat u)",
- "$$",
- " (Theorem~~\\ref{thmtype:8.3.5}), which",
- "contradicts \\eqref{eq:8.3.6}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:8.2.4",
- "TRENCH_REAL_ANALYSIS-thmtype:8.3.5"
- ],
- "ref_ids": [
- 231,
- 240
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 243,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.3.10",
- "categories": [],
- "title": "Contraction Mapping Theorem",
- "contents": [
- "If $f$ is a contraction of a complete metric space $(A,\\rho),$",
- "then the equation",
- "\\begin{equation} \\label{eq:8.3.8}",
- "f(u)=u",
- "\\end{equation}",
- "has a unique solution$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "To see that \\eqref{eq:8.3.8} cannot have more than one solution,",
- "suppose that $u=f(u)$ and $v=f(v)$. Then",
- "\\begin{equation} \\label{eq:8.3.9}",
- "\\rho(u,v)=\\rho(f(u),f(v)).",
- "\\end{equation}",
- "However, \\eqref{eq:8.3.7} implies that",
- "\\begin{equation} \\label{eq:8.3.10}",
- "\\rho(f(u),f(v))\\le\\alpha\\rho(u,v).",
- "\\end{equation}",
- "Since \\eqref{eq:8.3.9} and \\eqref{eq:8.3.10} imply that",
- "$$",
- "\\rho(u,v)\\le\\alpha\\rho(u,v)",
- "$$",
- "and $\\alpha<1$, it follows that $\\rho(u,v)=0$. Hence $u=v$.",
- "We will now show that \\eqref{eq:8.3.8} has a solution.",
- "With $u_0$ arbitrary, define",
- "\\begin{equation}\\label{eq:8.3.11}",
- "u_n=f(u_{n-1}),\\quad n\\ge1.",
- "\\end{equation}",
- "We will show that $\\{u_n\\}$ converges. From \\eqref{eq:8.3.7} and",
- "\\eqref{eq:8.3.11},",
- "\\begin{equation} \\label{eq:8.3.12}",
- "\\rho(u_{n+1},u_n)=\\rho(f(u_n),f(u_{n-1}))\\le\\alpha\\rho(u_n,u_{n-1}).",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "The inequality",
- "\\begin{equation}\\label{eq:8.3.13}",
- "\\rho(u_{n+1},u_n)\\le \\alpha^n \\rho(u_1,u_0),\\quad n\\ge0,",
- "\\end{equation}",
- "follows by induction from \\eqref{eq:8.3.12}. If $n>m$, repeated",
- "application of the triangle inequality yields",
- "$$",
- "\\rho(u_n,u_m)",
- "\\le",
- "\\rho(u_n,u_{n-1})+\\rho(u_{n-1},u_{n-2})+\\cdots+\\rho(u_{m+1},u_m),",
- "$$",
- "and \\eqref{eq:8.3.13} yields",
- "$$",
- "\\rho(u_n,u_m)\\le\\rho(u_1,u_0)\\alpha^m(1+\\alpha+\\cdots+\\alpha^{n-m-1})<",
- "\\frac{\\alpha^m}{1-\\alpha}.",
- "$$",
- "Now it follows that",
- "$$",
- "\\rho(u_n,u_m)<\\frac{\\rho(u_1,u_0)}{1-\\alpha}\\alpha^N\\mbox{\\quad",
- "if\\quad} n,m>N,",
- "$$",
- "and, since $\\lim_{N\\to\\infty} \\alpha^N=0$, $\\{u_n\\}$ is a Cauchy",
- "sequence. Since $A$ is complete, $\\{u_n\\}$ has a limit $\\widehat",
- "u$. Since $f$ is continuous at",
- "$\\widehat u$,",
- "$$",
- "f(\\widehat u)=\\lim_{n\\to\\infty}f(u_{n-1})=\\lim_{n\\to\\infty}u_n=\\widehat u,",
- "$$",
- "where Theorem~~\\ref{thmtype:8.3.5} implies the first equality and",
- "\\eqref{eq:8.3.11} implies the second."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:8.3.5"
- ],
- "ref_ids": [
- 240
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 244,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.3.2",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is differentiable at $x_0,$ then",
- "\\begin{equation}\\label{eq:2.3.3}",
- "f(x)=f(x_0)+[f'(x_0)+E(x)](x-x_0),",
- "\\end{equation}",
- "where $E$ is defined on a neighborhood of $x_0$ and",
- "$$",
- "\\lim_{x\\to x_0} E(x)=E(x_0)=0.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Define",
- "\\begin{equation} \\label{eq:2.3.4}",
- "E(x)=\\left\\{\\casespace\\begin{array}{ll}",
- "\\dst\\frac{f(x)-f(x_0)}{ x-x_0}-",
- "f'(x_0),&x\\in D_f\\mbox{ and }x\\ne x_0,\\\\[2\\jot]",
- "0,&x=x_0.",
- "\\end{array}\\right.",
- "\\end{equation}",
- "Solving \\eqref{eq:2.3.4} for $f(x)$ yields \\eqref{eq:2.3.3} if $x\\ne x_0$,",
- "and \\eqref{eq:2.3.3} is obvious if $x=x_0$.",
- "Definition~\\ref{thmtype:2.3.1}",
- "implies that $\\lim_{x\\to x_0}E(x)=0$. We defined $E(x_0)=0$ to make",
- "$E$ continuous at $x_0$.",
- "\\mbox{}"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.3.1"
- ],
- "ref_ids": [
- 313
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 245,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.5.2",
- "categories": [],
- "title": "",
- "contents": [
- "If $f^{(n)}(x_0)$ exists$,$ then",
- "\\begin{equation}\\label{eq:2.5.7}",
- "f(x)=\\sum_{r=0}^n\\frac{f^{(r)}(x_0)}{ r!} (x-x_0)^r+E_n(x)(x-x_0)^n,",
- "\\end{equation}",
- "where",
- "$$",
- "\\lim_{x\\to x_0} E_n(x)=E_n(x_0)=0.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Define",
- "$$",
- "E_n(x)=",
- "\\left\\{\\casespace\\begin{array}{ll}",
- "\\dst\\frac{f(x)-T_n(x)}{(x-x_0)^n},&x\\in D_f-\\{x_0\\},\\\\",
- "0,&x=x_0.\\end{array}\\right.",
- "$$",
- "Then \\eqref{eq:2.5.5} implies that $\\lim_{x\\to x_0}E_n(x)=E_n(x_0)=0$,",
- "and it is straightforward to verify \\eqref{eq:2.5.7}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 246,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.2.1",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that",
- "\\begin{equation} \\label{eq:3.2.1}",
- "|f(x)|\\le M,\\quad a\\le x\\le b,",
- "\\end{equation}",
- "and let $P'$ be a partition of $[a,b]$ obtained by adding $r$ points to a",
- "partition $P=\\{x_0,x_1, \\dots,x_n\\}$ of $[a,b].$ Then",
- "\\begin{eqnarray}",
- "S(P)\\ge S(P')\\ar\\ge S(P)-2Mr\\|P\\|\\label{eq:3.2.2}\\\\",
- "\\arraytext{and}\\nonumber\\\\",
- "s(P)\\le s(P')\\ar\\le s(P)+2Mr\\|P\\|\\label{eq:3.2.3}.",
- "\\end{eqnarray}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We will prove \\eqref{eq:3.2.2} and leave the proof of \\eqref{eq:3.2.3}",
- "to you (Exercise~\\ref{exer:3.2.1}).",
- "First suppose that $r=1$, so",
- " $P'$ is obtained by adding one point $c$ to the",
- "partition",
- "$P=\\{x_0,x_1, \\dots,x_n\\}$; then",
- "$x_{i-1}1$ and $P'$ is obtained by adding points $c_1$,",
- "$c_2$, \\dots, $c_r$ to $P$. Let $P^{(0)}=P$ and, for $j\\ge1$, let",
- "$P^{(j)}$ be the partition of $[a,b]$ obtained by adding $c_j$",
- "to $P^{(j-1)}$. Then the result just proved implies that",
- "$$",
- "0\\le S(P^{(j-1)})-S(P^{(j)})\\le2M\\|P^{(j-1)}\\|,\\quad 1\\le j\\le r.",
- "$$",
- "\\newpage",
- "\\noindent",
- "Adding these inequalities and taking account of cancellations",
- " yields",
- "\\begin{equation} \\label{eq:3.2.5}",
- "0\\le",
- "S(P^{(0)})-S(P^{(r)})\\le2M(\\|P^{(0)}\\|+\\|P^{(1)}\\|+\\cdots+\\|P^{(r-1)}\\|).",
- "\\end{equation}",
- "Since $P^{(0)}=P$, $P^{(r)}=P'$, and $\\|P^{(k)}\\|\\le\\|P^{(k-1)}\\|$",
- "for $1\\le k\\le r-1$, \\eqref{eq:3.2.5} implies that",
- "$$",
- "0\\le S(P)-S(P')\\le 2Mr\\|P\\|,",
- "$$",
- "which is equivalent to \\eqref{eq:3.2.2}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 247,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.2.4",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is bounded on $[a,b]$ and",
- " $\\epsilon>0,$ there is a $\\delta>0$ such that",
- "\\begin{equation} \\label{eq:3.2.12}",
- "\\overline{\\int_a^b}f(x)\\,dx\\le",
- "S(P)<\\overline{\\int_a^b}f(x)\\,dx+\\epsilon",
- "\\end{equation}",
- "and",
- "$$",
- "\\underline{\\int_a^b} f(x)\\,dx\\ge s(P)>\\underline{\\int_a^b}",
- "f(x)\\,dx-\\epsilon",
- "$$",
- "if $\\|P\\|<\\delta$."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We show that \\eqref{eq:3.2.12} holds if $\\|P\\|$ is sufficiently",
- "small, and leave the rest of the proof to you (Exercise~\\ref{exer:3.2.3}).",
- "The first inequality in \\eqref{eq:3.2.12} follows immediately from",
- "Definition~\\ref{thmtype:3.1.3}.",
- " To establish the second inequality,",
- "suppose that $|f(x)|\\le K$ if $a\\le x\\le b$. From",
- "Definition~\\ref{thmtype:3.1.3}, there is a partition $P_0=",
- "\\{x_0,x_1, \\dots,x_{r+1}\\}$ of $[a,b]$ such that",
- "\\begin{equation} \\label{eq:3.2.13}",
- "S(P_0)<\\overline{\\int_a^b}f(x)\\,dx+\\frac{\\epsilon}{2}.",
- "\\end{equation}",
- "If $P$ is any partition of $[a,b]$, let $P'$ be constructed from the",
- "partition points of $P_0$ and $P$. Then",
- "\\begin{equation} \\label{eq:3.2.14}",
- "S(P')\\le S(P_0),",
- "\\end{equation}",
- "by Lemma~\\ref{thmtype:3.2.1}. Since $P'$ is obtained by adding at most",
- "$r$ points to $P$, Lemma~\\ref{thmtype:3.2.1} implies that",
- "\\begin{equation} \\label{eq:3.2.15}",
- "S(P')\\ge S(P)-2Kr\\|P\\|.",
- "\\end{equation}",
- " Now \\eqref{eq:3.2.13}, \\eqref{eq:3.2.14}, and \\eqref{eq:3.2.15}",
- "imply that",
- "\\begin{eqnarray*}",
- "S(P)\\ar\\le S(P')+2Kr\\|P\\|\\\\",
- "\\ar\\le S(P_0)+2Kr\\|P\\|\\\\",
- "&<&\\overline{\\int_a^b} f(x)\\,dx+\\frac{\\epsilon}{2}+2Kr\\|P\\|.",
- "\\end{eqnarray*}",
- " Therefore, \\eqref{eq:3.2.12} holds if",
- "$$",
- "\\|P\\|<\\delta=\\frac{\\epsilon}{4Kr}.",
- "$$",
- "\\vskip-4.5ex"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:3.1.3",
- "TRENCH_REAL_ANALYSIS-thmtype:3.1.3",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.1",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.1"
- ],
- "ref_ids": [
- 316,
- 316,
- 246,
- 246
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 248,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.5.3",
- "categories": [],
- "title": "",
- "contents": [
- "If $w_f(x)<\\epsilon$ for $a\\le x \\le b,$ then there is a $\\delta>0$",
- "such",
- "that $W_f[a_1,b_1]\\le\\epsilon,$ provided that $[a_1,b_1]\\subset",
- "[a,b]$ and",
- "$b_1-a_1<\\delta.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We use the Heine--Borel theorem (Theorem~\\ref{thmtype:1.3.7}).",
- "If $w_f(x)<\\epsilon$, there is an $h_x>0$ such that",
- "\\begin{equation} \\label{eq:3.5.1}",
- "|f(x')-f(x'')|<\\epsilon",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "if",
- "\\begin{equation} \\label{eq:3.5.2}",
- "x-2h_x0$, there is an $\\overline{x}$ from $E_\\rho$ in",
- "$(x_0-h,x_0+h)$.",
- "Since $[\\overline{x}-h_1,\\overline{x}+h_1] \\subset [x_0-h,x_0+h]$ for",
- "sufficiently small $h_1$ and",
- " $W_f[\\overline{x}-h_1,\\overline{x}+h_1]\\ge\\rho$, it follows that",
- " $W_f[x_0-h,x_0+h]\\ge\\rho$ for all",
- "$h>0$. This implies that $x_0\\in E_\\rho$, so $E_\\rho$ is closed",
- "(Corollary~\\ref{thmtype:1.3.6}).",
- "Now we will show that the stated condition in necessary for",
- "integrability.",
- "Suppose that the condition is not satisfied; that is, there is a",
- "$\\rho>0$ and a $\\delta>0$ such that",
- "$$",
- "\\sum_{j=1}^p L(I_j)\\ge\\delta",
- "$$",
- "\\newpage",
- "\\noindent",
- "for every finite set $\\{I_1,I_2, \\dots, I_p\\}$ of open intervals",
- "covering",
- "$E_\\rho$. If",
- "$P=",
- "\\{x_0,x_1, \\dots,x_n\\}$ is a partition of $[a,b]$, then",
- "\\begin{equation} \\label{eq:3.5.4}",
- "S(P)-s(P)=\\sum_{j\\in A} (M_j-m_j)(x_j-x_{j-1})+\\sum_{j\\in B}",
- "(M_j-m_j)(x_j-x_{j-1}),",
- "\\end{equation}",
- "where",
- "$$",
- "A=\\set{j}{[x_{j-1},x_j]\\cap E_\\rho\\ne\\emptyset}\\mbox{\\quad",
- "and\\quad}",
- "B=\\set{j}{[x_{j-1},x_j]\\cap E_\\rho=\\emptyset}\\negthickspace.",
- "$$",
- "Since $\\bigcup_{j\\in A} (x_{j-1},x_j)$ contains all points of $E_\\rho$",
- "except any of $x_0$, $x_1$, \\dots, $x_n$ that may be in $E_\\rho$, and",
- "each of",
- "these finitely many possible exceptions can be covered by an open interval",
- "of length as small as we please, our assumption on $E_\\rho$ implies that",
- "$$",
- "\\sum_{j\\in A} (x_j-x_{j-1})\\ge\\delta.",
- "$$",
- "Moreover, if $j\\in A$, then",
- "$$",
- "M_j-m_j\\ge\\rho,",
- "$$",
- "so \\eqref{eq:3.5.4} implies that",
- "$$",
- "S(P)-s(P)\\ge\\rho\\sum_{j\\in A} (x_j-x_{j-1})\\ge\\rho\\delta.",
- "$$",
- "Since this holds for every partition of $[a,b]$, $f$ is not integrable on",
- "$[a,b]$, by Theorem~\\ref{thmtype:3.2.7}. This proves that the stated condition is",
- "necessary for integrability.",
- "For sufficiency, let $\\rho$ and $\\delta$ be positive numbers and let",
- "$I_1$, $I_2$, \\dots, $I_p$ be open intervals that cover $E_\\rho$ and",
- "satisfy",
- "\\eqref{eq:3.5.3}. Let",
- "$$",
- "\\widetilde{I}_j=[a,b]\\cap\\overline{I}_j.",
- "$$",
- "($\\overline{I}_j=\\mbox{closure of } I$.) After combining any of",
- "$\\widetilde{I}_1$, $\\widetilde{I}_2$, \\dots, $\\widetilde{I}_p$ that overlap, we",
- "obtain a set of pairwise disjoint closed subintervals",
- "$$",
- "C_j=[\\alpha_j,\\beta_j],\\quad 1\\le j\\le q\\ (\\le p),",
- "$$",
- "of $[a,b]$ such that",
- "\\begin{equation} \\label{eq:3.5.5}",
- "a\\le\\alpha_1<\\beta_1<\\alpha_2<\\beta_2\\cdots<",
- "\\alpha_{q-1}<\\beta_{q-1}<\\alpha_q<\\beta_q\\le b,",
- "\\end{equation}",
- "\\begin{equation} \\label{eq:3.5.6}",
- "\\sum_{i=1}^q\\, (\\beta_i-\\alpha_i)<\\delta",
- "\\end{equation}",
- "and",
- "$$",
- "w_f(x)<\\rho,\\quad\\beta_j\\le x\\le\\alpha_{j+1},\\quad 1\\le j\\le q-1.",
- "$$",
- "Also, $w_f(x)<\\rho$ for $a\\le x\\le\\alpha_1$ if $a<\\alpha_1$ and for",
- "$\\beta_q\\le x\\le b$ if $\\beta_q0$, let",
- "$$",
- "\\delta=\\frac{\\epsilon}{4K}\\mbox{\\quad",
- "and\\quad}\\rho=\\frac{\\epsilon}{",
- "2(b-a)}.",
- "$$",
- "Then \\eqref{eq:3.5.7} yields",
- "$$",
- "S(P)-s(P)<\\epsilon,",
- "$$",
- "and Theorem~\\ref{thmtype:3.2.7} implies that $f$ is",
- "integrable on $[a,b]$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:1.3.6",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.7",
- "TRENCH_REAL_ANALYSIS-thmtype:3.5.3",
- "TRENCH_REAL_ANALYSIS-thmtype:3.2.7"
- ],
- "ref_ids": [
- 274,
- 50,
- 248,
- 50
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 250,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.4",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that for $n$ sufficiently large",
- " $($that is$,$ for $n \\ge\\mbox{some",
- "integer }N$$)$",
- " the terms of",
- "$\\sum_{n=k}^\\infty a_n$ satisfy",
- " some condition that implies convergence",
- "of an infinite series$.$ Then $\\sum_{n=k}^\\infty a_n$",
- "converges$.$",
- "Similarly, suppose that for $n$ sufficiently large the terms",
- "$\\sum_{n=k}^\\infty a_n$ satisfy",
- " some condition that implies divergence",
- "of an infinite series$.$ Then $\\sum_{n=k}^\\infty a_n$",
- "diverges$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "In terms of the partial sums $\\{A_n\\}$ of $\\sum a_n$,",
- "$$",
- "a_n+a_{n+1}+\\cdots+a_m=A_m-A_{n-1}.",
- "$$",
- "Therefore, \\eqref{eq:4.3.3} can be written as",
- "$$",
- "|A_m-A_{n-1}|<\\epsilon\\mbox{\\quad if\\quad} m\\ge n\\ge N.",
- "$$",
- "Since $\\sum a_n$ converges if and only if $\\{A_n\\}$ converges,",
- "Theorem~\\ref{thmtype:4.1.13} implies the conclusion."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.13"
- ],
- "ref_ids": [
- 89
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 251,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.2",
- "categories": [],
- "title": "",
- "contents": [
- "If $g$ and $h$ are defined on $S,$ then",
- "\\begin{eqnarray*}",
- "\\|g+h\\|_S\\ar\\le\\|g\\|_S+\\|h\\|_S\\\\",
- "\\arraytext{and}\\\\",
- "\\|gh\\|_S\\ar\\le\\|g\\|_S\\|h\\|_S.",
- "\\end{eqnarray*}",
- "Moroever$,$ if either $g$ or $h$ is bounded on $S,$ then",
- "$$",
- "\\|g-h\\|_S\\ge\\left|\\|g\\|_S-\\|h\\|_S\\|\\right|.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "For necessity, suppose that $\\{F_n\\}$ converges uniformly to",
- "$F$ on $S$. Then, if $\\epsilon>0$, there is an integer $N$ such that",
- "$$",
- "\\|F_k-F\\|_S<\\frac{\\epsilon}{2}\\mbox{\\quad if\\quad} k\\ge N.",
- "$$",
- "Therefore,",
- "\\begin{eqnarray*}",
- "\\|F_n-F_m\\|_S\\ar=\\|(F_n-F)+(F-F_m)\\|_S\\\\",
- "\\ar\\le \\|F_n-F\\|_S+\\|F-F_m\\|_S \\mbox{\\quad",
- "(Lemma~\\ref{thmtype:4.4.2})\\quad}\\\\",
- "&<&\\frac{\\epsilon}{2}+\\frac{\\epsilon}{2}=\\epsilon\\mbox{\\quad if\\quad}",
- "m, n\\ge N.",
- "\\end{eqnarray*}",
- "For sufficiency, we first observe that \\eqref{eq:4.4.2} implies that",
- "$$",
- "|F_n(x)-F_m(x)|<\\epsilon\\mbox{\\quad if\\quad} n, m\\ge N,",
- "$$",
- "for any fixed $x$ in $S$. Therefore, Cauchy's convergence criterion",
- "for sequences of constants (Theorem~\\ref{thmtype:4.1.13})",
- "implies that",
- "$\\{F_n(x)\\}$ converges for each $x$ in $S$; that is, $\\{F_n\\}$",
- "converges pointwise to a limit function $F$ on $S$. To see that the",
- "convergence is uniform, we write",
- "\\begin{eqnarray*}",
- "|F_m(x)-F(x) |\\ar=|[F_m(x)-F_n(x)]+[F_n(x)-F(x)]|\\\\",
- "\\ar\\le |F_m(x)-F_n(x)|+| F_n(x)-F(x)|\\\\",
- "\\ar\\le \\|F_m-F_n\\|_S+|F_n(x)-F(x)|.",
- "\\end{eqnarray*}",
- "This and \\eqref{eq:4.4.2} imply that",
- "\\begin{equation} \\label{eq:4.4.3}",
- "|F_m(x)-F(x)|<\\epsilon+|F_n(x)-F(x)|\\quad\\mbox {if}\\quad n, m\\ge N.",
- "\\end{equation}",
- "Since $\\lim_{n\\to\\infty}F_n(x)=F(x)$,",
- "$$",
- "|F_n(x)-F(x)|<\\epsilon",
- "$$",
- "for some $n\\ge N$, so \\eqref{eq:4.4.3} implies that",
- "$$",
- "|F_m(x)-F(x)|<2\\epsilon\\mbox{\\quad if\\quad} m\\ge N.",
- "$$",
- "But this inequality holds for all $x$ in $S$, so",
- "$$",
- "\\|F_m-F\\|_S\\le2\\epsilon\\mbox{\\quad if\\quad} m\\ge N.",
- "$$",
- "Since $\\epsilon$ is an arbitrary positive number, this implies that",
- "$\\{F_n\\}$ converges uniformly to $F$ on~$S$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.2",
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.13"
- ],
- "ref_ids": [
- 251,
- 89
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 252,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.5",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{X}$ and $\\mathbf{Y}$ are any two vectors in $\\R^n,$ then",
- "\\begin{equation} \\label{eq:5.1.3}",
- "|\\mathbf{X}\\cdot\\mathbf{Y}|\\le |\\mathbf{X}|\\,|\\mathbf{Y}|,",
- "\\end{equation}",
- "with equality if and only if one of the vectors is a scalar",
- "multiple of the other$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "If $\\mathbf{Y}=\\mathbf{0}$, then both sides",
- "of \\eqref{eq:5.1.3} are $\\mathbf{0}$, so \\eqref{eq:5.1.3} holds, with equality.",
- "In this case, $\\mathbf{Y}=0\\mathbf{X}$.",
- "Now suppose that $\\mathbf{Y}\\ne\\mathbf{0}$ and",
- " $t$ is any real number. Then",
- "\\begin{equation}\\label{eq:5.1.4}",
- "\\begin{array}{rcl}",
- "0\\ar\\le \\dst{\\sum^n_{i=1} (x_i-ty_i)^2}\\\\",
- "\\ar=\\dst{\\sum^n_{i=1} x^2_i-2t\\sum^n_{i=1} x_iy_i+t^2\\sum^n_{i=1}",
- "y^2_i}\\\\\\\\",
- "\\ar=|\\mathbf{X}|^2-2(\\mathbf{X}\\cdot\\mathbf{Y})t+t^2|\\mathbf{Y}|^2.",
- "\\end{array}",
- "\\end{equation}",
- "The last expression is a second-degree polynomial $p$",
