Spaces:
Runtime error
Runtime error
Joshua Sundance Bailey
commited on
Commit
·
0ce4fb3
1
Parent(s):
21eccfc
cleanup & options
Browse files
kubernetes/resources.yaml
CHANGED
|
@@ -71,6 +71,10 @@ spec:
|
|
| 71 |
key: LANGCHAIN_API_KEY
|
| 72 |
- name: LANGCHAIN_PROJECT
|
| 73 |
value: "langchain-streamlit-demo"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
securityContext:
|
| 75 |
runAsNonRoot: true
|
| 76 |
---
|
|
|
|
| 71 |
key: LANGCHAIN_API_KEY
|
| 72 |
- name: LANGCHAIN_PROJECT
|
| 73 |
value: "langchain-streamlit-demo"
|
| 74 |
+
- name: SHOW_LANGCHAIN_OPTIONS
|
| 75 |
+
value: "False"
|
| 76 |
+
- name: SHOW_AZURE_OPTIONS
|
| 77 |
+
value: "False"
|
| 78 |
securityContext:
|
| 79 |
runAsNonRoot: true
|
| 80 |
---
|
langchain-streamlit-demo/app.py
CHANGED
|
@@ -14,29 +14,8 @@ from langchain.schema.retriever import BaseRetriever
|
|
| 14 |
from langsmith.client import Client
|
| 15 |
from streamlit_feedback import streamlit_feedback
|
| 16 |
|
| 17 |
-
from defaults import
|
| 18 |
-
|
| 19 |
-
SUPPORTED_MODELS,
|
| 20 |
-
DEFAULT_MODEL,
|
| 21 |
-
DEFAULT_SYSTEM_PROMPT,
|
| 22 |
-
MIN_TEMP,
|
| 23 |
-
MAX_TEMP,
|
| 24 |
-
DEFAULT_TEMP,
|
| 25 |
-
MIN_MAX_TOKENS,
|
| 26 |
-
MAX_MAX_TOKENS,
|
| 27 |
-
DEFAULT_MAX_TOKENS,
|
| 28 |
-
DEFAULT_LANGSMITH_PROJECT,
|
| 29 |
-
AZURE_DICT,
|
| 30 |
-
PROVIDER_KEY_DICT,
|
| 31 |
-
OPENAI_API_KEY,
|
| 32 |
-
MIN_CHUNK_SIZE,
|
| 33 |
-
MAX_CHUNK_SIZE,
|
| 34 |
-
DEFAULT_CHUNK_SIZE,
|
| 35 |
-
MIN_CHUNK_OVERLAP,
|
| 36 |
-
MAX_CHUNK_OVERLAP,
|
| 37 |
-
DEFAULT_CHUNK_OVERLAP,
|
| 38 |
-
DEFAULT_RETRIEVER_K,
|
| 39 |
-
)
|
| 40 |
from llm_resources import get_runnable, get_llm, get_texts_and_retriever, StreamHandler
|
| 41 |
|
| 42 |
__version__ = "0.0.13"
|
|
@@ -81,12 +60,14 @@ RUN_COLLECTOR = RunCollectorCallbackHandler()
|
|
| 81 |
@st.cache_data
|
| 82 |
def get_texts_and_retriever_cacheable_wrapper(
|
| 83 |
uploaded_file_bytes: bytes,
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
) -> Tuple[List[Document], BaseRetriever]:
|
| 88 |
return get_texts_and_retriever(
|
| 89 |
uploaded_file_bytes=uploaded_file_bytes,
|
|
|
|
| 90 |
chunk_size=chunk_size,
|
| 91 |
chunk_overlap=chunk_overlap,
|
| 92 |
k=k,
|
|
@@ -100,14 +81,14 @@ with sidebar:
|
|
| 100 |
|
| 101 |
model = st.selectbox(
|
| 102 |
label="Chat Model",
|
| 103 |
-
options=SUPPORTED_MODELS,
|
| 104 |
-
index=SUPPORTED_MODELS.index(DEFAULT_MODEL),
|
| 105 |
)
|
| 106 |
|
| 107 |
-
st.session_state.provider = MODEL_DICT[model]
|
| 108 |
|
| 109 |
provider_api_key = (
|
| 110 |
-
PROVIDER_KEY_DICT.get(
|
| 111 |
st.session_state.provider,
|
| 112 |
)
|
| 113 |