- "in $t$. From the quadratic formula, the zeros of $p$ are",
- "$$",
- "t=\\frac{(\\mathbf{X}\\cdot\\mathbf{Y})\\pm\\sqrt{(\\mathbf{X}\\cdot\\mathbf{Y})^2-",
- "|\\mathbf{X}|^2|\\mathbf{Y}|^2}}{ |\\mathbf{Y}|^2}.",
- "$$",
- "Hence,",
- "\\begin{equation}\\label{eq:5.1.5}",
- "(\\mathbf{X}\\cdot\\mathbf{Y})^2\\le |\\mathbf{X}|^2|\\mathbf{Y}|^2,",
- "\\end{equation}",
- "because if not, then $p$ would have two distinct real zeros and",
- "therefore",
- "be negative between them (Figure~\\ref{figure:5.1.1}), contradicting the",
- "inequality \\eqref{eq:5.1.4}. Taking square roots in \\eqref{eq:5.1.5} yields",
- "\\eqref{eq:5.1.3} if $\\mathbf{Y}\\ne\\mathbf{0}$.",
- "If $\\mathbf{X}=t\\mathbf{Y}$, then",
- "$|\\mathbf{X}\\cdot\\mathbf{Y}|=|\\mathbf{X}||\\mathbf{Y}|",
- "=|t||\\mathbf{Y}|^2$ (verify), so equality holds in \\eqref{eq:5.1.3}.",
- "Conversely, if equality holds in \\eqref{eq:5.1.3}, then $p$ has the real",
- "zero $t_0=(\\mathbf{X}\\cdot\\mathbf{Y})/|\\mathbf{Y}\\|^2$, and",
- "$$",
- "\\sum_{i=1}^n(x_i-t_0y_i)^2=0",
- "$$",
- "\\nopagebreak",
- "from \\eqref{eq:5.1.4}; therefore, $\\mathbf{X}=t_0\\mathbf{Y}$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 253,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.12",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{X}_1$ and $\\mathbf{X}_2$ are in $S_r(\\mathbf{X}_0)$ for some $r>0$,",
- "then so is every point on",
- "the line segment from $\\mathbf{X}_1$ to $\\mathbf{X}_2.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "The line segment is given by",
- "$$",
- "\\mathbf{X}=t\\mathbf{X}_2+(1-t)\\mathbf{X}_1,\\quad 00$. If",
- "$$",
- "|\\mathbf{X}_1-\\mathbf{X}_0|0$. Our assumptions imply that there is",
- "a $\\delta>0$ such that $f_{x_1}, f_{x_2}, \\dots, f_{x_n}$ are defined",
- "in the $n$-ball",
- "$$",
- "S_\\delta (\\mathbf{X}_0)=\\set{\\mathbf{X}}{|\\mathbf{X}-\\mathbf{X}_0|<\\delta}",
- "$$",
- "and",
- "\\begin{equation}\\label{eq:5.3.24}",
- "|f_{x_j}(\\mathbf{X})-f_{x_j}(\\mathbf{X}_0)|<\\epsilon\\mbox{\\quad if\\quad}",
- "|\\mathbf{X}-\\mathbf{X}_0|<\\delta,\\quad 1\\le j\\le n.",
- "\\end{equation}",
- "Let $\\mathbf{X}=(x_1,x_, \\dots,x_n)$ be in $S_\\delta(\\mathbf{X}_0)$.",
- "Define",
- "$$",
- "\\mathbf{X}_j=(x_1, \\dots,x_j, x_{j+1,0}, \\dots,x_{n0}),\\quad 1\\le j\\le n-1,",
- "$$",
- "and",
- "$\\mathbf{X}_n=\\mathbf{X}$.",
- "Thus, for $1\\le j\\le n$, $\\mathbf{X}_j$ differs from $\\mathbf{X}_{j-1}$",
- " in the",
- "$j$th component only, and the line segment from $\\mathbf{X}_{j-1}$ to",
- "$\\mathbf{X}_j$ is in $S_\\delta (\\mathbf{X}_0)$.",
- "Now write",
- "\\begin{equation}\\label{eq:5.3.25}",
- "f(\\mathbf{X})-f(\\mathbf{X}_0)=f(\\mathbf{X}_n)-f(\\mathbf{X}_0)=",
- "\\sum^n_{j=1}\\,[f(\\mathbf{X}_j)-f(\\mathbf{X}_{j-1})],",
- "\\end{equation}",
- "and consider the auxiliary functions",
- "\\begin{equation}\\label{eq:5.3.26}",
- "\\begin{array}{rcl}",
- "g_1(t)\\ar=f(t,x_{20}, \\dots,x_{n0}),\\\\[2\\jot]",
- "g_j(t)\\ar=f(x_1, \\dots,x_{j-1},t,x_{j+1,0}, \\dots,x_{n0}),\\quad 2\\le j\\le",
- "n-1,\\\\[2\\jot]",
- "g_n(t)\\ar=f(x_1, \\dots,x_{n-1},t),",
- "\\end{array}",
- "\\end{equation}",
- "where, in each case, all variables except $t$ are temporarily regarded",
- "as constants. Since",
- "$$",
- "f(\\mathbf{X}_j)-f(\\mathbf{X}_{j-1})=g_j(x_j)-g_j(x_{j0}),",
- "$$",
- "the mean value theorem implies that",
- "$$",
- "f(\\mathbf{X}_j)-f(\\mathbf{X}_{j-1})=g'_j(\\tau_j)(x_j-x_{j0}),",
- "$$",
- "\\newpage",
- "\\noindent",
- "where $\\tau_j$ is between $x_j$ and $x_{j0}$. From \\eqref{eq:5.3.26},",
- "$$",
- "g'_j(\\tau_j)=f_{x_j}(\\widehat{\\mathbf{X}}_j),",
- "$$",
- "where $\\widehat{\\mathbf{X}}_j$ is on the line segment from $\\mathbf{X}_{j-1}$ to",
- "$\\mathbf{X}_j$. Therefore,",
- "$$",
- "f(\\mathbf{X}_j)-f(\\mathbf{X}_{j-1})=f_{x_j}(\\widehat{\\mathbf{X}}_j)(x_j-x_{j0}),",
- "$$",
- "and \\eqref{eq:5.3.25} implies that",
- "\\begin{eqnarray*}",
- "f(\\mathbf{X})-f(\\mathbf{X}_0)\\ar=\\sum^n_{j=1} f_{x_j} (\\widehat{\\mathbf{X}}_j)(x_j-x_{j0})\\\\",
- "\\ar=\\sum^n_{j=1} f_{x_j}(\\mathbf{X}_0) (x_j-x_{j0})+\\sum^n_{j=1}",
- "\\,[f_{x_j}(\\widehat{\\mathbf{X}}_j)-f_{x_j}(\\mathbf{X}_0)](x_j-x_{j0}).",
- "\\end{eqnarray*}",
- "From this and \\eqref{eq:5.3.24},",
- "$$",
- "\\left|f(\\mathbf{X})-f(\\mathbf{X}_0)-\\sum^n_{j=1}",
- "f_{x_j}(\\mathbf{X}_{0})",
- "(x_j-x_{j0})\\right|\\le",
- "\\epsilon\\sum^n_{j=1} |x_j-x_{j0}|\\le n\\epsilon |\\mathbf{X}-\\mathbf{X}_0|,",
- "$$",
- "which implies that $f$ is differentiable at $\\mathbf{X}_0$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 255,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.4.2",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{G}=(g_1,g_2, \\dots,g_n)$ is differentiable at",
- "$$",
- " \\mathbf{U}_0=(u_{10}, u_{20}, \\dots,u_{m0}),",
- "$$",
- " and",
- " define",
- "$$",
- "M=\\left(\\sum_{i=1}^n\\sum_{j=1}^m\\left(\\frac{\\partial g_i(\\mathbf{U}_0}",
- "{\\partial u_j}\\right)^2\\right)^{1/2}.",
- "$$",
- "Then$,$ if $\\epsilon>0,$ there is a $\\delta>0$ such that",
- "$$",
- "\\frac{|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|}",
- "{|\\mathbf{U}-\\mathbf{U}_{0}|}",
- "0,$ there is a $\\delta>0$ such that",
- "\\begin{equation}\\label{eq:6.2.8}",
- "|\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{Y})|<",
- "(\\|\\mathbf{F}'(\\mathbf{X}_{0})\\|",
- "+\\epsilon) |\\mathbf{X}-\\mathbf{Y}|",
- "\\mbox{\\quad if\\quad}\\mathbf{A},\\mathbf{Y}\\in B_\\delta (\\mathbf{X}_0).",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Consider the auxiliary function",
- "\\begin{equation} \\label{eq:6.2.9}",
- "\\mathbf{G}(\\mathbf{X})=\\mathbf{F}(\\mathbf{X})-\\mathbf{F}'(\\mathbf{X}_0)\\mathbf{X}.",
- "\\end{equation}",
- "The components of $\\mathbf{G}$ are",
- "$$",
- "g_i(\\mathbf{X})=f_i(\\mathbf{X})-\\sum_{j=1}^n",
- "\\frac{\\partial f_i(\\mathbf{X}_{0})",
- "\\partial x_j} x_j,",
- "$$",
- "so",
- "$$",
- "\\frac{\\partial g_i(\\mathbf{X})}{\\partial x_j}=",
- "\\frac{\\partial f_i(\\mathbf{X})}",
- "{\\partial x_j}-\\frac{\\partial f_i(\\mathbf{X}_0)}{\\partial x_j}.",
- "$$",
- "\\newpage",
- "\\noindent",
- "Thus, $\\partial g_i/\\partial x_j$ is continuous on $N$ and zero at",
- "$\\mathbf{X}_0$. Therefore, there is a $\\delta>0$ such that",
- "\\begin{equation}\\label{eq:6.2.10}",
- "\\left|\\frac{\\partial g_i(\\mathbf{X})}{\\partial x_j}\\right|<\\frac{\\epsilon}{",
- "\\sqrt{mn}}\\mbox{\\quad for \\quad}1\\le i\\le m,\\quad 1\\le j\\le n,",
- "\\mbox{\\quad if \\quad}",
- "|\\mathbf{X}-\\mathbf{X}_0|<\\delta.",
- "\\end{equation}",
- "Now suppose that $\\mathbf{X}$, $\\mathbf{Y}\\in B_\\delta(\\mathbf{X}_0)$. By",
- "Theorem~\\ref{thmtype:5.4.5},",
- "\\begin{equation}\\label{eq:6.2.11}",
- "g_i(\\mathbf{X})-g_i(\\mathbf{Y})=\\sum_{j=1}^n",
- "\\frac{\\partial g_i(\\mathbf{X}_i)}{\\partial x_j}(x_j-y_j),",
- "\\end{equation}",
- "where $\\mathbf{X}_i$ is on the line segment from $\\mathbf{X}$ to $\\mathbf{Y}$,",
- "so $\\mathbf{X}_i\\in B_\\delta(\\mathbf{X}_0)$. From \\eqref{eq:6.2.10},",
- "\\eqref{eq:6.2.11}, and Schwarz's inequality,",
- "$$",
- "(g_i(\\mathbf{X})-g_i(\\mathbf{Y}))^2\\le\\left(\\sum_{j=1}^n\\left[\\frac{\\partial",
- "g_i",
- "(\\mathbf{X}_i)}{\\partial x_j}\\right]^2\\right)",
- "|\\mathbf{X}-\\mathbf{Y}|^2",
- "<\\frac{\\epsilon^2}{ m} |\\mathbf{X}-\\mathbf{Y}|^2.",
- "$$",
- "Summing this from $i=1$ to $i=m$ and taking square roots yields",
- "\\begin{equation}\\label{eq:6.2.12}",
- "|\\mathbf{G}(\\mathbf{X})-\\mathbf{G}(\\mathbf{Y})|<\\epsilon",
- "|\\mathbf{X}-\\mathbf{Y}|",
- "\\mbox{\\quad if\\quad}\\mathbf{X}, \\mathbf{Y}\\in B_\\delta(\\mathbf{X}_0).",
- "\\end{equation}",
- "To complete the proof, we note that",
- "\\begin{equation}\\label{eq:6.2.13}",
- "\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{Y})=",
- "\\mathbf{G}(\\mathbf{X})-\\mathbf{G}(\\mathbf{Y})+\\mathbf{F}'(\\mathbf{X}_0)(\\mathbf{X}-\\mathbf{Y}),",
- "\\end{equation}",
- " so \\eqref{eq:6.2.12} and the triangle inequality imply \\eqref{eq:6.2.8}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.5"
- ],
- "ref_ids": [
- 164
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 257,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.2.6",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{F}:\\R^n\\to\\R^n$ is continuously",
- "differentiable on a neighborhood of $\\mathbf{X}_0$",
- " and $\\mathbf{F}'(\\mathbf{X}_0)$ is nonsingular$.$ Let",
- "\\begin{equation}\\label{eq:6.2.14}",
- "r=\\frac{1}{\\|(\\mathbf{F}'(\\mathbf{X}_0))^{-1}\\|}.",
- "\\end{equation}",
- "Then$,$ for every $\\epsilon>0,$ there is a $\\delta>0$ such that",
- "\\begin{equation}\\label{eq:6.2.15}",
- "|\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{Y})|\\ge (r-\\epsilon)",
- "|\\mathbf{X}-\\mathbf{Y}|\\mbox{\\quad if\\quad} \\mathbf{X},\\mathbf{Y}\\in",
- "B_\\delta(\\mathbf{X}_{0}).",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $\\mathbf{X}$ and $\\mathbf{Y}$ be arbitrary points in",
- "$D_\\mathbf{F}$ and let $\\mathbf{G}$ be as in \\eqref{eq:6.2.9}. From",
- "\\eqref{eq:6.2.13},",
- "\\begin{equation} \\label{eq:6.2.16}",
- "|\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{Y})|\\ge\\big|",
- "|\\mathbf{F}'(\\mathbf{X}_0)(\\mathbf{X}",
- "-\\mathbf{Y})|-|\\mathbf{G}(\\mathbf{X})-\\mathbf{G}(\\mathbf{Y})|\\big|,",
- "\\end{equation}",
- "Since",
- "$$",
- "\\mathbf{X}-\\mathbf{Y}=[\\mathbf{F}'(\\mathbf{X}_0)]^{-1}",
- "\\mathbf{F}'(\\mathbf{X}_{0})",
- "(\\mathbf{X}-\\mathbf{Y}),",
- "$$",
- "\\eqref{eq:6.2.14} implies that",
- "$$",
- "|\\mathbf{X}-\\mathbf{Y}|\\le \\frac{1}{ r} |\\mathbf{F}'(\\mathbf{X}_0)",
- "(\\mathbf{X}-\\mathbf{Y}|,",
- "$$",
- "so",
- "\\begin{equation}\\label{eq:6.2.17}",
- "|\\mathbf{F}'(\\mathbf{X}_0)(\\mathbf{X}-\\mathbf{Y})|\\ge r|\\mathbf{X}-\\mathbf{Y}|.",
- "\\end{equation}",
- " Now choose $\\delta>0$ so that \\eqref{eq:6.2.12} holds.",
- "Then \\eqref{eq:6.2.16} and \\eqref{eq:6.2.17} imply \\eqref{eq:6.2.15}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 258,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.2.7",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{F}:\\R^n\\to\\R^m$ is continuously differentiable",
- "on an open set containing a compact set $D,$ then there is a constant",
- "$M$ such that",
- "\\begin{equation}\\label{eq:6.2.18}",
- "|\\mathbf{F}(\\mathbf{Y})-\\mathbf{F}(\\mathbf{X})|\\le M|\\mathbf{Y}-\\mathbf{X}|",
- "\\mbox{\\quad if\\quad}\\mathbf{X},\\mathbf{Y}\\in D.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "On",
- "$$",
- "S=\\set{(\\mathbf{X},\\mathbf{Y})}{\\mathbf{X},\\mathbf{Y}\\in D}\\subset \\R^{2n}",
- "$$",
- "define",
- "$$",
- "g(\\mathbf{X},\\mathbf{Y})=\\left\\{\\casespace\\begin{array}{ll}",
- "\\dst{\\frac{|\\mathbf{F}(\\mathbf{Y})-",
- "\\mathbf{F}(\\mathbf{X})",
- "-\\mathbf{F}'(\\mathbf{X})(\\mathbf{Y}-\\mathbf{X})|}{ |\\mathbf{Y}-\\mathbf{X}|}},&",
- "\\mathbf{Y}\\ne\\mathbf{X},\\\\[2\\jot]",
- " 0,&\\mathbf{Y}=\\mathbf{X}.\\end{array}\\right.",
- "$$",
- "Then $g$ is continuous for all $(\\mathbf{X},\\mathbf{Y})$ in $S$",
- "such that $\\mathbf{X}\\ne \\mathbf{Y}$. We now show that if $\\mathbf{X}_0\\in D$,",
- "then",
- "\\begin{equation}\\label{eq:6.2.19}",
- "\\lim_{(\\mathbf{X},\\mathbf{Y})\\to (\\mathbf{X}_0,\\mathbf{X}_0)}",
- "g(\\mathbf{X},\\mathbf{Y})=0",
- "=g(\\mathbf{X}_0,\\mathbf{X}_0);",
- "\\end{equation}",
- "that is, $g$ is also continuous at points $(\\mathbf{X}_0,\\mathbf{X}_0)$ in",
- "$S$.",
- "Suppose that $\\epsilon>0$ and $\\mathbf{X}_0\\in D$. Since the partial",
- "derivatives of $f_1$, $f_2$, \\dots, $f_m$ are continuous on an open",
- "set containing $D$, there is a $\\delta>0$ such that",
- "\\begin{equation}\\label{eq:6.2.20}",
- "\\left|\\frac{\\partial f_i(\\mathbf{Y})}{\\partial x_j}-\\frac{\\partial",
- "f_i(\\mathbf{X})",
- "}{\\partial x_j}\\right|<\\frac{\\epsilon}{\\sqrt{mn}}\\mbox{\\quad if\\quad}",
- "\\mathbf{X},\\mathbf{Y}\\in B_\\delta (\\mathbf{X}_0),\\ 1\\le i\\le m,\\",
- "1\\le j\\le n.",
- "\\end{equation}",
- "(Note that $\\partial f_i/\\partial x_j$ is uniformly continuous on",
- "$\\overline{B_\\delta(\\mathbf{X}_0)}$ for $\\delta$ sufficiently small, from",
- "Theorem~\\ref{thmtype:5.2.14}.) Applying",
- "Theorem~\\ref{thmtype:5.4.5}",
- "to $f_1$, $f_2$, \\dots, $f_m$, we find that if $\\mathbf{X}$, $\\mathbf{Y}\\in",
- "B_\\delta",
- "(\\mathbf{X}_0)$, then",
- "$$",
- "f_i(\\mathbf{Y})-f_i(\\mathbf{X})=\\sum_{j=1}^n",
- "\\frac{\\partial f_i(\\mathbf{X}_{i})}",
- "{\\partial x_j} (y_j-x_j),",
- "$$",
- "where $\\mathbf{X}_i$ is on the line segment from $\\mathbf{X}$ to $\\mathbf{Y}$.",
- "From this,",
- "\\begin{eqnarray*}",
- "\\left[f_i(\\mathbf{Y})-f_i(\\mathbf{X})",
- "-\\dst{\\sum_{j=1}^n}",
- "\\frac{\\partial f_i(\\mathbf{X})}{\\partial x_j} (y_j-x_j)\\right]^2",
- "\\ar=\\left[\\sum_{j=1}^n\\left[\\frac{\\partial f_i(\\mathbf{X}_i)}{\\partial",
- "x_j}-",
- "\\frac{\\partial f_i(\\mathbf{X})}{\\partial x_j}\\right] (y_j-x_j)\\right]^2\\\\",
- "\\ar\\le |\\mathbf{Y}-\\mathbf{X}|^2\\sum_{j=1}^n",
- "\\left[\\frac{\\partial f_i(\\mathbf{X}_{i})}",
- "{\\partial x_j}",
- "-\\frac{\\partial f_i(\\mathbf{X})}{\\partial x_j}\\right]^2\\\\",
- "\\ar{}\\mbox{(by Schwarz's inequality)}\\\\",
- "\\ar< \\frac{\\epsilon^2}{ m} |\\mathbf{Y}-\\mathbf{X}|^2\\quad\\mbox{\\quad (by",
- "\\eqref{eq:6.2.20})\\quad}.",
- "\\end{eqnarray*}",
- "Summing from $i=1$ to $i=m$ and taking square roots yields",
- "$$",
- "|\\mathbf{F}(\\mathbf{Y})-\\mathbf{F}(\\mathbf{X})-\\mathbf{F}'(\\mathbf{X})",
- "(\\mathbf{Y}-\\mathbf{X})|",
- "<\\epsilon |\\mathbf{Y}-\\mathbf{X}|\\mbox{\\quad if\\quad}",
- "\\mathbf{X},\\mathbf{Y}\\in B_\\delta(\\mathbf{X}_0).",
- "$$",
- "\\nopagebreak",
- "This implies \\eqref{eq:6.2.19} and completes the proof that $g$ is",
- "continuous on $S$.",
- "\\newpage",
- " Since $D$ is compact, so is $S$",
- "(Exercise~\\ref{exer:5.1.27}).",
- "Therefore, $g$ is bounded on $S$",
- "(Theorem~\\ref{thmtype:5.2.12}); thus, for some $M_1$,",
- "$$",
- "|\\mathbf{F}(\\mathbf{Y})-\\mathbf{F}(\\mathbf{X})-\\mathbf{F}'(\\mathbf{X}) (\\mathbf{Y}",
- "-\\mathbf{X})|\\le M_1|\\mathbf{X}-\\mathbf{Y}|\\mbox{\\quad if\\quad}",
- "\\mathbf{X},\\mathbf{Y}\\in D.",
- "$$",
- "But",
- "\\begin{equation}\\label{eq:6.2.21}",
- "\\begin{array}{rcl}",
- "|\\mathbf{F}(\\mathbf{Y})-\\mathbf{F}(\\mathbf{X}) |\\ar\\le",
- "|\\mathbf{F}(\\mathbf{Y})-\\mathbf{F}(\\mathbf{X})-\\mathbf{F}'(\\mathbf{X})",
- "(\\mathbf{Y}-\\mathbf{X})|+|\\mathbf{F}'(\\mathbf{X})(\\mathbf{Y}-\\mathbf{X})|\\\\",
- "\\ar\\le (M_1+\\|\\mathbf{F}'(\\mathbf{X})\\|) |(\\mathbf{Y}-\\mathbf{X}|.",
- "\\end{array}",
- "\\end{equation}",
- "Since",
- "$$",
- "\\|\\mathbf{F}'(\\mathbf{X})\\|",
- "\\le\\left(\\sum_{i=1}^m\\sum_{j=1}^n\\left[\\frac{\\partial",
- "f_i(\\mathbf{X}) }{\\partial x_j}\\right]^2\\right)^{1/2}",
- "$$",
- "and the partial derivatives $\\{\\partial f_i/\\partial x_j\\}$ are",
- "bounded on $D$, it follows that $\\|\\mathbf{F}'(\\mathbf{X})\\|$ is bounded on",
- "$D$; that is, there is a constant $M_2$ such that",
- "$$",
- "\\|\\mathbf{F}'(\\mathbf{X})\\|\\le M_2,\\quad\\mathbf{X}\\in D.",
- "$$",
- "Now \\eqref{eq:6.2.21} implies \\eqref{eq:6.2.18} with $M=M_1+M_2$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.2.14",
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.5",
- "TRENCH_REAL_ANALYSIS-thmtype:5.2.12"
- ],
- "ref_ids": [
- 154,
- 164,
- 152
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 259,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.6",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $|f(\\mathbf{X})|\\le",
- "M$ if $\\mathbf{X}$ is in the rectangle",
- "$$",
- "R=[a_1,b_1]\\times [a_2,b_2]\\times\\cdots\\times [a_n,b_n].",
- "$$",
- "Let ${\\bf P}=P_1\\times P_2\\times\\cdots\\times P_n$ and ${\\bf P}'=",
- "P_1'\\times P_2'\\times\\cdots\\times P_n'$ be partitions of $R,$ where",
- "$P_j'$ is obtained by adding $r_j$ partition points to $P_j,$",
- "$1\\le j\\le n.$ Then",
- "\\begin{equation}\\label{eq:7.1.16}",
- "S({\\bf P})\\ge S({\\bf P}')\\ge S({\\bf P})-2MV(R)\\left(\\sum_{j=1}^n",
- "\\frac{r_j}{ b_j-a_j}\\right)\\|{\\bf P}\\|",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:7.1.17}",
- "s({\\bf P})\\le s({\\bf P}')\\le s({\\bf P})+2MV(R)\\left(\\sum_{j=1}^n",
- "\\frac{r_j",
- "}{ b_j-a_j}\\right)\\|{\\bf P}\\|.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We will prove",
- " \\eqref{eq:7.1.16} and leave the proof of \\eqref{eq:7.1.17} to you",
- "(Exercise~\\ref{exer:7.1.7}).",
- "First suppose that",
- " $P_1'$ is obtained by adding one point to $P_1$, and",
- "$P_j'=P_j$ for $2\\le j\\le n$.",
- "If $P_r$ is",
- "defined by",
- "$$",
- "P_r: a_r=a_{r0}0,$ there is",
- " a $\\delta>0$ such that",
- "\\vspace{4pt}",
- "$$",
- "\\overline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}\\le S({\\bf P})<\\overline{\\int_R}\\,",
- "f(\\mathbf{X})\\,d\\mathbf{X}+\\epsilon",
- "$$",
- "\\vspace{4pt}",
- "and",
- "\\vspace{4pt}",
- "$$",
- "\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}\\ge s({\\bf P})>",
- "\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}-\\epsilon",
- "$$",
- "\\vspace{4pt}",
- "if $\\|{\\bf P}\\|<\\delta.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Exercise~\\ref{exer:7.1.10}.",
- "The next theorem is analogous to Theorem~3.2.5.",
- "\\begin{theorem}\\label{thmtype:7.1.10}",
- "If $f$ is bounded on a rectangle $R$ and",
- "\\vspace{2pt}",
- "$$",
- "\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}=",
- "\\overline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X}=L,",
- "$$",
- "\\vspace{2pt}",
- "then $f$ is integrable on $R,$ and",
- "\\vspace{2pt}",
- "$$",
- "\\int_R f(\\mathbf{X})\\,d\\mathbf{X}=L.",
- "$$",
- "\\end{theorem}"
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 261,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.15",
- "categories": [],
- "title": "",
- "contents": [
- "The union of finitely many sets with zero content has zero content$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Suppose that $\\epsilon>0$. Since $E$ has zero content, there are",
- "rectangles",
- "$T_1$, $T_2$, \\dots, $T_m$ such that",
- "\\begin{equation} \\label{eq:7.1.31}",
- "E\\subset\\bigcup_{j=1}^m T_j",
- "\\end{equation}",
- "and",
- "\\begin{equation} \\label{eq:7.1.32}",
- "\\sum_{j=1}^m V(T_j)<\\epsilon.",
- "\\end{equation}",
- " We may assume that",
- "$T_1$, $T_2$, \\dots, $T_m$ are contained in $R$, since, if not, their",
- "intersections with",
- "$R$ would be contained in $R$, and still satisfy \\eqref{eq:7.1.31}",
- "and \\eqref{eq:7.1.32}.",
- " We may also assume that if $T$ is any rectangle such",
- "that",
- "\\begin{equation}\\label{eq:7.1.33}",
- "T\\bigcap\\left(\\bigcup_{j=1}^m T_j^0\\right)=\\emptyset, \\mbox{\\quad",
- "then",
- "\\quad}T\\cap E=\\emptyset",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "since if this were not so, we could make it so by enlarging",
- "$T_1$, $T_2$, \\dots, $T_m$",
- "slightly while maintaining \\eqref{eq:7.1.32}. Now suppose that",
- "\\vspace*{1pt}",
- "$$",
- "T_j=[a_{1j},b_{1j}]\\times [a_{2j},b_{2j}]\\times\\cdots\\times",
- "[a_{nj},b_{nj}],\\quad 1\\le j\\le m,",
- "$$",
- "\\vspace*{1pt}",
- "\\noindent let $P_{i0}$ be the partition of $[a_i,b_i]$ (see",
- "\\eqref{eq:7.1.30}) with partition points",
- "$$",
- "a_i,b_i,a_{i1},b_{i1},a_{i2},b_{i2}, \\dots,a_{im},b_{im}",
- "\\vspace*{1pt}",
- "$$",
- "(these are not in increasing order), $1\\le i\\le n$, and let",
- "\\vspace*{1pt}",
- "$$",
- "{\\bf P}_0=P_{10}\\times P_{20}\\times\\cdots\\times P_{n0}.",
- "$$",
- "\\vspace*{1pt}",
- "\\noindent\\hskip-.3em Then ${\\bf P}_0$ consists of rectangles whose",
- "union equals $\\cup_{j=1}^m T_j$",
- "and other rectangles",
- "$T'_1$, $T'_2$, \\dots, $T'_k$ that do not intersect $E$. (We need",
- "\\eqref{eq:7.1.33} to be sure that $T'_i\\cap E=\\emptyset,",
- "1\\le i\\le k.)$ If we let",
- "$$",
- "B=\\bigcup_{j=1}^m T_j\\mbox{\\quad and\\quad} C=\\bigcup^k_{i=1} T'_i,",
- "$$",
- "then $R=B\\cup C$ and $f$ is continuous on the compact set $C$.",
- "If ${\\bf P}=\\{R_1,R_2, \\dots,R_k\\}$ is a refinement of ${\\bf P}_0$,",
- "then every subrectangle $R_j$ of ${\\bf P}$ is contained entirely in",
- "$B$ or entirely in $C$. Therefore, we can write",
- "\\vspace*{1pt}",
- "\\begin{equation}\\label{eq:7.1.34}",
- "S({\\bf P})-s({\\bf P})=\\Sigma_1(M_j-m_j)",
- "V(R_j)+\\Sigma_2(M_j-m_j)V(R_j),",
- "\\end{equation}",
- "\\vspace*{1pt}",
- "\\noindent \\hskip-.3em",
- "where $\\Sigma_1$ and $\\Sigma_2$ are summations over values of $j$ for",
- "which $R_j\\subset B$ and $R_j\\subset C$, respectively. Now suppose that",
- "$$",
- "|f(\\mathbf{X})|\\le M\\mbox{\\quad for $\\mathbf{X}$ in $R$}.",
- "$$",
- "Then",
- "\\begin{equation}\\label{eq:7.1.35}",
- "\\Sigma_1(M_j-m_j) V(R_j)\\le2M\\,\\Sigma_1 V(R_j)=2M\\sum_{j=1}^m V(T_j)<",
- "2M\\epsilon,",
- "\\end{equation}",
- "from \\eqref{eq:7.1.32}.",
- "Since $f$ is uniformly continuous on the compact set $C$",
- "(Theorem~\\ref{thmtype:5.2.14}),",
- "there is a $\\delta>0$ such that $M_j-m_j<\\epsilon$ if",
- "$\\|{\\bf P}\\|< \\delta$ and $R_j\\subset C$; hence,",
- "$$",
- "\\Sigma_2(M_j-m_j)V(R_j)<\\epsilon\\Sigma_2\\, V(R_j)\\le\\epsilon V(R).",
- "$$",
- "This, \\eqref{eq:7.1.34}, and \\eqref{eq:7.1.35} imply that",
- "$$",
- "S({\\bf P})-s({\\bf P})<[2M+V(R)]\\epsilon",
- "$$",
- "if $\\|{\\bf P}\\|<\\delta$ and ${\\bf P}$ is a refinement of ${\\bf P}_0$.",
- "Therefore, Theorem~\\ref{thmtype:7.1.12} implies that $f$ is integrable on",
- "$R$.",
- "\\enlargethispage{4\\baselineskip}"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.2.14",
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.12"
- ],
- "ref_ids": [
- 154,
- 195
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 262,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.29",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $S$ is contained in a bounded set $T$ and $f$ is integrable",
- "on $S.$ Then",
- " $f_S$ $($see $\\eqref{eq:7.1.36})$ is integrable on $T,$ and",
- "$$",
- "\\int_T f_S(\\mathbf{X})\\,d\\mathbf{X}=\\int_S f(\\mathbf{X})\\,d\\mathbf{X}.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "From Definition~\\ref{thmtype:7.1.17} with $f$ and $S$ replaced by $f_S$",
- "and $T$,",
- "\\pagebreak",
- "$$",
- "(f_S)_T(\\mathbf{X})=\\left\\{\\casespace\\begin{array}{ll} f_S(\\mathbf{X}),&\\mathbf{X}\\in T,\\\\",
- " 0,&\\mathbf{X}\\not\\in T.\\end{array}\\right.",
- "$$",
- " Since $S\\subset T$, $(f_S)_T=f_S$.",
- "(Verify.) Now suppose that $R$ is a rectangle containing $T$.",
- " Then $R$ also",
- "contains $S$ (Figure~\\ref{figure:7.1.7}),",
- " \\vspace*{12pt}",
- " \\centereps{2.3in}{1.45in}{fig070107.eps}",
- " \\vskip6pt",
- " \\refstepcounter{figure}",
- " \\centerline{\\bf Figure \\thefigure} \\label{figure:7.1.7}",
- " \\vskip12pt",
- "\\noindent so",
- "$$",
- "\\begin{array}{rcll}",
- "\\dst\\int_Sf(\\mathbf{X})\\,d\\mathbf{X}\\ar=\\dst\\int_Rf_S(\\mathbf{X})\\,d\\mathbf{X}&",
- "\\mbox{(Definition~\\ref{thmtype:7.1.17}, applied to $f$ and $S$})\\\\[4\\jot]",
- "\\ar=\\dst\\int_R(f_S)_T(\\mathbf{X})\\,d\\mathbf{X}&",
- "\\mbox{(since $(f_S)_T=f_S$)}\\\\[4\\jot]",
- "\\ar=\\dst\\int_Tf_S(\\mathbf{X})\\,d\\mathbf{X}&",
- "\\mbox{(Definition~\\ref{thmtype:7.1.17}, applied to $f_S$ and $T$}),",
- "\\end{array}",
- "$$",
- "which completes the proof."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.17",
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.17",
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.17"
- ],
- "ref_ids": [
- 362,
- 362,
- 362
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 263,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.3",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $K$ is a bounded set with zero content and $\\epsilon,$",
- "$\\rho>0.$ Then there are cubes $C_1,$ $C_2,$ \\dots$,$",
- "$C_r$ with edge lengths",
- "$<\\rho$ such that $C_j\\cap K\\ne\\emptyset,$ $1\\le j\\le r,$",
- "\\begin{equation}\\label{eq:7.3.5}",
- "K\\subset\\bigcup_{j=1}^r C_j,",
- "\\end{equation}",
- "and",
- "$$",
- "\\sum_{j=1}^r V(C_j)<\\epsilon.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $V(K)=0$,",
- "$$",
- "\\int_C\\psi_K(\\mathbf{X})\\,d\\mathbf{X}=0",
- "$$",
- "if $C$ is any cube containing $K$. From this and the",
- "definition of the integral, there is a $\\delta>0$ such that if ${\\bf",
- "P}$ is any partition of $C$ with $\\|{\\bf P}\\|\\le\\delta$ and $\\sigma$",
- "is any Riemann sum of $\\psi_K$ over ${\\bf P}$, then",
- "\\begin{equation}\\label{eq:7.3.6}",
- "0\\le\\sigma\\le\\epsilon.",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "Now suppose that ${\\bf P}=\\{C_1,C_2,\\dots,C_k\\}$ is a partition of $C$",
- "into cubes with",
- "\\begin{equation}\\label{eq:7.3.7}",
- "\\|{\\bf P}\\|<\\min (\\rho,\\delta),",
- "\\end{equation}",
- "and let $C_1$, $C_2$, \\dots, $C_k$ be numbered so that $C_j\\cap K\\ne",
- "\\emptyset$ if $1\\le j\\le r$ and",
- "$C_j\\cap K=\\emptyset$ if $r+1\\le j\\le k$. Then \\eqref{eq:7.3.5} holds, and",
- "a typical Riemann sum of $\\psi_K$ over ${\\bf P}$ is of the form",
- "$$",
- "\\sigma=\\sum_{j=1}^r\\psi_K(\\mathbf{X}_j)V(C_j)",
- "$$",
- "with $\\mathbf{X}_j\\in C_j$, $1\\le j\\le r$. In particular, we",
- "can choose",
- "$\\mathbf{X}_j$ from $K$, so that $\\psi_K(\\mathbf{X}_j)=1$, and",
- "$$",
- "\\sigma=\\sum_{j=1}^r V(C_j).",
- "$$",
- "Now \\eqref{eq:7.3.6} and \\eqref{eq:7.3.7} imply that $C_1$, $C_2$, \\dots,",
- "$C_r$ have the required properties."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 264,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.4",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{G}: \\R^n\\to \\R^n$ is continuously",
- "differentiable on a bounded open set $S,$ and let $K$ be a closed",
- "subset of $S$ with zero content$.$ Then $\\mathbf{G}(K)$ has zero content."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $K$ is a compact subset of the open set $S$, there is a",
- " $\\rho_1>0$ such that the compact set",
- "$$",
- "K_{\\rho_1}=\\set{\\mathbf{X}}{\\dist(\\mathbf{X},K)\\le\\rho_1}",
- "$$",
- "is contained in $S$ (Exercise~5.1.26).",
- "From",
- "Lemma~\\ref{thmtype:6.2.7}, there is a constant $M$ such that",
- "\\begin{equation}\\label{eq:7.3.8}",
- "|\\mathbf{G}(\\mathbf{Y})-\\mathbf{G}(\\mathbf{X})|\\le M|\\mathbf{Y}-\\mathbf{X}|",
- "\\mbox{\\quad if\\quad}\\mathbf{X},\\mathbf{Y}\\in K_{\\rho_1}.",
- "\\end{equation}",
- "Now suppose that $\\epsilon>0$. Since $V(K)=0$,",
- "there are cubes $C_1$, $C_2$, \\dots, $C_r$ with edge",
- "lengths",
- "$s_1$, $s_2$, \\dots, $s_r<\\rho_1/\\sqrt n$ such that $C_j\\cap",
- "K\\ne\\emptyset$, $1\\le j\\le r$,",
- "$$",
- "K\\subset\\bigcup_{j=1}^r C_j,",
- "$$",
- "and",
- "\\begin{equation} \\label{eq:7.3.9}",
- "\\sum_{j=1}^r V(C_j)<\\epsilon",
- "\\end{equation}",
- "(Lemma~\\ref{thmtype:7.3.3}). For $1\\le j\\le r$, let $\\mathbf{X}_j\\in C_j\\cap",
- "K$. If $\\mathbf{X}\\in C_j$, then",
- "$$",
- "|\\mathbf{X}-\\mathbf{X}_j|\\le s_j\\sqrt n<\\rho_1,",
- "$$",
- "\\newpage",
- "\\noindent",
- "so $\\mathbf{X}\\in K$ and",
- "$|\\mathbf{G}(\\mathbf{X})-\\mathbf{G}(\\mathbf{X}_j)|\\le M|\\mathbf{X}-\\mathbf{X}_j|\\le",
- "M\\sqrt{n}\\,s_j$,",
- "from \\eqref{eq:7.3.8}.",
- "Therefore, $\\mathbf{G}(C_j)$ is contained in a cube",
- "$\\widetilde{C}_j$ with edge length $2M\\sqrt{n}\\,s_j$,",
- " centered at $\\mathbf{G}(\\mathbf{X}_j)$. Since",
- "$$",
- "V(\\widetilde{C}_j)=(2M\\sqrt{n})^ns_j^n=(2M\\sqrt{n})^nV(C_j),",
- "$$",
- "we now see that",
- "$$",
- "\\mathbf{G}(K)\\subset\\bigcup_{j=1}^r\\widetilde{C}_j",
- "$$",
- "and",
- "$$",
- "\\sum_{j=1}^r V(\\widetilde{C}_j)\\le",
- "(2M\\sqrt{n})^n\\sum_{j=1}^r V(C_j)<(2M\\sqrt{n})^n\\epsilon,",
- "$$",
- "where the last inequality follows from \\eqref{eq:7.3.9}.",
- "Since $(2M\\sqrt{n})^n$ does not depend on $\\epsilon$, it follows",
- "that $V(\\mathbf{G}(K))=0$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:6.2.7",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.3"
- ],
- "ref_ids": [
- 258,
- 263
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 265,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.6",
- "categories": [],
- "title": "",
- "contents": [
- "A nonsingular $n\\times n$ matrix",
- "$\\mathbf{A}$ can be written as",
- "\\begin{equation}\\label{eq:7.3.10}",
- "\\mathbf{A}=\\mathbf{E}_k\\mathbf{E}_{k-1}\\cdots\\mathbf{E}_1,",
- "\\end{equation}",
- "where each $\\mathbf{E}_i$ is a matrix that can be obtained from the",
- "$n\\times n$ identity matrix $\\mathbf{I}$ by one of the following",
- "operations$:$",
- "\\begin{alist}",
- "\\item % (a)",
- "interchanging two rows of $\\mathbf{I};$",
- "\\item % (b)",
- "multiplying a row of $\\mathbf{I}$ by a nonzero constant$;$",
- "\\item % (c)",
- "adding a multiple of one row of $\\mathbf{I}$ to another$.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Theorem~\\ref{thmtype:7.3.5} implies that $\\mathbf{L}(S)$ is",
- "Jordan measurable. If",
- "\\begin{equation} \\label{eq:7.3.15}",
- "V(\\mathbf{L}(R))=|\\det(\\mathbf{A})| V(R)",
- "\\end{equation}",
- "whenever $R$ is a rectangle, then",
- " \\eqref{eq:7.3.14} holds if $S$",
- "is any compact Jordan measurable set. To see this, suppose that",
- "$\\epsilon>0$, let",
- "$R$ be a rectangle containing $S$, and let",
- "${\\bf P}=\\{R_1,R_2,\\dots,R_k\\}$ be a partition of $R$ such that the",
- "upper and lower sums of $\\psi_S$ over ${\\bf",
- "P}$ satisfy the inequality",
- "\\begin{equation}\\label{eq:7.3.16}",
- "S({\\bf P})-s({\\bf P})<\\epsilon.",
- "\\end{equation}",
- "Let ${\\mathcal U}_1$ and ${\\mathcal U}_2$ be as in \\eqref{eq:7.3.2}.",
- "From \\eqref{eq:7.3.3} and \\eqref{eq:7.3.4},",
- "\\begin{equation}\\label{eq:7.3.17}",
- "s({\\bf P})=\\sum_{j\\in{\\mathcal U}_1} V(R_j)\\le V(S)\\le\\sum_{j\\in{\\mathcal U}_1} V(R_j)+\\sum_{j\\in{\\mathcal U}_2}",
- "V(R_j)=S({\\bf P}).",
- "\\end{equation}",
- " Theorem~\\ref{thmtype:7.3.7}",
- "implies that $\\mathbf{L}(R_1)$, $\\mathbf{L}(R_2)$, \\dots, $\\mathbf{L}(R_k)$",
- "and",
- "$\\mathbf{L}(S)$ are all Jordan measurable.",
- "Since",
- "$$",
- "\\bigcup_{j\\in{\\mathcal U}_1}R_j\\subset S\\subset\\bigcup_{j\\in{\\mathcal",
- "S}_1\\cup{\\mathcal S_2}}R_j,",
- "$$",
- "it follows that",
- "$$",
- "L\\left(\\bigcup_{j\\in{\\mathcal U}_1}R_j\\right)\\subset",
- "L(S)\\subset L\\left(\\bigcup_{j\\in{\\mathcal S}_1\\cup{\\mathcal S_2}}R_j\\right).",
- "$$",
- "Since $L$ is one-to-one on $\\R^n$, this implies that",
- "\\begin{equation} \\label{eq:7.3.18}",
- "\\sum_{j\\in{\\mathcal U}_1} V(\\mathbf{L}(R_j))\\le V(\\mathbf{L}(S))\\le\\sum_{j\\in{\\mathcal U}_1}",
- "V(\\mathbf{L}(R_j))+\\sum_{j\\in{\\mathcal U}_2} V(\\mathbf{L}(R_j)).",
- "\\end{equation}",
- "If we assume that \\eqref{eq:7.3.15} holds whenever $R$ is a rectangle,",
- "then",
- "$$",
- "V(\\mathbf{L}(R_j))=|\\det(\\mathbf{A})|V(R_j),\\quad 1\\le j\\le k,",
- "$$",
- "so \\eqref{eq:7.3.18} implies that",
- "$$",
- "s({\\bf P})\\le \\frac{V(\\mathbf{L}(S))}{ |\\det(\\mathbf{A})|}\\le S({\\bf P}).",
- "$$",
- "This, \\eqref{eq:7.3.16} and \\eqref{eq:7.3.17} imply that",
- "$$",
- "\\left|V(S)-\\frac{V(\\mathbf{L}(S))}{ |\\det(\\mathbf{A})|}\\right|<\\epsilon;",
- "$$",
- "hence, since $\\epsilon$ can be made arbitrarily small, \\eqref{eq:7.3.14}",
- "follows for any Jordan measurable set.",
- "To complete the proof, we must verify \\eqref{eq:7.3.15} for every",
- "rectangle",
- "$$",
- "R=[a_1,b_1]\\times [a_2,b_2]\\times\\cdots\\times [a_n,b_n]=I_1\\times",
- "I_2\\times\\cdots\\times I_n.",
- "$$",
- " Suppose that $\\mathbf{A}$ in \\eqref{eq:7.3.12} is an elementary matrix;",
- "that is, let",
- "$$",
- "\\mathbf{X}=\\mathbf{L}(\\mathbf{Y})=\\mathbf{EY}.",
- "$$",
- "{\\sc Case 1}. If $\\mathbf{E}$ is obtained by interchanging the $i$th and",
- "$j$th rows of $\\mathbf{I}$, then",
- "$$",
- "x_r=\\left\\{\\casespace\\begin{array}{ll} y_r&\\mbox{if $r\\ne i$ and $r\\ne j$};\\\\",
- "y_j&\\mbox{if $r=i$};\\\\",
- "y_i&\\mbox{if $r=j$}.\\end{array}\\right.",
- "$$",
- "Then $\\mathbf{L}(R)$ is the Cartesian product of $I_1$,",
- "$I_2$, \\dots, $I_n$ with",
- "$I_i$ and $I_j$ interchanged, so",
- "$$",
- "V(\\mathbf{L}(R))=V(R)=|\\det(\\mathbf{E})|V(R)",
- "$$",
- "since $\\det(\\mathbf{E})=-1$ in this case (Exercise~\\ref{exer:7.3.7}\\part{a}).",
- "{\\sc Case 2}. If $\\mathbf{E}$ is obtained by multiplying the $r$th row of",
- "$\\mathbf{I}$ by $a$, then",
- "$$",
- "x_r=\\left\\{\\casespace\\begin{array}{ll} y_r&\\mbox{if $r\\ne i$},\\\\",
- "ay_i&\\mbox{if $r=i$}.\\end{array}\\right.",
- "$$",
- "Then",
- "$$",
- "\\mathbf{L}(R)=I_1\\times\\cdots\\times I_{i-1}\\times I'_i\\times I_{i+1}\\times",
- "\\cdots\\times I_n,",
- "$$",
- "where $I'_i$ is an interval with length equal to $|a|$ times the",
- "length of $I_i$, so",
- "$$",
- "V(\\mathbf{L}(R))=|a|V(R)=|\\det(\\mathbf{E})|V(R)",
- "$$",
- "since $\\det(\\mathbf{E})=a$ in this case (Exercise~\\ref{exer:7.3.7}\\part{a}).",
- "{\\sc Case 3}. If $\\mathbf{E}$ is obtained by adding $a$ times the $j$th",
- "row of $\\mathbf{I}$ to its $i$th row ($j\\ne i$), then",
- "$$",
- "x_r=\\left\\{\\casespace\\begin{array}{ll} y_r&\\mbox{if $r\\ne i$};\\\\",
- "y_i+ay_j&\\mbox{if $r=i$}.\\end{array}\\right.",
- "$$",
- "Then",
- "$$",
- "\\mathbf{L}(R)=\\set{(x_1,x_2,\\dots,x_n)}{a_i+ax_j\\le x_i\\le b_i+ax_j",
- "\\mbox{ and } a_r\\le x_r\\le b_r\\mbox{if } r\\ne i},",
- "$$",
- "which is a parallelogram if $n=2$ and a parallelepiped if $n=3$",
- "(Figure~\\ref{figure:7.3.1}). Now",
- "$$",
- "V(\\mathbf{L}(R))=\\int_{\\mathbf{L}(R)} d\\mathbf{X},",
- "$$",
- "which we can evaluate as an iterated integral in which the first",
- "integration is with respect to $x_i$. For example, if $i=1$, then",
- "\\begin{equation}\\label{eq:7.3.19}",
- "V(\\mathbf{L}(R))=\\int^{b_n}_{a_n} dx_n\\int^{b_{n-1}}_{a_{n-1}}",
- "dx_{n-1}\\cdots\\int^{b_2}_{a_2} dx_2\\int^{b_1+ax_j}_{a_1+ax_j} dx_1.",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "Since",
- "$$",
- "\\int^{b_1+ax_j}_{a_1+ax_j} dy_1=\\int^{b_1}_{a_1} dy_1,",
- "$$",
- "\\eqref{eq:7.3.19} can be rewritten as",
- "\\begin{eqnarray*}",
- "V(\\mathbf{L}(R))\\ar=\\int^{b_n}_{a_n} dx_n\\int^{b_{n-1}}_{a_{n-1}}",
- "dx_{n-1}\\cdots\\int^{b_2}_{a_2} dx_2\\int^{b_1}_{a_1} dx_1\\\\",
- "\\ar=(b_n-a_n)(b_{n-1}-a_{n-1})\\cdots (b_1-a_1)=V(R).",
- "\\end{eqnarray*}",
- " Hence,",
- "$V(\\mathbf{L}(R))=|\\det(\\mathbf{E})|V(R)$,",
- "since $\\det(\\mathbf{E})=1$ in this case (Exercise~\\ref{exer:7.3.7}\\part{a}).",
- "\\vskip12pt",
- " \\centereps{3.6in}{4.6in}{fig070301.eps}",
- " \\vskip6pt",
- " \\refstepcounter{figure}",
- " \\centerline{\\bf Figure \\thefigure} \\label{figure:7.3.1}",
- " \\vskip12pt",
- "From what we have shown so far, \\eqref{eq:7.3.14} holds if $\\mathbf{A}$ is an",
- "elementary matrix and $S$ is any compact Jordan measurable set. If",
- "$\\mathbf{A}$ is an arbitrary nonsingular matrix,",
- "\\newpage",
- "\\noindent",
- "\\hskip -.0em",
- "then we can write $\\mathbf{A}$",
- "as a product of elementary matrices \\eqref{eq:7.3.10} and apply our known",
- "result successively to $\\mathbf{L}_1$, $\\mathbf{L}_2$, \\dots, $\\mathbf{L}_k$",
- "(see",
- "\\eqref{eq:7.3.13}). This yields",
- "$$",
- "V(\\mathbf{L}(S))=|\\det(\\mathbf{E}_k)|\\,|\\det(\\mathbf{E}_{k-1})|\\cdots",
- "|\\det\\mathbf{E}_1| V(S)=|\\det(\\mathbf{A})|V(S),",
- "$$",
- "by Theorem~\\ref{thmtype:6.1.9} and induction."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.5",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.7",
- "TRENCH_REAL_ANALYSIS-thmtype:6.1.9"
- ],
- "ref_ids": [
- 215,
- 216,
- 173
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 266,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.10",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{G}:\\E^n\\to \\R^n$ is regular",
- " on a cube $C$ in $\\E^n,$ and let $\\mathbf{A}$ be a",
- "nonsingular $n\\times n$ matrix$.$ Then",
- "\\begin{equation}\\label{eq:7.3.29}",
- "V(\\mathbf{G}(C))\\le |\\det(\\mathbf{A})|\\left[\\max",
- "\\set{\\|\\mathbf{A}^{-1}\\mathbf{G}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in C}",
- "\\right]^n V(C).",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $s$ be the edge length of $C$. Let $\\mathbf{Y}_0=",