or st.text_input(
|
|
@@ -130,7 +111,7 @@ with sidebar:
|
|
| 130 |
openai_api_key = (
|
| 131 |
provider_api_key
|
| 132 |
if st.session_state.provider == "OpenAI"
|
| 133 |
-
else OPENAI_API_KEY
|
| 134 |
or st.sidebar.text_input("OpenAI API Key: ", type="password")
|
| 135 |
)
|
| 136 |
|
|
@@ -143,7 +124,7 @@ with sidebar:
|
|
| 143 |
k = st.slider(
|
| 144 |
label="Number of Chunks",
|
| 145 |
help="How many document chunks will be used for context?",
|
| 146 |
-
value=DEFAULT_RETRIEVER_K,
|
| 147 |
min_value=1,
|
| 148 |
max_value=10,
|
| 149 |
)
|
|
@@ -151,17 +132,17 @@ with sidebar:
|
|
| 151 |
chunk_size = st.slider(
|
| 152 |
label="Number of Tokens per Chunk",
|
| 153 |
help="Size of each chunk of text",
|
| 154 |
-
min_value=MIN_CHUNK_SIZE,
|
| 155 |
-
max_value=MAX_CHUNK_SIZE,
|
| 156 |
-
value=DEFAULT_CHUNK_SIZE,
|
| 157 |
)
|
| 158 |
|
| 159 |
chunk_overlap = st.slider(
|
| 160 |
label="Chunk Overlap",
|
| 161 |
help="Number of characters to overlap between chunks",
|
| 162 |
-
min_value=MIN_CHUNK_OVERLAP,
|
| 163 |
-
max_value=MAX_CHUNK_OVERLAP,
|
| 164 |
-
value=DEFAULT_CHUNK_OVERLAP,
|
| 165 |
)
|
| 166 |
|
| 167 |
chain_type_help_root = (
|
|
@@ -198,8 +179,9 @@ with sidebar:
|
|
| 198 |
(
|
| 199 |
st.session_state.texts,
|
| 200 |
st.session_state.retriever,
|
| 201 |
-
) =
|
| 202 |
uploaded_file_bytes=uploaded_file.getvalue(),
|
|
|
|
| 203 |
chunk_size=chunk_size,
|
| 204 |
chunk_overlap=chunk_overlap,
|
| 205 |
k=k,
|
|
@@ -216,7 +198,7 @@ with sidebar:
|
|
| 216 |
system_prompt = (
|
| 217 |
st.text_area(
|
| 218 |
"Custom Instructions",
|
| 219 |
-
DEFAULT_SYSTEM_PROMPT,
|
| 220 |
help="Custom instructions to provide the language model to determine style, personality, etc.",
|
| 221 |
)
|
| 222 |
.strip()
|
|
@@ -226,84 +208,99 @@ with sidebar:
|
|
| 226 |
|
| 227 |
temperature = st.slider(
|
| 228 |
"Temperature",
|
| 229 |
-
min_value=MIN_TEMP,
|
| 230 |
-
max_value=MAX_TEMP,
|
| 231 |
-
value=DEFAULT_TEMP,
|
| 232 |
help="Higher values give more random results.",
|
| 233 |
)
|
| 234 |
|
| 235 |
max_tokens = st.slider(
|
| 236 |
"Max Tokens",
|
| 237 |
-
min_value=MIN_MAX_TOKENS,
|
| 238 |
-
max_value=MAX_MAX_TOKENS,
|
| 239 |
-
value=DEFAULT_MAX_TOKENS,
|
| 240 |
help="Higher values give longer results.",
|
| 241 |
)
|
| 242 |
|
| 243 |
# --- LangSmith Options ---
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
value=PROVIDER_KEY_DICT.get("LANGSMITH"),
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
-
LANGSMITH_PROJECT = st.text_input(
|
| 252 |
-
"LangSmith Project Name",
|
| 253 |
-
value=DEFAULT_LANGSMITH_PROJECT or "langchain-streamlit-demo",