- "(c_1,c_2,\\dots,c_n)$ be the center of $C$, and suppose that",
- " $\\mathbf{H}=(y_1,y_2,\\dots,y_n)\\in C$.",
- "If $\\mathbf{H}= (h_1,h_2,\\dots,h_n)$ is continuously differentiable on",
- "$C$, then applying the mean value theorem",
- "(Theorem~\\ref{thmtype:5.4.5}) to the components of",
- "$\\mathbf{H}$ yields",
- "$$",
- "h_i(\\mathbf{Y})-h_i(\\mathbf{Y}_0)=\\sum_{j=1}^n",
- "\\frac{\\partial h_i(\\mathbf{Y}_i)}{\\partial y_j}(y_j-c_j),\\quad 1\\le i\\le n,",
- "$$",
- "where $\\mathbf{Y}_i\\in C$. Hence, recalling that",
- "$$",
- "\\mathbf{H}'(\\mathbf{Y})=\\left[\\frac{\\partial h_i}{\\partial",
- "y_j}\\right]_{i,j=1}^n,",
- "$$",
- "applying Definition~\\ref{thmtype:7.3.9}, and noting that $|y_j-c_j|\\le",
- "s/2$, $1\\le j\\le n$, we infer that",
- "$$",
- "|h_i(\\mathbf{Y})-h_i(\\mathbf{Y}_0)|\\le \\frac{s}{2}",
- "\\max\\set{\\|\\mathbf{H}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in C},\\quad 1\\le i\\le",
- "n.",
- "$$",
- "This means that $\\mathbf{H}(C)$ is",
- "contained in a cube with center $\\mathbf{X}_0=\\mathbf{H}(\\mathbf{Y}_0)$ and edge",
- " length",
- "$$",
- "s\\max\\set{\\|\\mathbf{H}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in C}.",
- "$$",
- "Therefore,",
- "\\begin{equation}\\label{eq:7.3.30}",
- "\\begin{array}{rcl}",
- "V(\\mathbf{H}(C))\\ar\\le",
- "\\left[\\max\\set{\\|\\mathbf{H}'(\\mathbf{Y})\\|_\\infty\\right]^n}{\\mathbf{Y}\\in",
- "C} s^n\\\\[2\\jot]",
- "\\ar=\\left[\\max\\set{\\|\\mathbf{H}'(\\mathbf{Y})\\|_\\infty\\right]^n}{\\mathbf{Y}\\in C}",
- "V(C).",
- "\\end{array}",
- "\\end{equation}",
- "Now let",
- "$$",
- "\\mathbf{L}(\\mathbf{X})=\\mathbf{A}^{-1}\\mathbf{X}",
- "$$",
- "and set $\\mathbf{H}=\\mathbf{L}\\circ\\mathbf{G}$; then",
- "$$",
- "\\mathbf{H}(C)=\\mathbf{L}(\\mathbf{G}(C))",
- "\\mbox{\\quad and\\quad}\\mathbf{H}'=\\mathbf{A}^{-1}\\mathbf{G}',",
- "$$",
- "so \\eqref{eq:7.3.30} implies that",
- "\\begin{equation}\\label{eq:7.3.31}",
- "V(\\mathbf{L}(\\mathbf{G}(C)))\\le",
- "\\left[\\max\\set{\\|\\mathbf{A}^{-1}\\mathbf{G}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in C}",
- "\\right]^nV(C).",
- "\\end{equation}",
- "Since $\\mathbf{L}$ is linear,",
- "Theorem~\\ref{thmtype:7.3.7} with $\\mathbf{A}$ replaced by $\\mathbf{A}^{-1}$ implies that",
- "$$",
- "V(\\mathbf{L}(\\mathbf{G}(C)))=|\\det(\\mathbf{A})^{-1}|V(\\mathbf{G}(C)).",
- "$$",
- "This and \\eqref{eq:7.3.31} imply that",
- "$$",
- "|\\det(\\mathbf{A}^{-1})|V(\\mathbf{G}(C))",
- "\\le\\left[\\max\\set{\\|\\mathbf{A}^{-1}\\mathbf{G}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in",
- "C}",
- "\\right]^nV(C).",
- "$$",
- "Since $\\det(\\mathbf{A}^{-1})=1/\\det(\\mathbf{A})$, this",
- "implies \\eqref{eq:7.3.29}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.5",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.9",
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.7"
- ],
- "ref_ids": [
- 164,
- 365,
- 216
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 267,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.11",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{G}:\\E^n\\rightarrow \\R^n$",
- " is regular on a cube $C$ in $\\R^n,$ then",
- "\\begin{equation}\\label{eq:7.3.32}",
- "V(\\mathbf{G}(C))\\le\\int_C |JG(\\mathbf{Y})|\\,d\\mathbf{Y}.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let ${\\bf P}$ be a partition of $C$ into subcubes $C_1$, $C_2$,",
- "\\dots, $C_k$ with centers $\\mathbf{Y}_1$, $\\mathbf{Y}_2$,",
- "\\dots, $\\mathbf{Y}_k$. Then",
- "\\begin{equation}\\label{eq:7.3.33}",
- "V(\\mathbf{G}(C))=\\sum_{j=1}^k V(\\mathbf{G}(C_j)).",
- "\\end{equation}",
- "Applying Lemma~\\ref{thmtype:7.3.10}",
- "to $C_j$ with $\\mathbf{A}=\\mathbf{G}'(\\mathbf{A}_j)$ yields",
- "\\begin{equation}\\label{eq:7.3.34}",
- "V(\\mathbf{G}(C_j))\\le |J\\mathbf{G}(\\mathbf{Y}_j)|",
- "\\left[\\max\\set{\\|(\\mathbf{G}'(\\mathbf{Y}_j))^{-1}",
- "\\mathbf{G}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in C_j}",
- "\\right]^n V(C_j).",
- "\\end{equation}",
- "Exercise~\\ref{exer:6.1.22} implies that if $\\epsilon>0$, there",
- "is a $\\delta>0$ such that",
- "$$",
- "\\max\\set{\\|(\\mathbf{G}'(\\mathbf{Y}_j))^{-1}",
- "\\mathbf{G}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in C_j}",
- "<1+\\epsilon,\\quad 1\\le j\\le k,\\mbox{\\quad if\\quad}\\|{\\bf P}\\|<\\delta.",
- "$$",
- "Therefore, from \\eqref{eq:7.3.34},",
- "$$",
- "V(\\mathbf{G}(C_j))\\le (1+\\epsilon)^n|J\\mathbf{G}(\\mathbf{Y}_j)|V(C_j),",
- "$$",
- " so \\eqref{eq:7.3.33} implies that",
- "$$",
- "V(\\mathbf{G}(C))\\le (1+\\epsilon)^n\\sum_{j=1}^k",
- "|J\\mathbf{G}(\\mathbf{Y}_j)|V(C_j)\\mbox{\\quad if\\quad}\\|{\\bf P}\\|<\\delta.",
- "$$",
- "Since the sum on the right is a Riemann sum for",
- " $\\int_C |J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}$ and $\\epsilon$ can be",
- "taken arbitrarily small, this implies \\eqref{eq:7.3.32}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.3.10"
- ],
- "ref_ids": [
- 266
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 268,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.12",
- "categories": [],
- "title": "",
- "contents": [
- " Suppose that $S$ is Jordan measurable",
- "and $\\epsilon,$ $\\rho>0.$ Then there are cubes",
- "$C_1,$ $C_2,$ \\dots$,$ $C_r$ in $S$ with edge lengths $<\\rho,$ such",
- "that $C_j\\subset S,$ $1\\le j\\le r,$",
- "$C_i^0\\cap C_j^0=\\emptyset$ if $i\\ne j,$ and",
- "\\begin{equation} \\label{eq:7.3.35}",
- "V(S)\\le\\sum_{j=1}^r V(C_j)+\\epsilon.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $S$ is Jordan measurable,",
- "$$",
- "\\int_C\\psi_S(\\mathbf{X})\\,d\\mathbf{X}=V(S)",
- "$$",
- "if $C$ is any cube containing $S$. From this and the",
- "definition of the integral, there is a $\\delta>0$ such that if ${\\bf",
- "P}$ is any partition of $C$ with $\\|{\\bf P}\\|<\\delta$ and $\\sigma$",
- "is any Riemann sum of $\\psi_S$ over ${\\bf P}$, then",
- "$\\sigma>V(S)-\\epsilon/2$. Therefore, if $s(P)$ is the lower sum of",
- "$\\psi_S$ over $\\mathbf{P}$, then",
- "\\begin{equation} \\label{eq:7.3.36}",
- "s(\\mathbf{P})>V(S)-\\epsilon\\mbox{\\quad if \\quad}\\|\\mathbf{P}\\|<\\delta.",
- "\\end{equation}",
- "Now suppose that ${\\bf P}=\\{C_1,C_2,\\dots,C_k\\}$ is a partition of $C$",
- "into cubes with",
- "$\\|{\\bf P}\\|<\\min (\\rho,\\delta)$,",
- "and let $C_1$, $C_2$, \\dots, $C_k$ be numbered so that $C_j\\subset",
- "S$ if",
- " $1\\le j\\le r$ and $C_j\\cap S^c\\ne\\emptyset$ if $j>r$.",
- "From \\eqref{eq:7.3.4}, $s(\\mathbf{P})=\\sum_{j=1}^rV(C_k)$. This and",
- "\\eqref{eq:7.3.36} imply \\eqref{eq:7.3.35}. Clearly, $C_i^0\\cap",
- "C_j^0=\\emptyset$ if $i\\ne j$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 269,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.13",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $\\mathbf{G}: \\E^n\\to \\R^n$ is regular on a",
- "compact Jordan measurable set $S$ and $f$ is continuous and",
- "nonnegative on",
- "$\\mathbf{G}(S).$",
- "Let",
- "\\begin{equation}\\label{eq:7.3.37}",
- "Q(S)=\\int_{\\mathbf{G}(S)} f(\\mathbf{X})\\,d\\mathbf{X}-\\int_S",
- " f(\\mathbf{G}(\\mathbf{Y})) |J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}.",
- "\\end{equation}",
- "Then $Q(S)\\le0.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "From the continuity of $J\\mathbf{G}$ and $f$ on the compact sets $S$ and",
- "$\\mathbf{G}(S)$, there are constants $M_1$ and $M_2$ such that",
- "\\begin{equation}\\label{eq:7.3.38}",
- "|J\\mathbf{G}(\\mathbf{Y})|\\le M_1\\mbox{\\quad if\\quad}\\mathbf{Y}\\in S",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:7.3.39}",
- "|f(\\mathbf{X})|\\le M_2\\mbox{\\quad if\\quad}\\mathbf{X}\\in\\mathbf{G}(S)",
- "\\end{equation}",
- " (Theorem~\\ref{thmtype:5.2.11}).",
- "Now suppose that $\\epsilon>0$. Since",
- "$f\\circ\\mathbf{G}$ is uniformly continuous on $S$",
- "(Theorem~\\ref{thmtype:5.2.14}),",
- " there is a $\\delta>0$ such that",
- "\\begin{equation} \\label{eq:7.3.40}",
- "|f(\\mathbf{G}(\\mathbf{Y}))-f(\\mathbf{G}(\\mathbf{Y}'))|<\\epsilon",
- "\\mbox{\\quad if \\quad$|\\mathbf{Y}-\\mathbf{Y}'|<\\delta$",
- "and }\\mathbf{Y},\\mathbf{Y}' \\in S.",
- "\\end{equation}",
- "Now let $C_1$, $C_2$, \\dots, $C_r$ be chosen as described in",
- "Lemma~\\ref{thmtype:7.3.12}, with $\\rho=\\delta/\\sqrt{n}$.",
- " Let",
- "$$",
- "S_1=\\set{\\mathbf{Y}\\in S}{\\mathbf{Y}\\notin\\bigcup_{j=1}^r C_j}.",
- "$$",
- "Then $V(S_1)<\\epsilon$ and",
- "\\begin{equation} \\label{eq:7.3.41}",
- "S=\\left(\\bigcup_{j=1}^r C_j\\right)\\cup S_1.",
- "\\end{equation}",
- "Suppose that $\\mathbf{Y}_1$, $\\mathbf{Y}_2$, \\dots, $\\mathbf{Y}_r$ are points in",
- "$C_1$, $C_2$, \\dots, $C_r$ and $\\mathbf{X}_j=\\mathbf{G}(\\mathbf{Y}_j)$, $1\\le",
- "j\\le r$. From",
- "\\eqref{eq:7.3.41} and Theorem~\\ref{thmtype:7.1.30},",
- "\\begin{eqnarray*}",
- "Q(S)\\ar=\\int_{\\mathbf{G}(S_1)} f(\\mathbf{X})\\,d\\mathbf{X}-\\int_{S_1}",
- "f(\\mathbf{G}(\\mathbf{Y})) |J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y} \\\\",
- "\\ar{}+\\sum_{j=1}^r\\int_{\\mathbf{G}(C_j)} f(\\mathbf{X})\\,d\\mathbf{X}-",
- "\\sum_{j=1}^r\\int_{C_j}",
- "f(\\mathbf{G}(\\mathbf{Y})) |J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}\\\\",
- "\\ar=\\int_{\\mathbf{G}(S_1)} f(\\mathbf{X})\\,d\\mathbf{X}-\\int_{S_1}",
- " f(\\mathbf{G}(\\mathbf{Y})) |J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}\\\\",
- "\\ar{}+\\sum_{j=1}^r\\int_{\\mathbf{G}(C_j)}(f(\\mathbf{X})-",
- "f(\\mathbf{A}_j))\\,d\\mathbf{X}\\\\",
- "\\ar{}+\\sum_{j=1}^r\\int_{C_j}((f(\\mathbf{G}(\\mathbf{Y}_j))-",
- "f(\\mathbf{G}(\\mathbf{Y})))|J(\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}\\\\",
- "\\ar{}+\\sum_{j=1}^r f(\\mathbf{X}_j)\\left(V(\\mathbf{G}(C_j))-",
- "\\int_{C_j} |J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}\\right).",
- "\\end{eqnarray*}",
- "\\newpage",
- "\\noindent",
- "Since $f(\\mathbf{X})\\ge0$,",
- "$$",
- "\\int_{S_1}f(\\mathbf{G}(\\mathbf{Y}))|J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}\\ge0,",
- "$$",
- "and",
- "Lemma~\\ref{thmtype:7.3.11}",
- "implies that the last",
- "sum is nonpositive.",
- "Therefore,",
- "\\begin{equation} \\label{eq:7.3.42}",
- "Q(S)\\le I_1+I_2+I_3,",
- "\\end{equation}",
- "where",
- "$$",
- "I_1=\\int_{\\mathbf{G}(S_1)} f(\\mathbf{X})\\,d\\mathbf{X},\\quad",
- "I_2=",
- "\\sum_{j=1}^r\\int_{\\mathbf{G}(C_j)}|f(\\mathbf{X})-f(\\mathbf{X}_j)|",
- "\\,d\\mathbf{X},",
- "$$",
- "and",
- "$$",
- "I_3=",
- "\\sum_{j=1}^r\\int_{C_j}|f(\\mathbf{G})(\\mathbf{Y}_j))-f(\\mathbf{G}(\\mathbf{Y}))|",
- " |J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}.",
- "$$",
- "We will now estimate these three terms. Suppose that $\\epsilon>0$.",
- "To estimate $I_1$, we first remind you that since $\\mathbf{G}$",
- "is regular on the compact set $S$, $\\mathbf{G}$ is also regular on some",
- "open",
- "set ${\\mathcal O}$ containing $S$ (Definition~\\ref{thmtype:6.3.2}).",
- "Therefore, since $S_1\\subset S$ and $V(S_1)<\\epsilon$,",
- "$S_1$ can be covered by cubes $T_1$, $T_2$, \\dots, $T_m$ such that",
- "\\begin{equation} \\label{eq:7.3.43}",
- "\\sum_{j=1}^r V(T_j)< \\epsilon",
- "\\end{equation}",
- " and $\\mathbf{G}$ is regular on $\\bigcup_{j=1}^m",
- "T_j$. Now,",
- "$$",
- "\\begin{array}{rcll}",
- "I_1\\ar\\le M_2V(\\mathbf{G}(S_1))& \\mbox{(from",
- "\\eqref{eq:7.3.39})}\\\\[2\\jot]",
- "\\ar\\le M_2\\dst\\sum_{j=1}^m V(\\mathbf{G}(T_j))&(\\mbox{since",
- "}S_1\\subset\\cup_{j=1}^mT_j)\\\\[2\\jot]",
- "\\ar\\le M_2\\dst\\sum_{j=1}^m\\int_{T_j}| J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}&",
- "\\mbox{(from Lemma~\\ref{thmtype:7.3.11})}",
- "\\\\[2\\jot]",
- "\\ar\\le M_2M_1\\epsilon& \\mbox{(from \\eqref{eq:7.3.38}",
- "and",
- "\\eqref{eq:7.3.43})}.",
- "\\end{array}",
- "$$",
- "To estimate $I_2$, we note that",
- "if $\\mathbf{X}$ and $\\mathbf{X}_j$ are in $\\mathbf{G}(C_j)$",
- "then $\\mathbf{X}=\\mathbf{G}(\\mathbf{Y})$ and",
- "$\\mathbf{X}_j=\\mathbf{G}(\\mathbf{Y}_j)$ for some $\\mathbf{Y}$ and $\\mathbf{Y}_j$ in",
- "$C_j$. Since the edge length of $C_j$ is less than",
- "$\\delta/\\sqrt n$, it follows that $|\\mathbf{Y}-\\mathbf{Y}_j|<\\delta$, so",
- " $|f(\\mathbf{X})-f(\\mathbf{X}_j)|<\\epsilon$, by \\eqref{eq:7.3.40}.",
- "Therefore,",
- "$$",
- "\\begin{array}{rcll}",
- "I_2\\ar< \\epsilon\\dst\\sum_{j=1}^r V(\\mathbf{G}(C_j))\\\\[2\\jot]",
- "\\ar\\le \\epsilon\\dst\\sum_{j=1}^r\\int_{C_j}|J\\mathbf{G}(\\mathbf{Y})|d\\mathbf{Y}&",
- "\\mbox{(from Lemma~\\ref{thmtype:7.3.11})}\\\\[2\\jot]",
- "\\ar\\le \\dst\\epsilon M_1\\sum_{j=1}^r V(C_j)&\\mbox{(from",
- "\\eqref{eq:7.3.38}})\\\\[2\\jot]",
- "\\ar\\le \\epsilon M_1 V(S)&(\\mbox{since }\\dst\\cup_{j=1}^rC_j\\subset S).",
- "\\end{array}",
- "$$",
- "\\newpage",
- "To estimate $I_3$, we note again from \\eqref{eq:7.3.40} that",
- " $|f(\\mathbf{G}(\\mathbf{Y}_j))-f(\\mathbf{G}(\\mathbf{Y}))|<",
- " \\epsilon$ if $\\mathbf{Y}$ and $\\mathbf{Y}_j$ are in $C_j$.",
- " Hence,",
- "\\begin{eqnarray*}",
- "I_3\\ar< \\epsilon\\sum_{j=1}^r",
- "\\int_{C_j}|J\\mathbf{G}(\\mathbf{Y})|d\\mathbf{Y}\\\\",
- "\\ar\\le M_1\\epsilon\\sum_{j=1}^r V(C_j)",
- "\\mbox{\\quad(from \\eqref{eq:7.3.38}}\\\\",
- "\\ar\\le M_1 V(S)\\epsilon",
- "\\end{eqnarray*}",
- "because $\\bigcup_{j=1}^r C_j\\subset S$ and $C_i^0\\cap C_j^0=\\emptyset$",
- "if",
- "$i\\ne j$.",
- "From these inequalities on $I_1$, $I_2$, and $I_3$,",
- "\\eqref{eq:7.3.42} now implies that",
- "$$",
- "Q(S)1$ and",
- "$q=p/(p-1);$ thus$,$",
- "\\begin{equation} \\label{eq:8.1.5}",
- "\\frac{1}{p}+\\frac{1}{q}=1.",
- "\\end{equation}",
- " Then",
- "\\begin{equation} \\label{eq:8.1.6}",
- "\\sum_{i=1}^n \\mu_i\\nu_i\\le\\left(\\sum_{i=1}^n\\mu_i^p\\right)^{1/p}",
- "\\left(\\sum_{i=1}^n \\nu_i^q\\right)^{1/q}.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $\\alpha$ and $\\beta$ be any two positive numbers, and",
- "consider the function",
- "$$",
- "f(\\beta)=\\frac{\\alpha^p}{p}+\\frac{\\beta^q}{q}-\\alpha\\beta,",
- "$$",
- "\\newpage",
- "\\noindent",
- "where we regard $\\alpha$ as a constant. Since $f'(\\beta)=\\beta^{q-1}-\\alpha$ and",
- "$f''(\\beta)=(q-1)\\beta^{q-2}>0$ for $\\beta>0$, $f$ assumes its minimum value",
- "on $[0,\\infty)$ at $\\beta=\\alpha^{1/(q-1)}=\\alpha^{p-1}$. But",
- "$$",
- "f(\\alpha^{p-1})=\\frac{\\alpha^p}{p}+\\frac{\\alpha^{(p-1)q}}{q}-\\alpha^p",
- "=\\alpha^p\\left(\\frac{1}{p}+\\frac{1}{q}-1\\right)=0.",
- "$$",
- "Therefore,",
- "\\begin{equation} \\label{eq:8.1.7}",
- "\\alpha\\beta\\le \\frac{\\alpha^p}{p}+\\frac{\\beta^q}{q}\\mbox{\\quad if \\quad}",
- "\\alpha, \\beta\\ge0.",
- "\\end{equation}",
- "Now let",
- "$$",
- "\\alpha_i=\\mu_i\\left(\\sum_{j=1}^n \\mu_j^p\\right)^{-1/p}",
- "\\mbox{\\quad and \\quad}",
- "\\beta_i=\\nu_i\\left(\\sum_{j=1}^n \\nu_j^q\\right)^{-1/q}.",
- "$$",
- "From \\eqref{eq:8.1.7},",
- "$$",
- "\\alpha_i\\beta_i\\le\\frac{\\mu_i^p}{p}\\left(\\sum_{j=1}^n \\mu_j^p\\right)^{-1}",
- "+\\frac{\\nu_i^q}{q}\\left(\\sum_{j=1}^n \\nu_j^q\\right)^{-1}.",
- "$$",
- "From \\eqref{eq:8.1.5}, summing this from $i=1$ to $n$ yields $\\sum_{i=1}^n",
- "\\alpha_i\\beta_i\\le1$, which implies",
- "\\eqref{eq:8.1.6}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 272,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.8",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $u_1,$ $u_2,$ \\dots$,$ $u_n$ and $v_1,$ $v_2,$ \\dots$,$ $v_n$",
- "are nonnegative numbers and $p>1.$ Then",
- "\\begin{equation} \\label{eq:8.1.8}",
- "\\left(\\sum_{i=1}^n(u_i+v_i)^p\\right)^{1/p}",
- "\\le\\left(\\sum_{i=1}^n u_i^p\\right)^{1/p}",
- "+\\left(\\sum_{i=1}^n v_i^p\\right)^{1/p}.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Again, let $q=p/(p-1)$. We write",
- "\\begin{equation} \\label{eq:8.1.9}",
- "\\sum_{i=1}^n(u_i+v_i)^p=\\sum_{i=1}^n u_i(u_i+v_i)^{p-1}",
- "+\\sum_{i=1}^n v_i(u_i+v_i)^{p-1}.",
- "\\end{equation}",
- "From H\\\"older's inequality with $\\mu_i=u_i$ and",
- "$\\nu_i=(u_i+v_i)^{p-1}$,",
- "\\begin{equation} \\label{eq:8.1.10}",
- "\\sum_{i=1}^n u_i(u_i+v_i)^{p-1}\\le",
- "\\left(\\sum_{i=1}^n u_i^p\\right)^{1/p}",
- "\\left(\\sum_{i=1}^n(u_i+v_i)^p\\right)^{1/q},",
- "\\end{equation}",
- "since $q(p-1)=p$. Similarly,",
- "$$",
- "\\sum_{i=1}^n v_i(u_i+v_i)^{p-1}\\le",
- "\\left(\\sum_{i=1}^n v_i^p\\right)^{1/p}",
- "\\left(\\sum_{i=1}^n(u_i+v_i)^p\\right)^{1/q}.",
- "$$",
- "This, \\eqref{eq:8.1.9}, and \\eqref{eq:8.1.10} imply that",
- "$$",
- "\\sum_{i=1}^n(u_i+v_i)^p",
- "\\le\\left[\\left(\\sum_{i=1}^n u_i^p\\right)^{1/p}",
- "+\\left(\\sum_{i=1}^n v_i^p\\right)^{1/p}\\right]",
- "\\left(\\sum_{i=1}^n(u_i+v_i)^p\\right)^{1/q}.",
- "$$",
- "\\newpage",
- "\\noindent",
- "Since $1-1/q=1/p$, this implies \\eqref{eq:8.1.8}, which is",
- "known as {\\it Minkowski's inequality\\/}."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 273,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.1.2",
- "categories": [],
- "title": "",
- "contents": [
- "If $a$ and $b$ are any two real numbers$,$ then",
- "\\begin{equation} \\label{eq:1.1.4}",
- "|a-b|\\ge\\big||a|-|b|\\big|",
- "\\end{equation}",
- "and",
- "\\begin{equation} \\label{eq:1.1.5}",
- "|a+b|\\ge\\big||a|-|b|\\big|.",
- "\\end{equation}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Replacing $a$ by $a-b$ in \\eqref{eq:1.1.3} yields",
- "$$",
- "|a|\\le|a-b|+|b|,",
- "$$",
- "so",
- "\\begin{equation} \\label{eq:1.1.6}",
- "|a-b|\\ge|a|-|b|.",
- "\\end{equation}",
- "Interchanging $a$ and $b$ here yields",
- "$$",
- "|b-a|\\ge|b|-|a|,",
- "$$",
- "which is equivalent to",
- "\\begin{equation} \\label{eq:1.1.7}",
- "|a-b|\\ge|b|-|a|,",
- "\\end{equation}",
- "since $|b-a|=|a-b|$. Since",
- "$$",
- "\\big||a|-|b|\\big|=",
- "\\left\\{\\casespace\\begin{array}{l} |a|-|b|\\mbox{\\quad if \\quad} |a|>|b|,\\\\[2\\jot]",
- " |b|-|a|\\mbox{\\quad if \\quad} |b|>|a|,",
- "\\end{array}\\right.",
- "$$",
- "\\eqref{eq:1.1.6} and \\eqref{eq:1.1.7} imply \\eqref{eq:1.1.4}. Replacing",
- "$b$ by $-b$ in \\eqref{eq:1.1.4} yields \\eqref{eq:1.1.5}, since",
- "$|-b|=|b|$."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 274,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.3.6",
- "categories": [],
- "title": "",