|
| 254 |
-
)
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
| 260 |
)
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
| 264 |
)
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
value=AZURE_DICT["AZURE_OPENAI_BASE_URL"],
|
| 271 |
)
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
value=AZURE_DICT["AZURE_OPENAI_API_VERSION"],
|
| 276 |
)
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
)
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
|
| 305 |
# --- LLM Instantiation ---
|
| 306 |
-
llm = get_llm(
|
| 307 |
provider=st.session_state.provider,
|
| 308 |
model=model,
|
| 309 |
provider_api_key=provider_api_key,
|
|
@@ -384,6 +381,8 @@ if st.session_state.llm:
|
|
| 384 |
st.session_state.llm,
|
| 385 |
st.session_state.retriever,
|
| 386 |
MEMORY,
|
|
|
|
|
|
|
| 387 |
)
|
| 388 |
|
| 389 |
# --- LLM call ---
|
|
|
|
| 14 |
from langsmith.client import Client
|
| 15 |
from streamlit_feedback import streamlit_feedback
|
| 16 |
|
| 17 |
+
from defaults import default_values
|
| 18 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
from llm_resources import get_runnable, get_llm, get_texts_and_retriever, StreamHandler
|
| 20 |
|
| 21 |
__version__ = "0.0.13"
|
|
|
|
| 60 |
@st.cache_data
|
| 61 |
def get_texts_and_retriever_cacheable_wrapper(
|
| 62 |
uploaded_file_bytes: bytes,
|
| 63 |
+
openai_api_key: str,
|
| 64 |
+
chunk_size: int = default_values.DEFAULT_CHUNK_SIZE,
|
| 65 |
+
chunk_overlap: int = default_values.DEFAULT_CHUNK_OVERLAP,
|
| 66 |
+
k: int = default_values.DEFAULT_RETRIEVER_K,
|
| 67 |
) -> Tuple[List[Document], BaseRetriever]:
|
| 68 |
return get_texts_and_retriever(
|
| 69 |
uploaded_file_bytes=uploaded_file_bytes,
|
| 70 |
+
openai_api_key=openai_api_key,
|
| 71 |
chunk_size=chunk_size,
|
| 72 |
chunk_overlap=chunk_overlap,
|
| 73 |
k=k,
|
|
|
|
| 81 |
|
| 82 |
model = st.selectbox(
|
| 83 |
label="Chat Model",
|
| 84 |
+
options=default_values.SUPPORTED_MODELS,
|
| 85 |
+
index=default_values.SUPPORTED_MODELS.index(default_values.DEFAULT_MODEL),
|
| 86 |
)
|
| 87 |
|
| 88 |
+
st.session_state.provider = default_values.MODEL_DICT[model]
|
| 89 |
|
| 90 |
provider_api_key = (
|
| 91 |
+
default_values.PROVIDER_KEY_DICT.get(
|
| 92 |
st.session_state.provider,
|
| 93 |
)
|
| 94 |
or st.text_input(
|
|
|
|
| 111 |
openai_api_key = (
|
| 112 |
provider_api_key
|
| 113 |
if st.session_state.provider == "OpenAI"
|
| 114 |
+
else default_values.OPENAI_API_KEY
|
| 115 |
or st.sidebar.text_input("OpenAI API Key: ", type="password")
|
| 116 |
)
|
| 117 |
|
|
|
|
| 124 |
k = st.slider(
|
| 125 |
label="Number of Chunks",
|
| 126 |
help="How many document chunks will be used for context?",
|
| 127 |
+
value=default_values.DEFAULT_RETRIEVER_K,
|
| 128 |
min_value=1,
|
| 129 |
max_value=10,
|
| 130 |
)
|
|
|
|
| 132 |
chunk_size = st.slider(
|
| 133 |
label="Number of Tokens per Chunk",
|
| 134 |
help="Size of each chunk of text",
|
| 135 |
+
min_value=default_values.MIN_CHUNK_SIZE,
|
| 136 |
+
max_value=default_values.MAX_CHUNK_SIZE,
|
| 137 |
+
value=default_values.DEFAULT_CHUNK_SIZE,
|
| 138 |
)
|
| 139 |
|
| 140 |
chunk_overlap = st.slider(
|
| 141 |
label="Chunk Overlap",
|
| 142 |
help="Number of characters to overlap between chunks",
|
| 143 |
+
min_value=default_values.MIN_CHUNK_OVERLAP,
|
| 144 |
+
max_value=default_values.MAX_CHUNK_OVERLAP,
|
| 145 |
+
value=default_values.DEFAULT_CHUNK_OVERLAP,
|
| 146 |
)
|
| 147 |
|
| 148 |
chain_type_help_root = (
|
|
|
|
| 179 |
(
|
| 180 |
st.session_state.texts,
|
| 181 |
st.session_state.retriever,
|
| 182 |
+
) = get_texts_and_retriever_cacheable_wrapper(
|
| 183 |
uploaded_file_bytes=uploaded_file.getvalue(),
|
| 184 |
+
openai_api_key=openai_api_key,
|
| 185 |
chunk_size=chunk_size,
|
| 186 |
chunk_overlap=chunk_overlap,
|
| 187 |
k=k,
|
|
|
|
| 198 |
system_prompt = (
|
| 199 |
st.text_area(
|
| 200 |
"Custom Instructions",
|
| 201 |
+
default_values.DEFAULT_SYSTEM_PROMPT,
|
| 202 |
help="Custom instructions to provide the language model to determine style, personality, etc.",
|
| 203 |
)
|
| 204 |
.strip()
|
|
|
|
| 208 |
|
| 209 |
temperature = st.slider(
|
| 210 |
"Temperature",
|
| 211 |
+
min_value=default_values.MIN_TEMP,
|
| 212 |
+
max_value=default_values.MAX_TEMP,
|
| 213 |
+
value=default_values.DEFAULT_TEMP,
|
| 214 |
help="Higher values give more random results.",
|
| 215 |
)
|
| 216 |
|
| 217 |
max_tokens = st.slider(
|
| 218 |
"Max Tokens",
|
| 219 |
+
min_value=default_values.MIN_MAX_TOKENS,
|
| 220 |
+
max_value=default_values.MAX_MAX_TOKENS,
|
| 221 |
+
value=default_values.DEFAULT_MAX_TOKENS,
|
| 222 |
help="Higher values give longer results.",
|
| 223 |
)
|
| 224 |
|
| 225 |
# --- LangSmith Options ---
|
| 226 |
+
LANGSMITH_API_KEY = default_values.PROVIDER_KEY_DICT.get("LANGSMITH")
|
| 227 |
+
LANGSMITH_PROJECT = (
|
| 228 |
+
default_values.DEFAULT_LANGSMITH_PROJECT or "langchain-streamlit-demo"
|
| 229 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
if default_values.SHOW_LANGSMITH_OPTIONS:
|
| 232 |
+
with st.expander("LangSmith Options", expanded=False):
|
| 233 |
+
LANGSMITH_API_KEY = st.text_input(
|
| 234 |
+
"LangSmith API Key (optional)",
|
| 235 |
+
value=LANGSMITH_API_KEY,
|
| 236 |
+
type="password",
|
| 237 |
)
|