- "contents": [
- "contains all its limit points$.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $S$ is bounded, it has an infimum $\\alpha$",
- "and a supremum $\\beta$, and, since $S$ is closed, $\\alpha$",
- "and $\\beta$ belong to $S$ (Exercise~\\ref{exer:1.3.17}). Define",
- "$$",
- "S_t=S\\cap [\\alpha,t] \\mbox{\\quad for \\ } t\\ge\\alpha,",
- "$$",
- "and let",
- "$$",
- "F=\\set{t}{\\alpha\\le t\\le\\beta \\mbox{\\ and finitely many sets from",
- "${\\mathcal H}$ cover $S_t$}}.",
- "$$",
- "Since $S_\\beta=S$, the theorem will be proved if we can show that",
- "$\\beta",
- "\\in F$. To do this, we use the completeness of the reals.",
- "Since $\\alpha\\in S$, $S_\\alpha$ is the singleton set $\\{\\alpha\\}$,",
- "which is contained in some open set $H_\\alpha$ from ${\\mathcal H}$",
- "because ${\\mathcal H}$ covers $S$; therefore, $\\alpha\\in F$. Since $F$ is",
- "nonempty and bounded above by $\\beta$, it has a supremum $\\gamma$.",
- "First, we wish to show that $\\gamma=\\beta$. Since $\\gamma\\le\\beta$ by",
- "definition of $F$, it suffices to rule out the possibility that",
- "$\\gamma<\\beta$. We consider two cases.",
- "{\\sc Case 1}. Suppose that $\\gamma<\\beta$ and $\\gamma\\not\\in S$. Then,",
- "since $S$ is closed, $\\gamma$ is not a limit point of $S$",
- "(Theorem~\\ref{thmtype:1.3.5}). Consequently, there is an $\\epsilon>0$",
- "such that",
- "$$",
- "[\\gamma-\\epsilon,\\gamma+\\epsilon]\\cap S=\\emptyset,",
- "$$",
- "so $S_{\\gamma-\\epsilon}=S_{\\gamma+\\epsilon}$. However, the",
- "definition of $\\gamma$ implies that $S_{\\gamma-\\epsilon}$ has a finite",
- "subcovering from ${\\mathcal H}$, while $S_{\\gamma+\\epsilon}$ does not.",
- "This is a contradiction.",
- "{\\sc Case 2}. Suppose that $\\gamma<\\beta$ and $\\gamma\\in S$. Then",
- "there is an open",
- "set $H_\\gamma$ in ${\\mathcal H}$ that contains $\\gamma$ and, along with $\\gamma$, an",
- "interval $[\\gamma-\\epsilon,\\gamma+\\epsilon]$ for some positive",
- "$\\epsilon$.",
- "Since $S_{\\gamma-\\epsilon}$ has a finite covering $\\{H_1, \\dots,H_n\\}$ of",
- "sets from ${\\mathcal H}$, it follows that $S_{\\gamma+\\epsilon}$ has the finite",
- "covering $\\{H_1, \\dots,H_n,H_\\gamma\\}$. This contradicts the",
- "definition of $\\gamma$.",
- "Now we know that $\\gamma=\\beta$, which is in $S$. Therefore, there is",
- "an open set $H_\\beta$ in ${\\mathcal H}$ that contains $\\beta$ and along",
- "with $\\beta$, an interval of the form",
- "$[\\beta-\\epsilon,\\beta+\\epsilon]$, for some positive $\\epsilon$. Since",
- "$S_{\\beta-\\epsilon}$ is covered by a finite collection of sets",
- "$\\{H_1, \\dots,H_k\\}$, $S_\\beta$ is covered by the finite collection",
- "$\\{H_1, \\dots, H_k, H_\\beta\\}$. Since $S_\\beta=S$, we are",
- "finished."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:1.3.5"
- ],
- "ref_ids": [
- 10
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 275,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.2.13",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is continuous on a set $T,$ then $f$ is uniformly continuous",
- "on any finite closed interval contained in $T.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We assume that $f$ is nondecreasing, and",
- "leave the case where $f$ is nonincreasing to you",
- "(Exercise~\\ref{exer:2.2.34}).",
- "Theorem~\\ref{thmtype:2.1.9}\\part{a}",
- "implies that the set $\\widetilde R_f=\\set{f(x)}{x\\in(a,b)}$",
- "is a subset of the open interval $(f(a+),f(b-))$. Therefore,",
- "\\begin{equation} \\label{eq:2.2.16}",
- "R_f=\\{f(a)\\}\\cup\\widetilde",
- "R_f\\cup\\{f(b)\\}\\subset\\{f(a)\\}\\cup(f(a+),f(b-))\\cup\\{f(b)\\}.",
- "\\end{equation}",
- "Now",
- "suppose that $f$ is continuous on $[a,b]$. Then $f(a)=f(a+)$,",
- "$f(b-)=f(b)$,",
- "so \\eqref{eq:2.2.16} implies that",
- "$R_f\\subset[f(a),f(b)]$. If $f(a)<\\mu0$ there is an integer",
- "$K$ such that",
- "$$",
- "\\left|\\sum_{n=k}^\\infty a_n\\right|<\\epsilon\\mbox{\\quad if\\quad} k\\ge",
- "K;",
- "$$",
- "that is$,$",
- "$$",
- "\\lim_{k\\to\\infty}\\sum_{n=k}^\\infty a_n=0.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since $A_n=A_{n-1}+a_n$ and $a_n\\ge0$ $(n\\ge k)$, the sequence",
- "$\\{A_n\\}$ is nondecreasing, so the conclusion follows from",
- "Theorem~\\ref{thmtype:4.1.6}\\part{a} and",
- "Definition~\\ref{thmtype:4.3.1}.",
- "\\newline\\mbox{}"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.1.6",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.1"
- ],
- "ref_ids": [
- 83,
- 329
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 279,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.12",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $a_n\\ge0$ and $b_n>0$ for $n\\ge k,$ and",
- "$$",
- "\\lim_{n\\to\\infty}\\frac{a_n}{ b_n}=L,",
- "$$",
- "where $00\\ (n\\ge k)$ and",
- "$$",
- "\\lim_{n\\to\\infty}\\frac{a_{n+1}}{ a_n}=L.",
- "$$",
- "\\vskip-1em",
- "Then",
- "\\begin{alist}",
- "\\item % (a)",
- " $\\sum a_n<\\infty$ if $L<1.$",
- "\\item % (b)",
- " $\\sum a_n=\\infty$ if $L>1.$",
- "\\end{alist}",
- "The test is inconclusive if $L=1.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "\\part{a}",
- "We need the inequality",
- "\\begin{equation}\\label{eq:4.3.15}",
- "\\frac{1}{(1+x)^p}>1-px,\\quad x>0,\\ p>0.",
- "\\end{equation}",
- "This follows from Taylor's theorem",
- "(Theorem~\\ref{thmtype:2.5.4}), which implies that",
- "$$",
- "\\frac{1}{(1+x)^p}=1-px+\\frac{1}{2}\\frac{p(p+1)}{(1+c)^{p+2}}x^2,",
- "$$",
- "where $00$,",
- "this implies \\eqref{eq:4.3.15}.",
- "Now suppose that $M<-p<-1$. Then there is an integer $k$ such that",
- "$$",
- "n\\left(\\frac{a_{n+1}}{ a_n}-1\\right)<-p,\\quad n\\ge k,",
- "$$",
- "so",
- "$$",
- "\\frac{a_{n+1}}{ a_n}<1-\\frac{p}{ n},\\quad n\\ge k.",
- "$$",
- "Hence,",
- "$$",
- "\\frac{a_{n+1}}{ a_n}<\\frac{1}{(1+1/n)^p},\\quad n\\ge k,",
- "$$",
- "as can be seen by letting $x=1/n$ in \\eqref{eq:4.3.15}. From this,",
- "$$",
- "\\frac{a_{n+1}}{ a_n}<\\frac{1}{(n+1)^p}\\bigg/\\frac{1}{ n^p},\\quad n\\ge k.",
- "$$",
- " Since $\\sum 1/n^p<\\infty$ if $p>1$,",
- " Theorem~\\ref{thmtype:4.3.13}\\part{a} implies that",
- " $\\sum a_n<\\infty$.",
- "\\part{b} Here we need the inequality",
- "\\begin{equation}\\label{eq:4.3.16}",
- "(1-x)^q<1-qx,\\quad 0-q,\\quad n\\ge k,",
- "$$",
- "so",
- "$$",
- "\\frac{a_{n+1}}{ a_n}\\ge1-\\frac{q}{ n},\\quad n\\ge k.",
- "$$",
- "If $q\\le0$, then $\\sum a_n=\\infty$, by Corollary~\\ref{thmtype:4.3.6}.",
- "Hence, we may assume that $0\\left(1-\\frac{1}{ n}\\right)^q,\\quad n\\ge k,",
- "$$",
- "\\newpage",
- "\\noindent",
- "as can be seen by setting $x=1/n$ in \\eqref{eq:4.3.16}. Hence,",
- "$$",
- "\\frac{a_{n+1}}{ a_n}>\\frac{1}{ n^q}\\bigg/\\frac{1}{(n-1)^q},\\quad n\\ge k.",
- "$$",
- " Since $\\sum 1/n^q=\\infty$ if $q<1$,",
- " Theorem~\\ref{thmtype:4.3.13}\\part{b} implies that",
- " $\\sum a_n=\\infty$."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:2.5.4",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.13",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.6",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.13"
- ],
- "ref_ids": [
- 42,
- 103,
- 277,
- 103
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 281,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.21",
- "categories": [],
- "title": "",
- "contents": [
- "The series $\\sum a_nb_n$ converges if $a_{n+1}\\le a_n$ for $n\\ge k,$",
- "$\\lim_{n\\to\\infty}a_n=0,$ and",
- "$$",
- "|b_k+b_{k+1}+\\cdots+b_n|\\le M,\\quad n\\ge k,",
- "$$",
- "for some constant $M.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "If $a_{n+1}\\le a_n$, then",
- "$$",
- "\\sum_{n=k}^m |a_{n+1}-a_n|=\\sum_{n=k}^m (a_n-a_{n+1})=a_k-a_{m+1}.",
- "$$",
- "Since $\\lim_{m\\to\\infty} a_{m+1}=0$, it follows that",
- "$$",
- "\\sum_{n=k}^\\infty |a_{n+1}-a_n|=a_k<\\infty.",
- "$$",
- "Therefore, the hypotheses of Dirichlet's test are satisfied,",
- "so $\\sum a_nb_n$ converges."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 282,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.3.22",
- "categories": [],
- "title": "Alternating Series Test",
- "contents": [
- "The series $\\sum (-1)^na_n$ converges if $0\\le a_{n+1}\\le a_n$ and",
- "$\\lim_{n\\to\\infty} a_n=0.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let $b_n=(-1)^n$; then $\\{|B_n|\\}$ is a sequence of zeros and",
- "ones and therefore bounded. The conclusion now follows from",
- "Abel's test."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 283,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.8",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\{F_n\\}$ converges uniformly to $F$ on $S$ and each $F_n$ is",
- "continuous on $S,$ then so is $F;$ that is$,$ a uniform limit of",
- "continuous functions is continuous."
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Since",
- "\\begin{eqnarray*}",
- "\\left|\\int_a^b F_n(x)\\,dx-\\int_a^b F(x)\\,dx\\right|\\ar\\le \\int_a^b",
- "|F_n(x)-F(x)|\\,dx\\\\",
- "\\ar\\le (b-a)\\|F_n-F\\|_S",
- "\\end{eqnarray*}",
- "and $\\lim_{n\\to\\infty}\\|F_n-F\\|_S=0$, the conclusion follows."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- },
- {
- "id": 284,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.14",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\sum f_n$ converges uniformly on $S,$ then",
- "$\\lim_{n\\to\\infty}\\|f_n\\|_S=0.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "From Cauchy's convergence criterion for series of constants,",
- "there is for each $\\epsilon>0$ an integer $N$ such that",
- "$$",
- "M_n+M_{n+1}+\\cdots+M_m<\\epsilon\\mbox{\\quad if\\quad} m\\ge n\\ge N,",
- "$$",
- "which, because of \\eqref{eq:4.4.17}, implies that",
- "$$",
- "\\|f_n\\|_S+\\|f_{n+1}\\|_S+\\cdots+\\|f_m\\|_S<\\epsilon\\mbox{\\quad if\\quad}",
- " m, n\\ge N.",
- "$$",
- " Lemma~\\ref{thmtype:4.4.2} and Theorem~\\ref{thmtype:4.4.13} imply that",
- "$\\sum f_n$ converges uniformly on $S$.",
- "\\mbox{}"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.2",
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.13"
- ],
- "ref_ids": [
- 251,
- 122
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 285,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.17",
- "categories": [],
- "title": "",
- "contents": [
- "The series $\\sum_{n=k}^\\infty f_ng_n$ converges uniformly on $S$ if",
- "$$",
- "f_{n+1}(x)\\le f_n(x),\\quad x\\in S,\\quad n\\ge k,",
- "$$",
- "$\\{f_n\\}$ converges uniformly to zero on $S,$ and",
- "$$",
- "\\|g_k+g_{k+1}+\\cdots+g_n\\|_S\\le M,\\quad n\\ge k,",
- "$$",
- "for some constant $M.$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "In any case, the series \\eqref{eq:4.5.1} converges to $a_0$ if",
- "$x=x_0$. If",
- "\\begin{equation}\\label{eq:4.5.3}",
- "\\sum |a_n|r^n<\\infty",
- "\\end{equation}",
- "for some $r>0$, then $\\sum a_n (x-x_0)^n$ converges",
- "absolutely uniformly in $[x_0-r, x_0+r]$, by Weierstrass's test",
- "(Theorem~\\ref{thmtype:4.4.15}) and",
- "Exercise~\\ref{exer:4.4.21}. From Cauchy's root test",
- "(Theorem~\\ref{thmtype:4.3.17}),",
- "\\eqref{eq:4.5.3} holds if",
- "$$",
- "\\limsup_{n\\to\\infty} (|a_n|r^n)^{1/n}<1,",
- "$$",
- "which is equivalent to",
- " $$",
- " r\\,\\limsup_{n\\to\\infty} |a_n|^{1/n}<1",
- "$$",
- "(Exercise~\\ref{exer:4.1.30}\\part{a}).",
- "From \\eqref{eq:4.5.2}, this can be rewritten as $rR$, then",
- "\\newpage",
- "$$",
- "\\frac{1}{ R}>\\frac{1}{ |x-x_0|},",
- "$$",
- "so \\eqref{eq:4.5.2} implies that",
- "$$",
- "|a_n|^{1/n}\\ge\\frac{1}{ |x-x_0|}\\mbox{\\quad and therefore\\quad}",
- "|a_n(x-x_0)^n|\\ge1",
- "$$",
- "for infinitely many values of $n$. Therefore, $\\sum a_n(x-x_0)^n$",
- "diverges (Corollary~\\ref{thmtype:4.3.6}) if $|x-x_0|>R$.",
- "In particular, the series diverges for all $x\\ne x_0$ if $R=0$.",
- "To prove the assertions concerning the possibilities at $x=x_0+R$",
- "and $x=x_0-R$ requires examples, which follow. (Also, see",
- "Exercise~\\ref{exer:4.5.1}.)"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:4.4.15",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.17",
- "TRENCH_REAL_ANALYSIS-thmtype:4.3.6"
- ],
- "ref_ids": [
- 123,
- 106,
- 277
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 286,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.5.6",
- "categories": [],
- "title": "",
- "contents": [
- "If",
- "$$",
- "f(x)=\\sum^\\infty_{n=0} a_n(x-x_0)^n,\\quad |x-x_0|0;$ $(x_0,y_0)$",
- "is a local minimum point if $f_{xx}(x_0,y_0)>0$, or a local maximum",
- "point if",
- "$f_{xx}(x_0,y_0)<0.$",
- "\\item % (b)",
- "$(x_0,y_0)$ is not a local extreme point of $f$ if $D<0.$",
- "\\end{alist}"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Write $(x-x_0,y-y_0)=(u,v)$ and",
- "$$",
- "p(u,v)=(d^{(2)}_{\\mathbf{X}_0}f)(u,v)=Au^2+2Buv+Cv^2,",
- "$$",
- "where $A=f_{xx}(x_0,y_0)$, $B=f_{xy}(x_0,y_0)$, and",
- "$C=f_{yy}(x_0,y_0)$, so",
- "$$",
- "D=AC-B^2.",
- "$$",
- "If $D>0$, then $A\\ne0$, and we can write",
- "\\begin{eqnarray*}",
- "p(u,v)\\ar=A\\left(u^2+\\frac{2B}{ A} uv+\\frac{B^2}{",
- "A^2}v^2\\right)+\\left(C-\\frac{B^2}{ A}\\right)v^2\\\\",
- "\\ar=A\\left(u+\\frac{B}{ A}v\\right)^2+\\frac{D}{ A}v^2.",
- "\\end{eqnarray*}",
- "This cannot vanish unless $u=v=0$. Hence, $d^{(2)}_{\\mathbf{X}_0}f$ is",
- "positive definite if $A>0$ or negative definite if $A<0$, and",
- "Theorem~\\ref{thmtype:5.4.10}\\part{b} implies \\part{a}.",
- "If $D<0$, there are three possibilities:",
- "\\newpage",
- "\\begin{description}",
- "\\item{\\bf 1.} $A\\ne0$; then $p(1,0)=A$ and",
- "$\\dst{p\\left(-\\frac{B}{ A},1\\right)=\\frac{D}{ A}}$.",
- "\\vspace*{6pt}",
- "\\item{\\bf 2.} $C\\ne0$; then $p(0,1)=C$ and $\\dst{p\\left(1,",
- "-\\frac{B}{ C}\\right)=\\frac{D}{ C}}$.",
- "\\vspace*{6pt}",
- "\\item{\\bf 3.} $A=C=0$; then $B\\ne0$ and $p(1,1)=2B$ and $p(1,-1)=-2B$.",
- "\\end{description}",
- "In each case the two given values of $p$ differ in sign,",
- " so $\\mathbf{X}_0$ is not a local extreme point of $f$, from",
- "Theorem~\\ref{thmtype:5.4.10}\\part{a}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.10",
- "TRENCH_REAL_ANALYSIS-thmtype:5.4.10"
- ],
- "ref_ids": [
- 167,
- 167
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 293,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.3.5",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{F}$ is continuously differentiable on a",
- "neighborhood of $\\mathbf{X}_0$ and $J\\mathbf{F}(\\mathbf{X}_0)\\ne 0,$ then",
- "there is an open neighborhood $N$ of $\\mathbf{X}_0$ on which the",
- "conclusions of Theorem~$\\ref{thmtype:6.3.4}$ hold$.$"
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:6.3.4"
- ],
- "proofs": [
- {
- "contents": [
- "By continuity, since $J\\mathbf{F}'(\\mathbf{X}_0)\\ne0$,",
- " $J\\mathbf{F}'(\\mathbf{X})$",
- " is nonzero for all $\\mathbf{X}$ in some open neighborhood $S$ of",
- "$\\mathbf{X}_0$. Now apply Theorem~\\ref{thmtype:6.3.4}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:6.3.4"
- ],
- "ref_ids": [
- 187
- ]
- }
- ],
- "ref_ids": [
- 187
- ]
- },
- {
- "id": 294,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.4.2",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f:\\R^{n+1}\\to \\R$ is continuously",
- "differentiable on an open set containing $(\\mathbf{X}_0,u_0),$ with",
- "$f(\\mathbf{X}_0,u_0)=0$",
- "and",
- "$f_u(\\mathbf{X}_0,u_0)\\ne0$.",
- "Then there is a neighborhood $M$ of $(\\mathbf{X}_0,u_0),$ contained in",
- "$S,$ and a neighborhood $N$ of $\\mathbf{X}_0$ in $\\R^n$ on which",
- "is defined a unique continuously differentiable function",
- "$u=u(\\mathbf{X}):\\R^n\\to",
- "\\R$ such that",
- "$$",
- "(\\mathbf{X},u(\\mathbf{X}))\\in M\\mbox{\\quad and \\quad}",
- " f_u(\\mathbf{X},u(\\mathbf{X}))\\ne0,\\quad\\mathbf{X}\\in N,",
- "$$",
- "$$",
- "u(\\mathbf{X}_0)=u_0, \\mbox{\\quad and \\quad}",
- "f(\\mathbf{X},u(\\mathbf{X}))=0,\\quad\\mathbf{X}\\in N.",
- "$$",
- "The partial derivatives of $u$ are given by",
- "$$",
- "u_{x_i}(\\mathbf{X})=-\\frac{f_{x_i}(\\mathbf{X},u(\\mathbf{X}))}{",
- "f_u(\\mathbf{X},u(\\mathbf{X}))},\\quad 1\\le i\\le n.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "We will show that if $f$ is unbounded on $R$, ${\\bf",
- "P}=\\{R_1,R_2, \\dots,R_k\\}$ is",
- "any partition of $R$, and $M>0$, then there are Riemann sums $\\sigma$",
- "and $\\sigma'$ of $f$ over ${\\bf P}$ such that",
- "\\begin{equation} \\label{eq:7.1.11}",
- "|\\sigma-\\sigma'|\\ge M.",
- "\\end{equation}",
- "This implies that",
- "$f$ cannot satisfy Definition~\\ref{thmtype:7.1.2}. (Why?)",
- "Let",
- "$$",
- "\\sigma=\\sum_{j=1}^kf(\\mathbf{X}_j)V(R_j)",
- "$$",
- "be a Riemann sum of $f$ over ${\\bf P}$. There must be",
- "an integer $i$ in $\\{1,2, \\dots,k\\}$ such that",
- "\\begin{equation} \\label{eq:7.1.12}",
- "|f(\\mathbf{X})-f(\\mathbf{X}_i)|\\ge\\frac{M }{ V(R_i)}",
- "\\end{equation}",
- "for some $\\mathbf{X}$ in $R_i$, because if this were not so, we",
- "would have",
- "$$",
- "|f(\\mathbf{X})-f(\\mathbf{X}_j)|<\\frac{M}{ V(R_j)},\\quad \\mathbf{X}\\in R_j,\\quad",
- "\\quad 1\\le j\\le k.",
- "$$",
- "If this is so, then",
- "\\begin{eqnarray*}",
- "|f(\\mathbf{X})|\\ar=|f(\\mathbf{X}_j)+f(\\mathbf{X})-f(\\mathbf{X}_j)|\\le|f(\\mathbf{X}_j)|+|f(\\mathbf{X})-f(\\mathbf{X}_j)|\\\\",
- "\\ar\\le |f(\\mathbf{X}_j)|+\\frac{M}{ V(R_j)},\\quad \\mathbf{X}\\in R_j,\\quad",
- "1\\le j\\le k.",
- "\\end{eqnarray*}",
- "However, this implies that",
- "$$",
- "|f(\\mathbf{X})|\\le\\max\\set{|f(\\mathbf{X}_j)|+\\frac{M}{ V(R_j)}}{1\\le j\\le k},",
- "\\quad \\mathbf{X}\\in R,",
- "$$",
- "which contradicts the assumption that $f$ is unbounded on $R$.",
- " Now suppose that $\\mathbf{X}$ satisfies \\eqref{eq:7.1.12}, and",
- "consider the Riemann sum",
- "$$",
- "\\sigma'=\\sum_{j=1}^nf(\\mathbf{X}_j')V(R_j)",
- "$$",
- "over the same partition ${\\bf P}$, where",
- "$$",
- "\\mathbf{X}_j'=\\left\\{\\casespace\\begin{array}{ll}",
- "\\mathbf{X}_j,&j \\ne i,\\\\",
- "\\mathbf{X},&j=i.\\end{array}\\right.",
- "$$",
- "Since",
- "$$",
- "|\\sigma-\\sigma'|=|f(\\mathbf{X})-f(\\mathbf{X}_i)|V(R_i),",
- "$$",
- "\\eqref{eq:7.1.12} implies \\eqref{eq:7.1.11}."
- ],
- "refs": [
- "TRENCH_REAL_ANALYSIS-thmtype:7.1.2"
- ],
- "ref_ids": [
- 359
- ]
- }
- ],
- "ref_ids": []
- },
- {
- "id": 295,
- "type": "theorem",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.31",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that",
- " $f$ is integrable on sets $S_1$ and $S_2$ such that $S_1\\cap S_2$",
- "has zero content$.$ Then $f$ is integrable on $S_1\\cup S_2,$ and",
- "$$",
- "\\int_{S_1\\cup S_2} f(\\mathbf{X})\\,d\\mathbf{X}=",
- "\\int_{S_1} f(\\mathbf{X})\\,d\\mathbf{X}+",
- "\\int_{S_2} f(\\mathbf{X})\\,d\\mathbf{X}.",
- "$$"
- ],
- "refs": [],
- "proofs": [
- {
- "contents": [
- "Let",
- "$$",
- "P_1: a=x_00$ a",
- "partition $\\mathbf{P}$ of $R$ such that $S_f(\\mathbf{P})-s_f(\\mathbf{P})<\\epsilon$,",
- "from Theorem~\\ref{thmtype:7.1.12}. Consequently, from",
- "\\eqref{eq:7.2.6}, there is",
- "a partition $P_2$ of $[c,d]$ such that",
- "$S_F(P_2)-s_F(P_2)<\\epsilon$,",
- " so $F$ is integrable on $[c,d]$, from",
- "Theorem~\\ref{thmtype:3.2.7}.",
- "It remains to verify \\eqref{eq:7.2.1}. From \\eqref{eq:7.2.4} and the",
- "definition of $\\int_c^dF(y)\\,dy$,",
- "there is for each $\\epsilon>0$ a $\\delta>0$ such that",
- "$$",
- "\\left|\\int_c^d F(y)\\,dy-\\sigma\\right|<\\epsilon\\mbox{\\quad if\\quad}",
- "\\|P_2\\|<\\delta;",
- "$$",
- "that is,",
- "$$",
- "\\sigma-\\epsilon<\\int_c^d F(y)\\,dy<\\sigma+\\epsilon\\mbox{\\quad if \\quad}",
- "\\|P_2\\|<\\delta.",
- "$$",
- "This and \\eqref{eq:7.2.5} imply that",
- "$$",
- "s_f(\\mathbf{P})-\\epsilon<\\int_c^d F(y)\\,dy0$ a",
- "partition $\\mathbf{P}$ of $R$ such that $S_f(\\mathbf{P})-s_f(\\mathbf{P})<\\epsilon$,",
- "from Theorem~\\ref{thmtype:7.1.12}. Consequently, from \\eqref{eq:7.2.11},",
- "there",
- "is a partition $\\mathbf{Q}$ of $T$ such that",
- "$S_{F_p}(\\mathbf{Q})-s_{F_p}(\\mathbf{Q})<\\epsilon$, so $F_p$ is integrable",
- "on $T$, from Theorem~\\ref{thmtype:7.1.12}.",
- "It remains to verify that",
- "\\begin{equation} \\label{eq:7.2.12}",
- "\\int_R f(\\mathbf{X})\\,d\\mathbf{X}=",
- "\\int_TF_p(\\mathbf{Y})\\,d\\mathbf{Y}.",
- "\\end{equation}",
- "From \\eqref{eq:7.2.9} and the definition of $\\int_TF_p(\\mathbf{Y})\\,d\\mathbf{Y}$, there",
- "is for each $\\epsilon>0$ a $\\delta>0$ such that",
- "$$",
- "\\left|\\int_TF_p(\\mathbf{Y})\\,d\\mathbf{Y}",
- "-\\sigma\\right|<\\epsilon\\mbox{\\quad",
- "if\\quad}",
- "\\|\\mathbf{Q}\\|<\\delta;",
- "$$",
- "that is,",
- "$$",
- "\\sigma-\\epsilon<\\int_TF_p(\\mathbf{Y})\\,d\\mathbf{Y}",
- "<\\sigma+",
- "\\epsilon\\mbox{\\quad if \\quad}\\|\\mathbf{Q}\\|<\\delta.",
- "$$",
- "This and \\eqref{eq:7.2.10} imply that",
- "$$",
- "s_f(\\mathbf{P})-\\epsilon<",
- "\\int_TF_p(\\mathbf{Y})\\,d\\mathbf{Y}",
- "0$ such that if ${\\bf",
- "P}$ is any partition of $C$ with $\\|{\\bf P}\\|\\le\\delta$ and $\\sigma$",
- "is any Riemann sum of $\\psi_K$ over ${\\bf P}$, then",
- "\\begin{equation}\\label{eq:7.3.6}",
- "0\\le\\sigma\\le\\epsilon.",
- "\\end{equation}",
- "\\newpage",
- "\\noindent",
- "Now suppose that ${\\bf P}=\\{C_1,C_2,\\dots,C_k\\}$ is a partition of $C$",
- "into cubes with",
- "\\begin{equation}\\label{eq:7.3.7}",
- "\\|{\\bf P}\\|<\\min (\\rho,\\delta),",
- "\\end{equation}",
- "and let $C_1$, $C_2$, \\dots, $C_k$ be numbered so that $C_j\\cap K\\ne",
- "\\emptyset$ if $1\\le j\\le r$ and",
- "$C_j\\cap K=\\emptyset$ if $r+1\\le j\\le k$. Then \\eqref{eq:7.3.5} holds, and",
- "a typical Riemann sum of $\\psi_K$ over ${\\bf P}$ is of the form",
- "$$",
- "\\sigma=\\sum_{j=1}^r\\psi_K(\\mathbf{X}_j)V(C_j)",
- "$$",
- "with $\\mathbf{X}_j\\in C_j$, $1\\le j\\le r$. In particular, we",
- "can choose",
- "$\\mathbf{X}_j$ from $K$, so that $\\psi_K(\\mathbf{X}_j)=1$, and",
- "$$",
- "\\sigma=\\sum_{j=1}^r V(C_j).",
- "$$",
- "Now \\eqref{eq:7.3.6} and \\eqref{eq:7.3.7} imply that $C_1$, $C_2$, \\dots,",
- "$C_r$ have the required properties."
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "ref_ids": []
- }
- ],
- "definitions": [
- {
- "id": 298,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.1.5",
- "categories": [],
- "title": "",
- "contents": [
- "A set $D$ is {\\it dense in the reals\\/}",
- "if every open interval $(a,b)$ contains a member of $D$."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 299,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.3.1",
- "categories": [],
- "title": "",
- "contents": [
- " Let $S$ and $T$ be sets.",
- "\\begin{alist}",
- "\\item % (a)",
- "$S$ {\\it contains\\/} $T$, and we write $S\\supset T$ or $T\\subset",
- "S$, if every member of $T$ is also in $S$. In this case, $T$ is",
- "a {\\it subset\\/} of $S$.",
- "\\item % (b)",
- " $S-T$ is the set of elements that are in $S$ but not in $T$.",
- "\\item % (c)",
- "$S$ {\\it equals\\/} $T$, and we write $S=T$,",
- "if",
- "$S$ contains",
- "$T$ and",
- "$T$ contains $S$; thus, $S=T$ if and only if $S$ and $T$ have the same",
- "members.",
- "\\newpage",
- "\\item % (d)",
- " $S$ {\\it strictly contains\\/} $T$",
- "if $S$ contains $T$ but $T$ does not contain $S$; that",
- "is, if every member of $T$ is also in $S$, but at least one member",
- "of",
- "$S$ is not in $T$ (Figure~\\ref{figure:1.3.1}).",
- "\\item % (e)",
- "The {\\it complement\\/} of $S$, denoted by $S^c$,",
- "is the set of elements in the universal set that are not in $S$.",
- "\\item % (f)",
- " The {\\it union\\/} of $S$",
- "and",
- "$T$, denoted by",
- "$S\\cup T$, is the set of elements in at least one of $S$ and $T$",
- "(Figure~\\ref{figure:1.3.1}\\part{b}).",
- "\\item % (g)",
- "The {\\it intersection\\/} of $S$ and $T$, denoted by",
- "$S\\,\\cap\\, T$, is the",
- "set of elements in both $S$ and $T$ (Figure~\\ref{figure:1.3.1}\\part{c}).",
- "If $S\\cap T=\\emptyset$ (the empty set), then $S$ and $T$ are",
- " {\\it disjoint sets\\/}",
- "(Figure~\\ref{figure:1.3.1}\\part{d}).",
- "\\item % (h)",
- " A set with only one member $x_0$ is a {\\it singleton",
- "set\\/}, denoted by",
- "$\\{x_0\\}$.",
- "\\end{alist}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 300,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.3.2",
- "categories": [],
- "title": "",
- "contents": [
- "If $x_0$ is a real number and $\\epsilon>0$, then the open interval",
- "$(x_0-\\epsilon, x_0+\\epsilon)$ is an {\\it $\\epsilon$-neighborhood\\/}",
- "of",
- "$x_0$.",
- "If a set $S$ contains an $\\epsilon$-neighborhood of $x_0$, then $S$ is a",
- "{\\it neighborhood\\/} of $x_0$, and $x_0$ is an {\\it interior point\\/} of",
- "$S$ (Figure~\\ref{figure:1.3.2}). The set of interior points of $S$ is the",
- "{\\it interior\\/} of $S$, denoted by $S^0$. If every point of $S$ is an",
- "interior point (that is, $S^0=S$), then $S$ is {\\it open\\/}.",
- " A set $S$ is \\emph{closed} if $S^c$ is open."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 301,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:1.3.4",
- "categories": [],
- "title": "",
- "contents": [
- "R}$. Then",
- "\\begin{alist}",
- "\\item % (a)",
- " $x_0$ is a {\\it limit point\\/}",
- "of $S$ if every deleted neighborhood of $x_0$ contains a point of~$S$.",
- "\\item % (b)",
- "$x_0$ is a {\\it boundary point\\/} of $S$ if every neighborhood",
- "of $x_0$ contains at least one point in $S$ and one not in $S$. The set of",
- "boundary points of $S$ is the {\\it boundary\\/} of $S$, denoted by $\\partial",
- "S$. The {\\it closure\\/} of $S$, denoted by $\\overline{S}$, is",
- "$\\overline{S}=S\\cup \\partial S$.",
- "\\item % (c)",
- "$x_0$ is an \\emph{isolated point} of $S$ if $x_0\\in S$",
- " and there is a neighborhood of $x_0$ that contains no other point of",
- "$S$.",
- "\\item % (d)",
- "$x_0$ is \\emph{exterior} to $S$ if $x_0$ is in the interior of $S^c$. The",
- "collection of such points is the {\\it exterior\\/} of $S$.",
- "\\end{alist}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 302,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.1.1",
- "categories": [],
- "title": "",
- "contents": [
- "If $D_f\\cap D_g\\ne",
- "\\emptyset,$ then $f+g,$ $f-g,$ and $fg$ are defined on",
- "$D_f\\cap D_g$ by",
- "\\begin{eqnarray*}",
- "(f+g)(x)\\ar= f(x)+g(x),\\\\",
- "(f-g)(x)\\ar= f(x)-g(x),\\\\",
- "\\noalign{\\hbox{and}}",
- "(fg)(x)\\ar= f(x)g(x).",
- "\\end{eqnarray*}",
- "The quotient $f/g$ is defined by",
- "$$",
- "\\left(\\frac{f}{ g}\\right) (x)=\\frac{f(x)}{ g(x)}",
- "$$",
- "for $x$ in $D_f\\cap D_g$ such that $g(x)\\ne0.$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 303,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.1.2",
- "categories": [],
- "title": "",
- "contents": [
- " We say that $f(x)$ {\\it approaches the limit $L$ as $x$ approaches\\/}",
- "$x_0$, and write",
- "$$",
- "\\lim_{x\\to x_0} f(x)=L,",
- "$$",
- "if $f$ is defined on some deleted neighborhood of $x_0$ and, for",
- "every $\\epsilon>0$, there is a $\\delta>0$ such that",
- "\\begin{equation}\\label{eq:2.1.4}",
- "|f(x)-L|<\\epsilon",
- "\\end{equation}",
- "if",
- "\\begin{equation}\\label{eq:2.1.5}",
- "0<|x-x_0|<\\delta.",
- "\\end{equation}",
- "Figure~\\ref{figure:2.1.1} depicts the graph",
- "of a function for which",
- "$\\lim_{x",
- "\\to x_0}f(x)$ exists."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 304,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.1.5",
- "categories": [],
- "title": "",
- "contents": [
- "\\begin{alist}",
- "\\item % (a)",
- "We say that $f(x)$ {\\it approaches the left-hand limit $L$ as",
- "$x$ approaches $x_0$ from the left\\/}, and write",
- "$$",
- "\\lim_{x\\to x_0-} f(x)=L,",
- "$$",
- "if $f$ is defined on some open interval $(a,x_0)$ and, for each",
- "$\\epsilon>0$, there is a $\\delta>0$ such that",
- "$$",
- "|f(x)-L|<\\epsilon\\mbox{\\quad if \\quad} x_0-\\delta0$, there is a $\\delta>0$ such that",
- "$$",
- "|f(x)-L|<\\epsilon\\mbox{\\quad if \\quad} x_00$, there is a number $\\beta$ such that",
- "$$",
- "|f(x)-L|<\\epsilon\\quad\\mbox{\\quad if \\quad} x>\\beta.",
- "\\eqno{\\bbox}",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 306,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.1.8",
- "categories": [],
- "title": "",
- "contents": [
- "We say that $f(x)$ {\\it approaches $\\infty$ as $x$ approaches $x_0$",
- "from the left\\/}, and write",
- "$$",
- "\\lim_{x\\to x_0-} f(x)=\\infty\\mbox{\\quad or \\quad} f(x_0-)=\\infty,",
- "$$",
- "if $f$ is defined on an interval $(a,x_0)$ and, for each real number",
- "$M$, there is a $\\delta>0$ such that",
- "$$",
- "f(x)>M\\mbox{\\quad if \\quad} x_0-\\delta0$, there is a $\\delta>0$ such",
- "that",
- "$$",
- "|f(x)-f(x')|<\\epsilon\\mbox{\\ whenever }\\ |x-x'|<\\delta",
- "\\mbox{\\ and }\\ x,x'\\in S.",
- "\\eqno{\\bbox}",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 313,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.3.1",
- "categories": [],
- "title": "",
- "contents": [
- "A function $f$ is {\\it differentiable\\/}",
- "at an interior point $x_0$ of its domain if the difference quotient",
- "$$",
- "\\frac{f(x)-f(x_0)}{ x-x_0},\\quad x\\ne x_0,",
- "$$",
- "approaches a limit as $x$ approaches $x_0$, in which case the limit is",
- "called the {\\it derivative of $f$ at $x_0$\\/}, and",
- "is denoted by",
- "$f'(x_0)$; thus,",
- "\\begin{equation}\\label{eq:2.3.1}",
- "f'(x_0)=\\lim_{x\\to x_0}\\frac{f(x)-f(x_0)}{ x-x_0}.",
- "\\end{equation}",
- "It is sometimes convenient to let $x=x_0+h$ and write \\eqref{eq:2.3.1}",
- "as",
- "$$",
- "f'(x_0)=\\lim_{h\\to 0}\\frac{f(x_0+h)-f(x_0)}{ h}.",
- "\\eqno{\\bbox}",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 314,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:2.3.6",
- "categories": [],
- "title": "",
- "contents": [
- "\\begin{alist}",
- "\\item % (a)",
- "We say that $f$ is {\\it differentiable on the closed interval\\/}",
- "$[a,b]$ if $f$ is differentiable on the open interval $(a,b)$ and",
- "$f_+'(a)$ and $f_-'(b)$ both exist.",
- "\\item % (b)",
- "We say that $f$ is {\\it continuously differentiable on\\/}",
- "$[a,b]$ if $f$ is differentiable on $[a,b]$, $f'$ is continuous",
- "on $(a,b)$,",
- "$f_+'(a)=f'(a+)$, and $f_-'(b)=f'(b-)$.",
- "\\end{alist}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 315,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.1.1",
- "categories": [],
- "title": "",
- "contents": [
- "Let $f$ be defined on $[a,b]$. We say that $f$ is",
- "{\\it Riemann integrable on\\/}",
- "$[a,b]$ if there",
- "is a number $L$ with the following property: For every $\\epsilon>0$,",
- "there is a $\\delta>0$ such that",
- "$$",
- "\\left|\\sigma-L \\right|<\\epsilon",
- "$$",
- "if $\\sigma$ is any Riemann sum of $f$ over",
- "a partition $P$ of $[a,b]$",
- "such that $\\|P\\|<\\delta$.",
- "In this case, we say that $L$ is {\\it the Riemann integral of",
- "$f$ over\\/} $[a,b]$,",
- "and write",
- "$$",
- "\\int_a^b f(x)\\,dx=L.",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 316,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.1.3",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is bounded on $[a,b]$ and",
- "$P=\\{x_0,x_1, \\dots,x_n\\}$ is a partition of $[a,b]$, let",
- "\\begin{eqnarray*}",
- "M_j\\ar=\\sup_{x_{j-1}\\le x\\le x_j}f(x)\\\\",
- "\\arraytext{and}\\\\",
- "m_j\\ar=\\inf_{x_{j-1}\\le x\\le x_j}f(x).",
- "\\end{eqnarray*}",
- "The {\\it upper sum of $f$ over $P$\\/}",
- " is",
- "$$",
- "S(P)=\\sum_{j=1}^n M_j(x_j-x_{j-1}),",
- "$$",
- "and the {\\it upper integral of $f$ over\\/},",
- "$[a,b]$, denoted by",
- "$$",
- "\\overline{\\int_a^b} f(x)\\,dx,",
- "$$",
- "is the infimum of all upper sums. The {\\it lower",
- "sum of $f$ over $P$\\/}",
- "is",
- "$$",
- "s(P)=\\sum_{j=1}^n m_j(x_j-x_{j-1}),",
- "$$",
- "and the {\\it lower integral of $f$ over\\/}",
- "$[a,b]$, denoted by",
- "$$",
- "\\underline{\\int_a^b}f(x)\\,dx,",
- "$$",
- "is the supremum of all lower sums.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 317,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.1.5",
- "categories": [],
- "title": "",
- "contents": [
- "Let $f$ and $g$ be defined on $[a,b]$. We say that $f$ is",
- "{\\it Riemann}--\\href{http://www-history.mcs.st-and.ac.uk/Mathematicians/Stieltjes.html}",
- "{\\it Stieltjes}",
- "{\\it integrable with respect to $g$ on\\/}",
- "$[a,b]$",
- "if there",
- "is a number $L$ with the following property: For every $\\epsilon>0$,",
- "there is a $\\delta>0$ such that",
- "\\begin{equation} \\label{eq:3.1.15}",
- "\\left|\\sum_{j=1}^n f(c_j)\\left[g(x_j)-g(x_{j-1})\\right]-L \\right|<",
- "\\epsilon,",
- "\\end{equation}",
- "provided only that $P=\\{x_0,x_1, \\dots,x_n\\}$ is a partition of $[a,b]$",
- "such that $\\|P\\|<\\delta$ and",
- "$$",
- "x_{j-1}\\le c_j\\le x_j,\\quad j=1,2, \\dots,n.",
- "$$",
- "In this case, we say that $L$ is {\\it the Riemann--Stieltjes integral",
- "of",
- "$f$ with respect to $g$ over\\/}",
- "$[a,b]$, and write",
- "$$",
- "\\int_a^b f(x)\\,dg (x)=L.",
- "$$",
- "The sum",
- "$$",
- "\\sum_{j=1}^n f(c_j)\\left[g(x_j)-g(x_{j-1})\\right]",
- "$$",
- "in \\eqref{eq:3.1.15} is {\\it a Riemann--Stieltjes sum of $f$",
- "with respect to $g$ over the partition~$P$\\/}."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 318,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.4.1",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is locally integrable on",
- "$[a,b)$, we define",
- "\\begin{equation}\\label{eq:3.4.1}",
- "\\int_a^b f(x)\\,dx=",
- "\\lim_{c\\to b-}\\int_a^c f(x)\\,dx",
- "\\end{equation}",
- "if the limit exists (finite). To include the case where $b=\\infty$, we",
- "adopt the convention that $\\infty-=\\infty$.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 319,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.4.2",
- "categories": [],
- "title": "",
- "contents": [
- " If $f$ is locally integrable on",
- "$(a,b]$, we define",
- "$$",
- "\\int_a^b f(x)\\,dx=\\lim_{c\\to a+}\\int_c^b f(x)\\,dx",
- "$$",
- "provided that the limit exists (finite).",
- " To include the case where $a=-\\infty$, we adopt the",
- "convention that $-\\infty+=-\\infty$."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 320,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:3.4.3",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is locally integrable on",
- "$(a,b),$ we define",
- "$$",
- "\\int_a^b f(x)\\,dx=\\int_a^\\alpha f(x)\\,dx+\\int_\\alpha^b f(x)\\,dx,",
- "$$",
- "where $a<\\alpha0$ there is a finite or infinite sequence of",
- "open intervals $I_1$, $I_2$, \\dots\\ such that",
- "\\begin{equation} \\label{eq:3.5.8}",
- "S\\subset\\bigcup_j I_j",
- "\\end{equation}",
- "and",
- "\\begin{equation} \\label{eq:3.5.9}",
- "\\sum_{j=1}^n L(I_j)<\\epsilon,\\quad n\\ge1.",
- "\\end{equation}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 324,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.1",
- "categories": [],
- "title": "",
- "contents": [
- "A sequence $\\{s_n\\}$ {\\it converges to a limit $s$\\/} if for",
- "every $\\epsilon>0$ there is an integer $N$ such that",
- "\\begin{equation}\\label{eq:4.1.2}",
- "|s_n-s|<\\epsilon\\mbox{\\quad if\\quad} n\\ge N.",
- "\\end{equation}",
- "In this case we say that $\\{s_n\\}$ is {\\it convergent\\/} and write",
- "$$",
- "\\lim_{n\\to\\infty}s_n=s.",
- "$$",
- "A sequence that does not converge {\\it diverges\\/}, or is",
- "{\\it divergent\\/}",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 325,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.3",
- "categories": [],
- "title": "",
- "contents": [
- "A sequence $\\{s_n\\}$ is {\\it bounded above\\/}",
- " if there is a real number $b$ such that",
- "$$",
- "s_n\\le b\\mbox{\\quad for all $n$},",
- "$$",
- "{\\it bounded below\\/} if there is a",
- "real number",
- "$a$ such that",
- "$$",
- "s_n\\ge a\\mbox{\\quad for all $n$},",
- "$$",
- "or {\\it bounded\\/} if",
- "there is a real number",
- "$r$ such that",
- "$$",
- "|s_n|\\le r\\mbox{\\quad for all $n$}.",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 326,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.1.5",
- "categories": [],
- "title": "",
- "contents": [
- " A sequence $\\{s_n\\}$ is {\\it nondecreasing\\/} if",
- "$s_n\\ge",
- "s_{n-1}$ for all $n$, or {\\it nonincreasing\\/} if",
- "$s_n\\le s_{n-1}$",
- "for all $n.$ A {\\it monotonic sequence\\/}",
- "is a sequence that is either",
- "nonincreasing or nondecreasing. If $s_n>s_{n-1}$ for all $n$, then",
- "$\\{s_n\\}$ is {\\it increasing\\/},",
- "while if",
- "$s_n 0$ there is an integer $N$ such that",
- "\\begin{equation} \\label{eq:4.4.1}",
- "\\|F_n-F\\|_S<\\epsilon\\mbox{\\quad if\\quad} n\\ge N.",
- "\\end{equation}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 334,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.4.12",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\{f_j\\}^\\infty_k$ is a sequence of real-valued functions defined",
- "on a set $D$ of reals, then $\\sum_{j=k}^\\infty f_j$ is an",
- "{\\it infinite series\\/} (or simply a {\\it",
- "series\\/}) of functions on",
- "$D$. The {\\it partial sums of\\/},",
- "$\\sum_{j=k}^\\infty f_j$ are defined by",
- "$$",
- "F_n=\\sum^n_{j=k} f_j,\\quad n\\ge k.",
- "$$",
- "If $\\{F_n\\}^\\infty_k$ converges pointwise to a function $F$ on a",
- "subset $S$ of $D$, we say that $\\sum_{j=k}^\\infty f_j$ {\\it converges",
- "pointwise to the sum $F$ on\\/} $S$, and write",
- "$$",
- "F=\\sum_{j=k}^\\infty f_j,\\quad x\\in S.",
- "$$",
- "\\newpage",
- "\\noindent",
- "If $\\{F_n\\}$ converges uniformly to $F$ on $S$, we say that",
- "$\\sum_{j=k}^\\infty f_j$ {\\it converges uniformly to $F$ on~$S$\\/}."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 335,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:4.5.1",
- "categories": [],
- "title": "",
- "contents": [
- "An infinite series of the form",
- "\\begin{equation}\\label{eq:4.5.1}",
- "\\sum^\\infty_{n=0} a_n(x-x_0)^n,",
- "\\end{equation}",
- "where $x_0$ and $a_0$, $a_1$, \\dots, are constants, is called a {\\it",
- "power series in $x-x_0$\\/}.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 336,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.1",
- "categories": [],
- "title": "",
- "contents": [
- "The {\\it vector sum\\/} of",
- "$$",
- "\\mathbf{X}=(x_1,x_2, \\dots,x_n)\\mbox{\\quad and\\quad}\\mathbf{Y}=",
- "(y_1,y_2, \\dots,y_n)",
- "$$",
- "is",
- "\\begin{equation}\\label{eq:5.1.1}",
- "\\mathbf{X}+\\mathbf{Y}=(x_1+y_1,x_2+y_2, \\dots,x_n+y_n).",
- "\\end{equation}",
- "If $a$ is a real number, the {\\it scalar multiple of $\\mathbf{X\\/}$ by\\/}",
- "$a$ is",
- "\\begin{equation}\\label{eq:5.1.2}",
- "a\\mathbf{X}=(ax_1,ax_2, \\dots,ax_n).",
- "\\end{equation}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 337,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.3",
- "categories": [],
- "title": "",
- "contents": [
- "The {\\it length\\/} of the vector",
- "$\\mathbf{X}=(x_1,x_2, \\dots, x_n)$ is",
- "$$",
- "|\\mathbf{X}|=(x^2_1+x^2_2+\\cdots+x^2_n)^{1/2}.",
- "$$",
- "The {\\it distance between points $\\mathbf{X\\/}$ and\\/} $\\mathbf{Y}$ is",
- "$|\\mathbf{X}-\\mathbf{Y}|$; in particular, $|\\mathbf{X}|$ is the distance between",
- "$\\mathbf{X}$ and the origin. If $|\\mathbf{X}|=1$, then $\\mathbf{X}$ is",
- "a {\\it unit vector\\/}.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 338,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.4",
- "categories": [],
- "title": "",
- "contents": [
- "The {\\it inner product\\/} $\\mathbf{X}\\cdot",
- "\\mathbf{Y}$ of $\\mathbf{X}=(x_1,x_2, \\dots,x_n)$ and $\\mathbf{Y}=",
- "(y_1,y_2, \\dots,y_n)$ is",
- "$$",
- "\\mathbf{X}\\cdot\\mathbf{Y}=x_1y_1+x_2y_2+\\cdots+x_ny_n.",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 339,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.10",
- "categories": [],
- "title": "",
- "contents": [
- "$\\mathbf{U}$ are in $\\R^n$ and $\\mathbf{U}\\ne\\mathbf{0}$. Then {\\it the",
- "line through $\\mathbf{X}_0$ in the direction of\\/}",
- "$\\mathbf{U}$ is the set of all points in $\\R^n$ of the form",
- "$$",
- "\\mathbf{X}=\\mathbf{X}_0+t\\mathbf{U},\\quad -\\infty0$, the {\\it $\\epsilon$-neighborhood of a point\\/}",
- "$\\mathbf{X}_{0}$ in",
- "$\\R^n$ is the set",
- "$$",
- "N_\\epsilon(\\mathbf{X}_0)|=\\set{\\mathbf{X}}{|\\mathbf{X}-\\mathbf{X}_0|<\\epsilon}.",
- "\\eqno{\\bbox}",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 341,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.13",
- "categories": [],
- "title": "",
- "contents": [
- "A sequence of points $\\{\\mathbf{X}_r\\}$ in $\\R^n$",
- "{\\it converges to the limit\\/} $\\overline{\\mathbf{X}}$ if",
- "$$",
- "\\lim_{r\\to\\infty} |\\mathbf{X}_r-\\overline{\\mathbf{X}}|=0.",
- "$$",
- "In this case we write",
- "$$",
- "\\lim_{r\\to\\infty}\\mathbf{X}_r=\\overline{\\mathbf{X}}.",
- "\\eqno{\\bbox}",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 342,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.16",
- "categories": [],
- "title": "",
- "contents": [
- "If $S$ is a nonempty subset of $\\R^n$, then",
- "$$",
- "d(S)=\\sup\\set{|\\mathbf{X}-\\mathbf{Y}|}{\\mathbf{X},\\mathbf{Y}\\in S}",
- "$$",
- "is the {\\it diameter\\/} of $S$.",
- "If $d(S)<\\infty,$ $S$ is {\\it bounded\\/}$;$ if",