| 238 |
+
|
| 239 |
+
LANGSMITH_PROJECT = st.text_input(
|
| 240 |
+
"LangSmith Project Name",
|
| 241 |
+
value=LANGSMITH_PROJECT,
|
| 242 |
)
|
| 243 |
|
| 244 |
+
if st.session_state.client is None and LANGSMITH_API_KEY:
|
| 245 |
+
st.session_state.client = Client(
|
| 246 |
+
api_url="https://api.smith.langchain.com",
|
| 247 |
+
api_key=LANGSMITH_API_KEY,
|
|
|
|
| 248 |
)
|
| 249 |
+
st.session_state.ls_tracer = LangChainTracer(
|
| 250 |
+
project_name=LANGSMITH_PROJECT,
|
| 251 |
+
client=st.session_state.client,
|
|
|
|
| 252 |
)
|
| 253 |
|
| 254 |
+
# --- Azure Options ---
|
| 255 |
+
AZURE_OPENAI_BASE_URL = default_values.AZURE_DICT["AZURE_OPENAI_BASE_URL"]
|
| 256 |
+
AZURE_OPENAI_API_VERSION = default_values.AZURE_DICT["AZURE_OPENAI_API_VERSION"]
|
| 257 |
+
AZURE_OPENAI_DEPLOYMENT_NAME = default_values.AZURE_DICT[
|
| 258 |
+
"AZURE_OPENAI_DEPLOYMENT_NAME"
|
| 259 |
+
]
|
| 260 |
+
AZURE_OPENAI_API_KEY = default_values.AZURE_DICT["AZURE_OPENAI_API_KEY"]
|
| 261 |
+
AZURE_OPENAI_MODEL_VERSION = default_values.AZURE_DICT["AZURE_OPENAI_MODEL_VERSION"]
|
| 262 |
+
|
| 263 |
+
if default_values.SHOW_AZURE_OPTIONS:
|
| 264 |
+
with st.expander("Azure Options", expanded=False):
|
| 265 |
+
AZURE_OPENAI_BASE_URL = st.text_input(
|
| 266 |
+
"AZURE_OPENAI_BASE_URL",
|
| 267 |
+
value=AZURE_OPENAI_BASE_URL,
|
| 268 |
+
)
|
| 269 |
|
| 270 |
+
AZURE_OPENAI_API_VERSION = st.text_input(
|
| 271 |
+
"AZURE_OPENAI_API_VERSION",
|
| 272 |
+
value=AZURE_OPENAI_API_VERSION,
|
| 273 |
+
)
|
|
|
|
| 274 |
|
| 275 |
+
AZURE_OPENAI_DEPLOYMENT_NAME = st.text_input(
|
| 276 |
+
"AZURE_OPENAI_DEPLOYMENT_NAME",
|
| 277 |
+
value=AZURE_OPENAI_DEPLOYMENT_NAME,
|
| 278 |
+
)
|
| 279 |
|
| 280 |
+
AZURE_OPENAI_API_KEY = st.text_input(
|
| 281 |
+
"AZURE_OPENAI_API_KEY",
|
| 282 |
+
value=AZURE_OPENAI_API_KEY,
|
| 283 |
+
type="password",
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
AZURE_OPENAI_MODEL_VERSION = st.text_input(
|
| 287 |
+
"AZURE_OPENAI_MODEL_VERSION",
|
| 288 |
+
value=AZURE_OPENAI_MODEL_VERSION,
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
AZURE_AVAILABLE = all(
|
| 292 |
+
[
|
| 293 |
+
AZURE_OPENAI_BASE_URL,
|
| 294 |
+
AZURE_OPENAI_API_VERSION,
|
| 295 |
+
AZURE_OPENAI_DEPLOYMENT_NAME,
|
| 296 |
+
AZURE_OPENAI_API_KEY,
|
| 297 |
+
AZURE_OPENAI_MODEL_VERSION,
|
| 298 |
+
],
|
| 299 |
+
)
|
| 300 |
|
| 301 |
|
| 302 |
# --- LLM Instantiation ---
|
| 303 |
+
st.session_state.llm = get_llm(
|
| 304 |
provider=st.session_state.provider,
|
| 305 |
model=model,
|
| 306 |
provider_api_key=provider_api_key,
|
|
|
|
| 381 |
st.session_state.llm,
|
| 382 |
st.session_state.retriever,