- "$d(S)=\\infty$, $S$ is {\\it unbounded\\/}."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 343,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.19",
- "categories": [],
- "title": "",
- "contents": [
- "A subset $S$ of $\\R^n$ is",
- " {\\it connected\\/} if it is impossible to represent",
- "$S$ as the union of two",
- "disjoint nonempty sets such that neither contains a limit point of the",
- "other; that is, if $S$ cannot be expressed as $S=A\\cup B$, where",
- "\\begin{equation}\\label{eq:5.1.16}",
- "A\\ne\\emptyset,\\quad B\\ne\\emptyset,\\quad\\overline{A}\\cap B=",
- "\\emptyset,\\mbox{\\quad and\\quad} A\\cap\\overline{B}=\\emptyset.",
- "\\end{equation}",
- "If $S$ can be expressed in this way, then $S$ is",
- "{\\it disconnected\\/}."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 344,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.1.21",
- "categories": [],
- "title": "",
- "contents": [
- "A {\\it region\\/} $S$ in $\\R^n$ is the union of an open connected",
- "set",
- "with some, all, or none of its boundary; thus, $S^0$ is connected, and",
- "every point of $S$ is a limit point of $S^0$."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 345,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.1",
- "categories": [],
- "title": "",
- "contents": [
- "We say that $f(\\mathbf{X})$",
- "{\\it approaches the limit $L$ as $\\mathbf{X\\/}$ approaches\\/} $\\mathbf{X}_0$",
- "and write",
- "$$",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0} f(\\mathbf{X})=L",
- "$$",
- "if $\\mathbf{X}_0$ is a limit point of $D_f$ and, for every $\\epsilon>0$,",
- "there is a $\\delta>0$ such that",
- "$$",
- "|f(\\mathbf{X})-L|<\\epsilon",
- "$$",
- "for all $\\mathbf{X}$ in $D_f$ such that",
- "$$",
- "0<|\\mathbf{X}-\\mathbf{X}_0|<\\delta.",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 346,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.4",
- "categories": [],
- "title": "",
- "contents": [
- "We say that $f(\\mathbf{X})$ {\\it approaches $\\infty$ as $\\mathbf{X\\/}$",
- "approaches",
- "$\\mathbf{X}_0$\\/} and write",
- "$$",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0} f(\\mathbf{X})=\\infty",
- "$$",
- "if $\\mathbf{X}_0$ is a limit point of $D_f$ and, for every real number",
- "$M$, there is a $\\delta>0$ such that",
- "$$",
- "f(\\mathbf{X})>M\\mbox{\\quad whenever\\quad} 0<|\\mathbf{X}-\\mathbf{X}_0|<\\delta",
- "\\mbox{\\quad and\\quad}\\mathbf{X}\\in D_f.",
- "$$",
- "We say that",
- "\\begin{eqnarray*}",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0} f(\\mathbf{X})\\ar=-\\infty\\\\",
- "\\arraytext{if}\\\\",
- "\\lim_{{\\mathbf{X}}\\to\\mathbf{X}_0} (-f)(\\mathbf{X})\\ar=\\infty.",
- "\\end{eqnarray*}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 347,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.5",
- "categories": [],
- "title": "",
- "contents": [
- "If $D_f$ is unbounded$,$ we say that",
- "$$",
- "\\lim_{|\\mathbf{X}|\\to\\infty} f(\\mathbf{X})=L\\mbox{\\quad (finite)\\quad}",
- "$$",
- "if for every $\\epsilon>0$, there is a number $R$ such that",
- "$$",
- "|f(\\mathbf{X})-L|<\\epsilon\\mbox{\\quad whenever\\quad}\\ |\\mathbf{X}|\\ge R",
- "\\mbox{\\quad and\\quad}\\mathbf{X}\\in D_f.",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 348,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.2.6",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{X}_0$ is in $D_f$ and is a limit point of $D_f$, then we say",
- "that $f$ is",
- "{\\it continuous at $\\mathbf{X\\/}_0$\\/} if",
- "$$",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0} f(\\mathbf{X})=f(\\mathbf{X}_0).",
- "\\eqno{\\bbox}",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 349,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.3.1",
- "categories": [],
- "title": "",
- "contents": [
- "Let $\\boldsymbol{\\Phi}$ be a unit vector and $\\mathbf{X}$ a point in",
- "$\\R^n$.",
- " {\\it The directional derivative of $f$ at $\\mathbf{X}$ in the",
- "direction of\\/} $\\boldsymbol{\\Phi}$ is defined by",
- "$$",
- "\\frac{\\partial f(\\mathbf{X})}{\\partial\\boldsymbol{\\Phi}}=\\lim_{t\\to",
- "0}\\frac",
- "{f(\\mathbf{X}+ t\\boldsymbol{\\Phi})-f(\\mathbf{X})}{ t}",
- "$$",
- "if the limit exists. That is, $\\partial f(\\mathbf{X})/\\partial\\boldsymbol{\\Phi}$",
- "is the ordinary derivative of the function",
- "$$",
- "h(t)=f(\\mathbf{X}+t\\boldsymbol{\\Phi})",
- "$$",
- "at $t=0$, if $h'(0)$ exists."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 350,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.3.5",
- "categories": [],
- "title": "",
- "contents": [
- "A function $f$ is {\\it differentiable\\/} at",
- "$$",
- " \\mathbf{X}_0=(x_{10},x_{20}, \\dots,x_{n0}))",
- "$$",
- "if $\\mathbf{X}_0\\in D_f^0$ and",
- "there are constants $m_1$, $m_2$, \\dots$,$ $m_n$ such that",
- "\\begin{equation}\\label{eq:5.3.16}",
- "\\lim_{\\mathbf{X}\\to\\mathbf{X}_0} \\frac{f(\\mathbf{X})-f(\\mathbf{X}_0)-",
- "\\dst{\\sum^n_{i=1}}\\, m_i (x_i-x_{i0})}{ |\\mathbf{X}-\\mathbf{X}_0|}=0.",
- "\\end{equation}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 351,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.4.1",
- "categories": [],
- "title": "",
- "contents": [
- "A vector-valued function",
- " $\\mathbf{G}=(g_1,g_2, \\dots,g_n)$ is {\\it",
- "differentiable\\/} at",
- "$$",
- "\\mathbf{U}_0=(u_{10},u_{20}, \\dots,u_{m0})",
- "$$",
- " if its component functions",
- "$g_1$, $g_2$, \\dots, $g_n$ are differentiable at $\\mathbf{U}_0$.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 352,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:5.4.7",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $r\\ge1$ and all partial derivatives of $f$ of order $\\le r-1$",
- "are differentiable in a neighborhood of $\\mathbf{X}_0$. Then the $r$th",
- "{\\it differential of $f$ at\\/} $\\mathbf{X}_0$, denoted by $d^{(r)}_{\\mathbf{X}_0}f$, is defined by",
- "\\begin{equation} \\label{eq:5.4.23}",
- "d^{(r)}_{\\mathbf{X}_0}f=\\sum_{i_1,i_2, \\dots,i_r=1}^n",
- "\\frac{\\partial^rf(\\mathbf{X}_0)",
- "}{\\partial x_{i_r}\\partial x_{i_{r-1}}\\cdots\\partial x_{i_1}}",
- "dx_{i_1}dx_{i_2}\\cdots dx_{i_r},",
- "\\end{equation}",
- "where $dx_1$, $dx_2$, \\dots, $dx_n$ are the differentials",
- "introduced in Section~5.3; that is, $dx_i$ is the function",
- "whose value at a point in $\\R^n$ is the $i$th coordinate",
- "of the point.",
- "For convenience, we define",
- "$$",
- "(d^{(0)}_{\\mathbf{X}_0}f)=f(\\mathbf{X}_0).",
- "$$",
- "Notice that $d^{(1)}_{\\mathbf{X}_0}f=d_{\\mathbf{X}_0}f$.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 353,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.1",
- "categories": [],
- "title": "",
- "contents": [
- "A transformation $\\mathbf{L}: \\R^n \\to \\R^m$",
- "defined on all of",
- "$\\R^n$ is {\\it linear\\/} if",
- "$$",
- "\\mathbf{L}(\\mathbf{X}+\\mathbf{Y})=\\mathbf{L}(\\mathbf{X})+\\mathbf{L}(\\mathbf{Y})",
- "$$",
- "for all $\\mathbf{X}$ and $\\mathbf{Y}$ in $\\R^n$ and",
- "$$",
- "\\mathbf{L}(a\\mathbf{X})=a\\mathbf{L}(\\mathbf{X})",
- "$$",
- "for all $\\mathbf{X}$ in $\\R^n$ and real numbers $a$."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 354,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.3",
- "categories": [],
- "title": "",
- "contents": [
- "\\begin{alist}",
- "\\item % (a)",
- " If $c$ is a real number and",
- "$\\mathbf{A}=[a_{ij}]$ is an $m\\times n$ matrix, then $c\\mathbf{A}$ is the",
- "$m\\times n$ matrix defined by",
- "$$",
- "c\\mathbf{A}=[ca_{ij}];",
- "$$",
- "that is, $c\\mathbf{A}$ is obtained by multiplying every entry of",
- "$\\mathbf{A}$ by $c$.",
- "\\item % (b)",
- "If $\\mathbf{A}=[a_{ij}]$ and $\\mathbf{B}=[b_{ij}]$ are $m\\times n$",
- "matrices, then the {\\it sum\\/}",
- " $\\mathbf{A}+ \\mathbf{B}$",
- " is the",
- "$m\\times n$ matrix",
- "$$",
- "\\mathbf{A}+\\mathbf{B}=[a_{ij}+b_{ij}];",
- "$$",
- "that is, the sum of two $m\\times n$ matrices is obtained by adding",
- "corresponding entries. The sum of two matrices is not defined unless",
- "they have the same number of rows and the same number of columns.",
- "\\item % (c)",
- "If $\\mathbf{A}=[a_{ij}]$ is an $m\\times p$ matrix and $\\mathbf{B}= [b_{ij}]$",
- "is a $p\\times n$ matrix, then the {\\it product\\/}",
- "$\\mathbf{C}=\\mathbf{AB}$ is the $m\\times n$ matrix with",
- "$$",
- "c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\\cdots+a_{ip}b_{pj}=\\sum^p_{k=1}",
- "a_{ik}b_{kj},\\quad 1\\le i\\le m,\\ 1\\le j\\le n.",
- "$$",
- "Thus, the $(i,j)$th entry of $\\mathbf{AB}$ is obtained by",
- "multiplying each entry in the $i$th row of $\\mathbf{A}$ by the",
- "corresponding entry in the $j$th column of $\\mathbf{B}$ and adding the",
- "products. This definition requires that $\\mathbf{A}$ have the same number",
- "of columns as $\\mathbf{B}$ has rows. Otherwise, $\\mathbf{AB}$ is",
- "undefined.",
- "\\end{alist}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 355,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.8",
- "categories": [],
- "title": "",
- "contents": [
- "The {\\it norm\\/}$,$ $\\|\\mathbf{A}\\|,$ of an $m\\times n$ matrix",
- "$\\mathbf{A}=[a_{ij}]$ is the smallest number such that",
- "$$",
- "|\\mathbf{AX}|\\le\\|\\mathbf{A}\\|\\,|\\mathbf{X}|",
- "$$",
- "for all $\\mathbf{X}$ in $\\R^n.$",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 356,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.1.10",
- "categories": [],
- "title": "",
- "contents": [
- "Let $\\mathbf{A}=[a_{ij}]$ be an $n\\times n$ matrix$,$ with $n\\ge2.$",
- "The {\\it cofactor\\/} of an entry $a_{ij}$ is",
- "$$",
- "c_{ij}=(-1)^{i+j}\\det(\\mathbf{A}_{ij}),",
- "$$",
- "where $\\mathbf{A}_{ij}$ is the $(n-1)\\times(n-1)$ matrix obtained by",
- "deleting the $i$th row and $j$th column of $\\mathbf{A}.$",
- "The {\\it adjoint\\/} of",
- "$\\mathbf{A},$ denoted by",
- "$\\adj(\\mathbf{A}),$ is the",
- "$n\\times n$ matrix whose $(i,j)$th entry is $c_{ji}.$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 357,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:6.3.2",
- "categories": [],
- "title": "",
- "contents": [
- "A transformation $\\mathbf{F}: \\R^n\\to \\R^n$ is",
- "{\\it regular\\/} on an open set $S$ if $\\mathbf{F}$ is one-to-one and",
- "continuously",
- "differentiable on $S$, and $J\\mathbf{F}(\\mathbf{X})\\ne0$ if $\\mathbf{X}\\in S$.",
- "We will also say that $\\mathbf{F}$",
- " is regular on an arbitrary set $S$ if",
- "$\\mathbf{F}$ is regular on an open set containing $S$."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 358,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.1",
- "categories": [],
- "title": "",
- "contents": [
- "A {\\it coordinate rectangle\\/} $R$ in $\\R^n$ is the Cartesian",
- "product of $n$ closed intervals; that is,",
- "$$",
- "R=[a_1,b_1]\\times [a_2,b_2]\\times\\cdots\\times [a_n,b_n].",
- "$$",
- "The {\\it content\\/} of $R$ is",
- "$$",
- "V(R)=(b_1-a_1)(b_2-a_2)\\cdots (b_n-a_n).",
- "$$",
- "The numbers $b_1-a_1$, $b_2-a_2$, \\dots, $b_n-a_n$ are the {\\it edge",
- "lengths\\/} of $R$. If",
- "they are equal, then",
- "$R$ is a",
- "{\\it coordinate cube\\/}.",
- " If $a_r=b_r$ for some $r$, then $V(R)=0$ and we",
- "say that $R$ is {\\it degenerate\\/};",
- "otherwise,",
- "$R$ is",
- "{\\it nondegenerate\\/}.",
- " \\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 359,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.2",
- "categories": [],
- "title": "",
- "contents": [
- "Let $f$ be a real-valued function defined",
- "on a rectangle $R$ in $\\R^n$. We say that",
- " $f$ is {\\it Riemann integrable on\\/} $R$",
- " if there is a number $L$ with the following property: For",
- "every $\\epsilon>0$, there is a $\\delta>0$ such that",
- "$$",
- "\\left|\\sigma-L\\right|<\\epsilon",
- "$$",
- "if $\\sigma$ is any Riemann sum of $f$ over",
- "a partition ${\\bf P}$ of $R$",
- "such that $\\|{\\bf P}\\|<\\delta$.",
- "In this case, we say that",
- " $L$ is the {\\it Riemann integral of $f$ over\\/} $R$, and write",
- "$$",
- "\\int_R f(\\mathbf{X})\\,d\\mathbf{X}=L.",
- "\\eqno{\\bbox}",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 360,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.4",
- "categories": [],
- "title": "",
- "contents": [
- "If $f$ is bounded on a rectangle $R$ in $\\R^n$ and",
- "${\\bf P}=\\{R_1,R_2, \\dots,R_k\\}$ is a partition of $R$, let",
- "$$",
- "M_j=\\sup_{\\mathbf{X}\\in R_j}f(\\mathbf{X}),\\quad m_j=",
- "\\inf_{\\mathbf{X}\\in R_j}f(\\mathbf{X}).",
- "$$",
- "The {\\it upper sum\\/} of $f$ over ${\\bf P}$ is",
- "$$",
- "S({\\bf P})=\\sum_{j=1}^k M_jV(R_j),",
- "$$",
- "and the {\\it upper integral",
- " of $f$ over\\/} $R$, denoted by",
- "$$",
- "\\overline{\\int_R}\\,f(\\mathbf{X})\\,d\\mathbf{X},",
- "$$",
- " is the infimum of all upper",
- "sums. The {\\it lower sum of $f$ over\\/} ${\\bf P}$ is",
- "$$",
- "s({\\bf P})=\\sum_{j=1}^k m_jV(R_j),",
- "$$",
- "and the {\\it lower integral",
- " of $f$ over \\/}$R$, denoted by",
- "$$",
- "\\underline{\\int_R}\\, f(\\mathbf{X})\\,d\\mathbf{X},",
- "$$",
- " is the supremum of all lower sums.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 361,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.14",
- "categories": [],
- "title": "",
- "contents": [
- "A subset $E$ of $\\R^n$ has zero content if for each",
- "$\\epsilon>0$",
- "there is a finite set of rectangles $T_1$, $T_2$, \\dots, $T_m$ such",
- "that",
- "\\begin{equation}\\label{eq:7.1.24}",
- "E\\subset\\bigcup_{j=1}^m T_j",
- "\\end{equation}",
- "and",
- "\\begin{equation}\\label{eq:7.1.25}",
- "\\sum_{j=1}^m V(T_j)<\\epsilon.",
- "\\end{equation}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 362,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.17",
- "categories": [],
- "title": "",
- "contents": [
- "Suppose that $f$ is bounded on a bounded subset of $S$ of",
- "$\\R^n$, and let",
- "\\begin{equation}\\label{eq:7.1.36}",
- "f_S(\\mathbf{X})=\\left\\{\\casespace\\begin{array}{ll} f(\\mathbf{X}),&\\mathbf{X}\\in",
- "S,\\\\[2\\jot]",
- " 0,&\\mathbf{X}\\not\\in S.\\end{array}\\right.",
- "\\end{equation}",
- "Let $R$ be a rectangle containing $S$.",
- "Then {\\it the integral of $f$ over $S$\\/} is defined to be",
- "$$",
- "\\int_S f(\\mathbf{X})\\,d\\mathbf{X}=\\int_R f_S(\\mathbf{X})\\,d\\mathbf{X}",
- "$$",
- "if $\\int_R f_S(\\mathbf{X})\\,",
- "d\\mathbf{X}$ exists.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 363,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.18",
- "categories": [],
- "title": "",
- "contents": [
- "If $S$ is a bounded subset of $\\R^n$ and",
- "the integral $\\int_S\\,d\\mathbf{X}$ (with integrand $f\\equiv1$)",
- "exists, we call $\\int_S\\,d\\mathbf{X}$ the {\\it content\\/} (also, {\\it area\\/} if",
- "$n=2$ or",
- "{\\it volume\\/} if $n=3$) of $S$, and denote it by $V(S)$;",
- "thus,",
- "$$",
- "V(S)=\\int_S\\,d\\mathbf{X}.",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 364,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.1.20",
- "categories": [],
- "title": "",
- "contents": [
- "A {\\it differentiable surface\\/} $S$ in $\\R^n\\ (n>1)$ is the",
- "image of a",
- "compact subset $D$ of $\\R^m$, where $m< n$, under a continuously",
- "differentiable transformation $\\mathbf{G}: \\R^m\\to \\R^n$. If",
- "$m=1$, $S$ is also called a {\\it differentiable curve\\/}."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 365,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:7.3.9",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\mathbf{A}=[a_{ij}]$ is an $n \\times n$ matrix$,$ then",
- "$$",
- "\\max\\set{\\sum_{j=1}^n |a_{ij}|}{1\\le i\\le n}",
- "$$",
- "is the {\\it infinity norm of\\/} $A,$ denoted by $\\|A\\|_\\infty$."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 366,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.1",
- "categories": [],
- "title": "",
- "contents": [
- "A {\\it metric space\\/} is a nonempty set $A$ together with",
- "a real-valued function $\\rho$ defined on $A\\times A$ such that",
- " if $u$, $v$, and $w$",
- "are arbitrary members of $A$, then",
- "\\begin{alist}",
- "\\item % (a)",
- "$\\rho(u,v)\\ge 0$, with equality if and only if $u=v$;",
- "\\item % (b)",
- "$\\rho(u,v)=\\rho(v,u)$;",
- "\\item % (c)",
- "$\\rho(u,v)\\le\\rho(u,w)+\\rho(w,v)$.",
- "\\end{alist}",
- "We say that $\\rho$ is a {\\it metric\\/} on $A$.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 367,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.2",
- "categories": [],
- "title": "",
- "contents": [
- "A {\\it vector space\\/} $A$",
- "is a nonempty set of elements called",
- "{\\it vectors\\/} on which two operations, vector",
- "addition and scalar multiplication",
- "(multiplication by real numbers) are defined, such",
- "that the following assertions are true for all $\\mathbf{U}$, $\\mathbf{V}$,",
- "and $\\mathbf{W}$ in $A$ and all real numbers $r$ and $s$:\\\\",
- "\\phantom{1}1. $\\mathbf{U}+\\mathbf{V}\\in A$;\\\\",
- "\\phantom{1}2. $\\mathbf{U}+\\mathbf{V}=\\mathbf{V}+\\mathbf{U}$;\\\\",
- "\\phantom{1}3. $\\mathbf{U}+(\\mathbf{V}+\\mathbf{W})=(\\mathbf{U}+\\mathbf{V})+\\mathbf{W}$;\\\\",
- "\\phantom{1}4. There is a vector $\\mathbf{0}$ in $A$",
- "such that $\\mathbf{U}+\\mathbf{0}=\\mathbf{U}$;\\\\",
- "\\phantom{1}5. There is a vector $-\\mathbf{U}$ in $A$",
- "such that $\\mathbf{U}+(-\\mathbf{U})=\\mathbf{0}$;\\\\",
- "\\phantom{1}6. $r\\mathbf{U}\\in A$;\\\\",
- "\\phantom{1}7. $r(\\mathbf{U}+\\mathbf{V})=r\\mathbf{U}+r\\mathbf{V}$;\\\\",
- "\\phantom{1}8. $(r+s)\\mathbf{U}=r\\mathbf{U}+s\\mathbf{U}$;\\\\",
- "\\phantom{1}9. $r(s\\mathbf{U})=(rs)\\mathbf{U}$; \\\\",
- "10. $1\\mathbf{U}=\\mathbf{U}$.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 368,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.3",
- "categories": [],
- "title": "",
- "contents": [
- "A {\\it normed vector space\\/}",
- " is a vector space",
- "$A$ together with a real-valued function $N$ defined on",
- "$A$, such that",
- " if $u$ and $v$",
- "are arbitrary vectors in $A$ and $a$ is a real number, then",
- "\\begin{alist}",
- "\\item % (a)",
- "$N(u)\\ge 0$ with equality if and only if $u=0$;",
- "\\item % (b)",
- "$N(au)=|a|N(u)$;",
- "\\item % (c)",
- "$N(u+v)\\le N(u)+N(v)$.",
- "\\end{alist}",
- "We say that $N$ is a {\\it norm\\/} on",
- "$A$, and",
- "$(A,N)$ is a {\\it normed vector space\\/}."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 369,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.6",
- "categories": [],
- "title": "",
- "contents": [
- "If $p\\ge 1$ and $\\mathbf{X}=(x_1,x_2, \\dots,x_n)$, let",
- "\\begin{equation} \\label{eq:8.1.3}",
- "\\|\\mathbf{X}\\|_p",
- "=\\left(\\sum_{i=1}^n|x_i|^p\\right)^{1/p}.",
- "\\end{equation}",
- "The metric induced on $\\R^n$ by this norm is",
- "$$",
- "\\rho_p(\\mathbf{X},\\mathbf{Y})",
- "=\\left(\\sum_{i=1}^n|x_i-y_i|^p\\right)^{1/p}.",
- "\\eqno{\\bbox}",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 370,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.10",
- "categories": [],
- "title": "",
- "contents": [
- "If $u_0\\in A$ and $\\epsilon>0$, the set",
- "$$",
- "N_\\epsilon(u_0)=\\set{u\\in A}{\\rho(u_0,u)<\\epsilon}",
- "$$",
- "is called an {\\it $\\epsilon$-neighborhood\\/} of $u_0$.",
- "(Sometimes we call $S_\\epsilon$ the {\\it open ball of radius",
- "$\\epsilon$ centered at $u_0$\\/}.)",
- "If a subset $S$ of $A$ contains an $\\epsilon$-neighborhood of $u_0$,",
- "then",
- "$S$ is a {\\it neighborhood\\/} of",
- "$u_0$, and",
- "$u_0$ is an",
- "{\\it interior point\\/} of",
- "$S$. The set of interior points of",
- "$S$ is the {\\it interior\\/} of $S$,",
- "denoted by",
- "$S^0$. If every",
- "point of $S$ is an interior point",
- "(that is,",
- "$S^0=S$), then",
- "$S$ is",
- "{\\it open\\/}. A set $S$ is {\\it closed\\/} if",
- "$S^c$ is open."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 371,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.12",
- "categories": [],
- "title": "",
- "contents": [
- " Then",
- "\\begin{alist}",
- "\\item % (a)",
- "$u_0$ is a {\\it limit point\\/} of $S$ if every deleted neighborhood of",
- "$u_0$ contains a point of~$S$.",
- "\\item % (b)",
- "$u_0$ is a {\\it boundary",
- "point\\/} of $S$ if every neighborhood of $u_0$ contains at least one point",
- "in $S$ and one not in $S$. The set of boundary points of $S$ is the {\\it",
- "boundary\\/} of $S$, denoted by $\\partial S$. The {\\it closure\\/} of $S$,",
- "denoted by $\\overline{S}$, is defined by $\\overline{S}=S\\cup \\partial S$.",
- "\\item % (c)",
- "$u_0$ is an {\\it isolated point\\/} of $S$ if $u_0\\in S$ and there is a",
- "neighborhood of $u_0$ that contains no other point of $S$.",
- "\\item % (d)",
- "$u_0$ is {\\it exterior } to $S$ if $u_0$ is in the interior of $S^c$. The",
- "collection of such points is the {\\it exterior\\/} of $S$.",
- "\\bbox",
- "\\end{alist}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 372,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.14",
- "categories": [],
- "title": "",
- "contents": [
- "A sequence $\\{u_n\\}$ in a metric space $(A,\\rho)$",
- " {\\it converges\\/}",
- "to",
- "$u\\in A$ if",
- "\\begin{equation} \\label{eq:8.1.16}",
- "\\lim_{n\\to\\infty}\\rho(u_n,u)=0.",
- "\\end{equation}",
- "In this case we say that",
- "$\\lim_{n\\to\\infty}u_n=u$.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 373,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.16",
- "categories": [],
- "title": "",
- "contents": [
- "A sequence $\\{u_n\\}$ in a metric space $(A,\\rho)$ is",
- " a {\\it Cauchy sequence\\/}",
- " if for every",
- "$\\epsilon>0$ there is an integer $N$ such that",
- "\\begin{equation} \\label{eq:8.1.17}",
- "\\rho(u_n,u_m)<\\epsilon\\mbox{\\quad and \\quad}m,n>N.",
- "\\end{equation}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 374,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.18",
- "categories": [],
- "title": "",
- "contents": [
- "A metric space $(A,\\rho)$ is {\\it complete\\/}",
- " if every Cauchy sequence in $A$",
- "has a limit."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 375,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.1.20",
- "categories": [],
- "title": "",
- "contents": [
- "If $\\rho$ and $\\sigma$ are both metrics on a set $A$, then $\\rho$",
- "and $\\sigma$ are {\\it equivalent \\/}",
- "\\hskip-.2em if there are positive constants $\\alpha$ and $\\beta$",
- "such that",
- "\\begin{equation} \\label{eq:8.1.18}",
- "\\alpha\\le\\frac{\\rho(x,y)}{\\sigma(x,y)}\\le\\beta",
- "\\mbox{\\quad for all \\quad}x,y\\in A\\mbox{\\quad such that \\quad}x\\ne y.",
- "\\end{equation}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 376,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.2.1",
- "categories": [],
- "title": "",
- "contents": [
- "The {\\it diameter\\/} of a nonempty subset $S$ of $A$ is",
- "$$",
- "d(S)=\\sup\\set{\\rho(u,v)}{u,\\, v\\in T}.",
- "$$",
- "If $d(S)<\\infty$ then $S$ is {\\it bounded\\/}.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 377,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.2.2",
- "categories": [],
- "title": "",
- "contents": [
- "A set $T$ is {\\it compact\\/} if",
- "it has the Heine--Borel property."
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 378,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.2.7",
- "categories": [],
- "title": "",
- "contents": [
- "A set $T$ is {\\it totally bounded\\/}",
- " if for every",
- "$\\epsilon>0$",
- "there is a finite set $T_\\epsilon$ with the following property:",
- "if $t\\in T$, there is an $s\\in T_\\epsilon$ such that",
- "$\\rho(s,t)<\\epsilon$.",
- "We say that $T_\\epsilon$ is a {\\it finite $\\epsilon$-net for $T$\\/}.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 379,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.2.10",
- "categories": [],
- "title": "",
- "contents": [
- "A subset $T$ of $C[a,b]$ is {\\it uniformly bounded\\/} if there is a",
- "constant $M$ such that",
- "\\begin{equation} \\label{eq:8.2.6}",
- "|f(x)|\\le M \\mbox{\\quad if \\quad} a\\le x\\le b\\mbox{\\quad and \\quad}",
- "f\\in T.",
- "\\end{equation}",
- "A subset $T$ of $C[a,b]$ is {\\it",
- "equicontinuous\\/} if for each",
- "$\\epsilon>0$ there is a $\\delta>0$ such that",
- "\\begin{equation} \\label{eq:8.2.7}",
- "|f(x_1)-f(x_2)|\\le \\epsilon \\mbox{\\quad if \\quad}",
- "x_1,x_2\\in [a,b],\\quad |x_1-x_2|<\\delta,\\mbox{\\quad and \\quad}f\\in T.",
- "\\end{equation}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 380,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.3.1",
- "categories": [],
- "title": "",
- "contents": [
- "We say that",
- "$$",
- "\\lim_{u\\to \\widehat u}f(u)=\\widehat v",
- "$$",
- "if $\\widehat u\\in\\overline D_f$ and for each $\\epsilon>0$ there is a",
- "$\\delta>0$ such that",
- "\\begin{equation} \\label{eq:8.3.1}",
- "\\sigma(f(u),\\widehat v)<\\epsilon\\mbox{\\quad if \\quad}",
- "u\\in D_f",
- "\\mbox{\\quad and \\quad}",
- "0<\\rho(u,\\widehat u)<\\delta.",
- "\\end{equation}"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 381,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.3.2",
- "categories": [],
- "title": "",
- "contents": [
- "We say that $f$",
- "is {\\it continuous\\/} at",
- "$\\widehat u$ if",
- "$\\widehat u\\in D_f$ and for each $\\epsilon>0$",
- "there is a $\\delta>0$ such that",
- "\\begin{equation} \\label{eq:8.3.2}",
- "\\sigma(f(u),f(\\widehat u))<\\epsilon\\mbox{\\quad if \\quad}",
- "u\\in D_f\\cap N_\\delta(\\widehat u).",
- "\\end{equation}",
- "If $f$ is continuous at every point of a set $S$,",
- "then $f$ is {\\it continuous on\\/} S.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 382,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.3.7",
- "categories": [],
- "title": "",
- "contents": [
- "A function $f$ is {\\it uniformly continuous\\/} on a subset $S$ of $D_f$ if",
- "for each $\\epsilon>0$ there is a $\\delta>0$ such that",
- "$$",
- "\\sigma(f(u),f(v))<\\epsilon\\mbox{\\quad whenever \\quad}",
- "\\rho(u,v)<\\delta\\mbox{\\quad and \\quad}u,v\\in S.",
- "$$"
- ],
- "refs": [],
- "ref_ids": []
- },
- {
- "id": 383,
- "type": "definition",
- "label": "TRENCH_REAL_ANALYSIS-thmtype:8.3.9",
- "categories": [],
- "title": "",
- "contents": [
- "If $f:(A,\\rho)\\to (A,\\rho)$ is defined on all of $A$",
- "and there is a constant $\\alpha$ in $(0,1)$",
- "such that",
- "\\begin{equation} \\label{eq:8.3.7}",
- "\\rho(f(u),f(v))\\le\\alpha\\rho(u,v)",
- "\\mbox{\\quad for all\\quad} (u,v)\\in A\\times A,",
- "\\end{equation}",
- "then $f$ is a {\\it contraction\\/} of $(A,\\rho)$.",
- "\\bbox"
- ],
- "refs": [],
- "ref_ids": []
- }
- ],
- "others": [],
- "retrieval_examples": [
- 3,
- 4,
- 7,
- 8,
- 11,
- 12,
- 13,
- 14,
- 17,
- 22,
- 26,
- 27,
- 29,
- 30,
- 31,
- 32,
- 33,
- 35,
- 39,
- 43,
- 44,
- 45,
- 47,
- 48,
- 50,
- 51,
- 52,
- 53,
- 56,
- 57,
- 58,
- 59,
- 60,
- 62,
- 63,
- 64,
- 65,
- 66,
- 67,
- 68,
- 69,
- 70,
- 71,
- 72,
- 73,
- 74,
- 75,
- 76,
- 80,
- 81,
- 83,
- 85,
- 86,
- 87,
- 88,
- 89,
- 91,
- 93,
- 95,
- 98,
- 99,
- 100,
- 101,
- 102,
- 103,
- 104,
- 105,
- 106,
- 108,
- 109,
- 110,
- 112,
- 113,
- 114,
- 117,
- 121,
- 122,
- 123,
- 124,
- 128,
- 129,
- 130,
- 131,
- 135,
- 138,
- 142,
- 143,
- 144,
- 153,
- 162,
- 163,
- 164,
- 165,
- 166,
- 167,
- 175,
- 176,
- 177,
- 181,
- 183,
- 184,
- 186,
- 187,
- 188,
- 189,
- 193,
- 195,
- 196,
- 197,
- 198,
- 199,
- 207,
- 208,
- 209,
- 210,
- 214,
- 215,
- 216,
- 217,
- 218,
- 220,
- 228,
- 232,
- 233,
- 234,
- 235,
- 236,
- 237,
- 241,
- 242,
- 243,
- 244,
- 247,
- 248,
- 249,
- 250,
- 251,
- 255,
- 256,
- 258,
- 259,
- 261,
- 262,
- 264,
- 265,
- 266,
- 267,
- 269,
- 270,
- 274,
- 275,
- 276,
- 278,
- 279,
- 280,
- 284,
- 285,
- 287,
- 288,
- 289,
- 290,
- 291,
- 292,
- 293,
- 294,
- 295,
- 296
- ]
- },
- "splits": {
- "train": {
- "ref_ids": [],
- "examples": []
- },
- "valid": {
- "ref_ids": [
- 0,
- 1,
- 2,
- 3,
- 4,
- 5,
- 6,
- 7,
- 8,
- 9,
- 10,
- 11,
- 12,
- 13,
- 14,
- 15,
- 16,
- 17,
- 18,
- 19,
- 20,
- 21,
- 22,
- 23,
- 24,
- 25,
- 26,
- 27,
- 28,
- 29,
- 30,
- 31,
- 32,
- 33,
- 34,
- 35,
- 36,
- 37,
- 38,
- 39,
- 40,
- 41,
- 42,
- 43,
- 44,
- 45,
- 46,
- 47,
- 48,
- 49,
- 50,
- 51,
- 52,
- 53,
- 54,
- 55,
- 56,
- 57,
- 58,
- 59,
- 60,
- 61,
- 62,
- 63,
- 64,
- 65,
- 66,
- 67,
- 68,
- 69,
- 70,
- 71,
- 72,
- 73,
- 74,
- 75,
- 76,
- 77,
- 78,
- 79,
- 80,
- 81,
- 82,
- 83,
- 84,
- 85,
- 86,
- 87,
- 88,
- 89,
- 90,
- 91,
- 92,
- 93,
- 94,
- 95,
- 96,
- 97,
- 98,
- 99,
- 100,
- 101,
- 102,
- 103,
- 104,
- 105,
- 106,
- 107,
- 108,
- 109,
- 110,
- 111,
- 112,
- 113,
- 114,
- 115,
- 116,
- 117,
- 118,
- 119,
- 120,
- 121,
- 122,
- 123,
- 124,
- 125,
- 126,
- 127,
- 128,
- 129,
- 130,
- 131,
- 132,
- 133,
- 134,
- 135,
- 136,
- 137,
- 138,
- 139,
- 140,
- 141,
- 142,
- 143,
- 144,
- 145,
- 146,
- 147,
- 148,
- 149,
- 150,
- 151,
- 152,
- 153,
- 154,
- 155,
- 156,
- 157,
- 158,
- 159,
- 160,
- 161,
- 162,
- 163,
- 164,
- 165,
- 166,
- 167,
- 168,
- 169,
- 170,
- 171,
- 172,
- 173,
- 174,
- 175,
- 176,
- 177,
- 178,
- 179,
- 180,
- 181,
- 182,
- 183,
- 184,
- 185,
- 186,
- 187,
- 188,
- 189,
- 190,
- 191,
- 192,
- 193,
- 194,
- 195,
- 196,
- 197,
- 198,
- 199,
- 200,
- 201,
- 202,
- 203,
- 204,
- 205,
- 206,
- 207,
- 208,
- 209,
- 210,
- 211,
- 212,
- 213,
- 214,
- 215,
- 216,
- 217,
- 218,
- 219,
- 220,
- 221,
- 222,
- 223,
- 224,
- 225,
- 226,
- 227,
- 228,
- 229,
- 230,
- 231,
- 232,
- 233,
- 234,
- 235,
- 236,
- 237,
- 238,
- 239,
- 240,
- 241,
- 242,
- 243,
- 244,
- 245,
- 246,
- 247,
- 248,
- 249,
- 250,
- 251,
- 252,
- 253,
- 254,
- 255,
- 256,
- 257,
- 258,
- 259,
- 260,
- 261,
- 262,
- 263,
- 264,
- 265,
- 266,
- 267,
- 268,
- 269,
- 270,
- 271,
- 272,
- 273,
- 274,
- 275,
- 276,
- 277,
- 278,
- 279,
- 280,
- 281,
- 282,
- 283,
- 284,
- 285,
- 286,
- 287,
- 288,
- 289,
- 290,
- 291,
- 292,
- 293,
- 294,
- 295,
- 296,
- 297,
- 298,
- 299,
- 300,
- 301,
- 302,
- 303,
- 304,
- 305,
- 306,
- 307,
- 308,
- 309,
- 310,
- 311,
- 312,
- 313,
- 314,
- 315,
- 316,
- 317,
- 318,
- 319,
- 320,
- 321,
- 322,
- 323,
- 324,
- 325,
- 326,
- 327,
- 328,
- 329,
- 330,
- 331,
- 332,
- 333,
- 334,
- 335,
- 336,
- 337,
- 338,
- 339,
- 340,
- 341,
- 342,
- 343,
- 344,
- 345,
- 346,
- 347,
- 348,
- 349,
- 350,
- 351,
- 352,
- 353,
- 354,
- 355,
- 356,
- 357,
- 358,
- 359,
- 360,
- 361,
- 362,
- 363,
- 364,
- 365,
- 366,
- 367,
- 368,
- 369,
- 370,
- 371,
- 372,
- 373,
- 374,
- 375,
- 376,
- 377,
- 378,
- 379,
- 380,
- 381,
- 382,
- 383
- ],
- "examples": []
- },
- "test": {
- "ref_ids": [
- 0,
- 1,
- 2,
- 3,
- 4,
- 5,
- 6,
- 7,
- 8,
- 9,
- 10,
- 11,
- 12,
- 13,
- 14,
- 15,
- 16,
- 17,
- 18,
- 19,
- 20,
- 21,
- 22,
- 23,
- 24,
- 25,
- 26,
- 27,
- 28,
- 29,
- 30,
- 31,
- 32,
- 33,
- 34,
- 35,
- 36,
- 37,
- 38,
- 39,
- 40,
- 41,
- 42,
- 43,
- 44,
- 45,
- 46,
- 47,
- 48,
- 49,
- 50,
- 51,
- 52,
- 53,
- 54,
- 55,
- 56,
- 57,
- 58,
- 59,
- 60,
- 61,
- 62,
- 63,
- 64,
- 65,
- 66,
- 67,
- 68,
- 69,
- 70,
- 71,
- 72,
- 73,
- 74,
- 75,
- 76,
- 77,
- 78,
- 79,
- 80,
- 81,
- 82,
- 83,
- 84,
- 85,
- 86,
- 87,
- 88,
- 89,
- 90,
- 91,
- 92,
- 93,
- 94,
- 95,
- 96,
- 97,
- 98,
- 99,
- 100,
- 101,
- 102,
- 103,
- 104,
- 105,
- 106,
- 107,
- 108,
- 109,
- 110,
- 111,
- 112,
- 113,
- 114,
- 115,
- 116,
- 117,
- 118,
- 119,
- 120,
- 121,
- 122,
- 123,
- 124,
- 125,
- 126,
- 127,
- 128,
- 129,
- 130,
- 131,
- 132,
- 133,
- 134,
- 135,
- 136,
- 137,
- 138,
- 139,
- 140,
- 141,
- 142,
- 143,
- 144,
- 145,
- 146,
- 147,
- 148,
- 149,
- 150,
- 151,
- 152,
- 153,
- 154,
- 155,
- 156,
- 157,
- 158,
- 159,
- 160,
- 161,
- 162,
- 163,
- 164,
- 165,
- 166,
- 167,
- 168,
- 169,
- 170,
- 171,
- 172,
- 173,
- 174,
- 175,
- 176,
- 177,
- 178,
- 179,
- 180,
- 181,
- 182,
- 183,
- 184,
- 185,
- 186,
- 187,
- 188,
- 189,
- 190,
- 191,
- 192,
- 193,
- 194,
- 195,
- 196,
- 197,
- 198,
- 199,
- 200,
- 201,
- 202,
- 203,
- 204,
- 205,
- 206,
- 207,
- 208,
- 209,
- 210,
- 211,
- 212,
- 213,
- 214,
- 215,
- 216,
- 217,
- 218,
- 219,
- 220,
- 221,
- 222,
- 223,
- 224,
- 225,
- 226,
- 227,
- 228,
- 229,
- 230,
- 231,
- 232,
- 233,
- 234,
- 235,
- 236,
- 237,
- 238,
- 239,
- 240,
- 241,
- 242,
- 243,
- 244,
- 245,
- 246,
- 247,
- 248,
- 249,
- 250,
- 251,
- 252,
- 253,
- 254,
- 255,
- 256,
- 257,
- 258,
- 259,
- 260,
- 261,
- 262,
- 263,
- 264,
- 265,
- 266,
- 267,
- 268,
- 269,
- 270,
- 271,
- 272,
- 273,
- 274,
- 275,
- 276,
- 277,
- 278,
- 279,
- 280,
- 281,
- 282,
- 283,
- 284,
- 285,
- 286,
- 287,
- 288,
- 289,
- 290,
- 291,
- 292,
- 293,
- 294,
- 295,
- 296,
- 297,
- 298,
- 299,
- 300,
- 301,
- 302,
- 303,
- 304,
- 305,
- 306,
- 307,
- 308,
- 309,
- 310,
- 311,
- 312,
- 313,
- 314,
- 315,
- 316,
- 317,
- 318,
- 319,
- 320,
- 321,
- 322,
- 323,
- 324,
- 325,
- 326,
- 327,
- 328,
- 329,
- 330,
- 331,
- 332,
- 333,
- 334,
- 335,
- 336,
- 337,
- 338,
- 339,
- 340,
- 341,
- 342,
- 343,
- 344,
- 345,
- 346,
- 347,
- 348,
- 349,
- 350,
- 351,
- 352,
- 353,
- 354,
- 355,
- 356,
- 357,
- 358,
- 359,
- 360,
- 361,
- 362,
- 363,
- 364,
- 365,
- 366,
- 367,
- 368,
- 369,
- 370,
- 371,
- 372,
- 373,
- 374,
- 375,
- 376,
- 377,
- 378,
- 379,
- 380,
- 381,
- 382,
- 383
- ],
- "examples": [
- [
- 3,
- 0
- ],
- [
- 4,
- 0
- ],
- [
- 7,
- 0
- ],
- [
- 8,
- 0
- ],
- [
- 11,
- 0
- ],
- [
- 12,
- 0
- ],
- [
- 13,
- 0
- ],
- [
- 14,
- 0
- ],
- [
- 17,
- 0
- ],
- [
- 22,
- 0
- ],
- [
- 26,
- 0
- ],
- [
- 27,
- 0
- ],
- [
- 29,
- 0
- ],
- [
- 30,
- 0
- ],
- [
- 31,
- 0
- ],
- [
- 32,
- 0
- ],
- [
- 33,
- 0
- ],
- [
- 35,
- 0
- ],
- [
- 39,
- 0
- ],
- [
- 43,
- 0
- ],
- [
- 44,
- 0
- ],
- [
- 45,
- 0
- ],
- [
- 47,
- 0
- ],
- [
- 48,
- 0
- ],
- [
- 50,
- 0
- ],
- [
- 51,
- 0
- ],
- [
- 52,
- 0
- ],
- [
- 53,
- 0
- ],
- [
- 56,
- 0
- ],
- [
- 57,
- 0
- ],
- [
- 58,
- 0
- ],
- [
- 59,
- 0
- ],
- [
- 60,
- 0
- ],
- [
- 62,
- 0
- ],
- [
- 63,
- 0
- ],
- [
- 64,
- 0
- ],
- [
- 65,
- 0
- ],
- [
- 66,
- 0
- ],
- [
- 67,
- 0
- ],
- [
- 68,
- 0
- ],
- [
- 69,
- 0
- ],
- [
- 70,
- 0
- ],
- [
- 71,
- 0
- ],
- [
- 72,
- 0
- ],
- [
- 73,
- 0
- ],
- [
- 74,
- 0
- ],
- [
- 75,
- 0
- ],
- [
- 76,
- 0
- ],
- [
- 80,
- 0
- ],
- [
- 81,
- 0
- ],
- [
- 83,
- 0
- ],
- [
- 85,
- 0
- ],
- [
- 86,
- 0
- ],
- [
- 87,
- 0
- ],
- [
- 88,
- 0
- ],
- [
- 89,
- 0
- ],
- [
- 91,
- 0
- ],
- [
- 93,
- 0
- ],
- [
- 95,
- 0
- ],
- [
- 98,
- 0
- ],
- [
- 99,
- 0
- ],
- [
- 100,
- 0
- ],
- [
- 101,
- 0
- ],
- [
- 102,
- 0
- ],
- [
- 103,
- 0
- ],
- [
- 104,
- 0
- ],
- [
- 105,
- 0
- ],
- [
- 106,
- 0
- ],
- [
- 108,
- 0
- ],
- [
- 109,
- 0
- ],
- [
- 110,
- 0
- ],
- [
- 112,
- 0
- ],
- [
- 113,
- 0
- ],
- [
- 114,
- 0
- ],
- [
- 117,
- 0
- ],
- [
- 121,
- 0
- ],
- [
- 122,
- 0
- ],
- [
- 123,
- 0
- ],
- [
- 124,
- 0
- ],
- [
- 128,
- 0
- ],
- [
- 129,
- 0
- ],
- [
- 130,
- 0
- ],
- [
- 131,
- 0
- ],
- [
- 135,
- 0
- ],
- [
- 138,
- 0
- ],
- [
- 142,
- 0
- ],
- [
- 143,
- 0
- ],
- [
- 144,
- 0
- ],
- [
- 153,
- 0
- ],
- [
- 162,
- 0
- ],
- [
- 163,
- 0
- ],
- [
- 164,
- 0
- ],
- [
- 165,
- 0
- ],
- [
- 166,
- 0
- ],
- [
- 167,
- 0
- ],
- [
- 175,
- 0
- ],
- [
- 176,
- 0
- ],
- [
- 177,
- 0
- ],
- [
- 181,
- 0
- ],
- [
- 183,
- 0
- ],
- [
- 184,
- 0
- ],
- [
- 186,
- 0
- ],
- [
- 187,
- 0
- ],
- [
- 188,
- 0
- ],
- [
- 189,
- 0
- ],
- [
- 193,
- 0
- ],
- [
- 195,
- 0
- ],
- [
- 196,
- 0
- ],
- [
- 197,
- 0
- ],
- [
- 198,
- 0
- ],
- [
- 199,
- 0
- ],
- [
- 207,
- 0
- ],
- [
- 208,
- 0
- ],
- [
- 209,
- 0
- ],
- [
- 210,
- 0
- ],
- [
- 214,
- 0
- ],
- [
- 215,
- 0
- ],
- [
- 216,
- 0
- ],
- [
- 217,
- 0
- ],
- [
- 218,
- 0
- ],
- [
- 220,
- 0
- ],
- [
- 228,
- 0
- ],
- [
- 232,
- 0
- ],
- [
- 233,
- 0
- ],
- [
- 234,
- 0
- ],
- [
- 235,
- 0
- ],
- [
- 236,
- 0
- ],
- [
- 237,
- 0
- ],
- [
- 241,
- 0
- ],
- [
- 242,
- 0
- ],
- [
- 243,
- 0
- ],
- [
- 244,
- 0
- ],
- [
- 247,
- 0
- ],
- [
- 248,
- 0
- ],
- [
- 249,
- 0
- ],
- [
- 250,
- 0
- ],
- [
- 251,
- 0
- ],
- [
- 255,
- 0
- ],
- [
- 256,
- 0
- ],
- [
- 258,
- 0
- ],
- [
- 259,
- 0
- ],
- [
- 261,
- 0
- ],
- [
- 262,
- 0
- ],
- [
- 264,
- 0
- ],
- [
- 265,
- 0
- ],
- [
- 266,
- 0
- ],
- [
- 267,
- 0
- ],
- [
- 269,
- 0
- ],
- [
- 270,
- 0
- ],
- [
- 274,
- 0
- ],
- [
- 275,
- 0
- ],
- [
- 276,
- 0
- ],
- [
- 278,
- 0
- ],
- [
- 279,
- 0
- ],
- [
- 280,
- 0
- ],
- [
- 284,
- 0
- ],
- [
- 285,
- 0
- ],
- [
- 287,
- 0
- ],
- [
- 288,
- 0
- ],
- [
- 289,
- 0
- ],
- [
- 290,
- 0
- ],
- [
- 291,
- 0
- ],
- [
- 292,
- 0
- ],
- [
- 293,
- 0
- ],
- [
- 294,
- 0
- ],
- [
- 295,
- 0
- ],
- [
- 296,
- 0
- ]
- ]
- }
- }
-}
\ No newline at end of file