|
| 383 |
MEMORY,
|
| 384 |
+
chat_prompt,
|
| 385 |
+
prompt,
|
| 386 |
)
|
| 387 |
|
| 388 |
# --- LLM call ---
|
langchain-streamlit-demo/defaults.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
|
| 3 |
MODEL_DICT = {
|
| 4 |
"gpt-3.5-turbo": "OpenAI",
|
|
@@ -41,6 +43,12 @@ AZURE_VARS = [
|
|
| 41 |
|
| 42 |
AZURE_DICT = {v: os.environ.get(v, "") for v in AZURE_VARS}
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
PROVIDER_KEY_DICT = {
|
| 45 |
"OpenAI": os.environ.get("OPENAI_API_KEY", ""),
|
| 46 |
"Anthropic": os.environ.get("ANTHROPIC_API_KEY", ""),
|
|
@@ -60,3 +68,61 @@ MAX_CHUNK_OVERLAP = 10000
|
|
| 60 |
DEFAULT_CHUNK_OVERLAP = 0
|
| 61 |
|
| 62 |
DEFAULT_RETRIEVER_K = 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
from collections import namedtuple
|
| 3 |
+
|
| 4 |
|
| 5 |
MODEL_DICT = {
|
| 6 |
"gpt-3.5-turbo": "OpenAI",
|
|
|
|
| 43 |
|
| 44 |
AZURE_DICT = {v: os.environ.get(v, "") for v in AZURE_VARS}
|
| 45 |
|
| 46 |
+
|
| 47 |
+
SHOW_LANGSMITH_OPTIONS = (
|
| 48 |
+
os.environ.get("SHOW_LANGSMITH_OPTIONS", "true").lower() == "true"
|
| 49 |
+
)
|
| 50 |
+
SHOW_AZURE_OPTIONS = os.environ.get("SHOW_AZURE_OPTIONS", "true").lower() == "true"
|
| 51 |
+
|
| 52 |
PROVIDER_KEY_DICT = {
|
| 53 |
"OpenAI": os.environ.get("OPENAI_API_KEY", ""),
|
| 54 |
"Anthropic": os.environ.get("ANTHROPIC_API_KEY", ""),
|
|
|
|
| 68 |
DEFAULT_CHUNK_OVERLAP = 0
|
| 69 |
|
| 70 |
DEFAULT_RETRIEVER_K = 4
|
| 71 |
+
|
| 72 |
+
DEFAULT_VALUES = namedtuple(
|
| 73 |
+
"DEFAULT_VALUES",
|
| 74 |
+
[
|
| 75 |
+
"MODEL_DICT",
|
| 76 |
+
"SUPPORTED_MODELS",
|
| 77 |
+
"DEFAULT_MODEL",
|
| 78 |
+
"DEFAULT_SYSTEM_PROMPT",
|
| 79 |
+
"MIN_TEMP",
|
| 80 |
+
"MAX_TEMP",
|
| 81 |
+
"DEFAULT_TEMP",
|
| 82 |
+
"MIN_MAX_TOKENS",
|
| 83 |
+
"MAX_MAX_TOKENS",
|
| 84 |
+
"DEFAULT_MAX_TOKENS",
|
| 85 |
+
"DEFAULT_LANGSMITH_PROJECT",
|
| 86 |
+
"AZURE_VARS",
|
| 87 |
+
"AZURE_DICT",
|
| 88 |
+
"PROVIDER_KEY_DICT",
|
| 89 |
+
"OPENAI_API_KEY",
|
| 90 |
+
"MIN_CHUNK_SIZE",
|
| 91 |
+
"MAX_CHUNK_SIZE",
|
| 92 |
+
"DEFAULT_CHUNK_SIZE",
|
| 93 |
+
"MIN_CHUNK_OVERLAP",
|
| 94 |
+
"MAX_CHUNK_OVERLAP",
|
| 95 |
+
"DEFAULT_CHUNK_OVERLAP",
|
| 96 |
+
"DEFAULT_RETRIEVER_K",
|
| 97 |
+
"SHOW_LANGSMITH_OPTIONS",
|
| 98 |
+
"SHOW_AZURE_OPTIONS",
|
| 99 |
+
],
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
default_values = DEFAULT_VALUES(
|
| 104 |
+
MODEL_DICT,
|
| 105 |
+
SUPPORTED_MODELS,
|
| 106 |
+
DEFAULT_MODEL,
|
| 107 |
+
DEFAULT_SYSTEM_PROMPT,
|
| 108 |
+
MIN_TEMP,
|
| 109 |
+
MAX_TEMP,
|
| 110 |
+
DEFAULT_TEMP,
|
| 111 |
+
MIN_MAX_TOKENS,
|
| 112 |
+
MAX_MAX_TOKENS,
|
| 113 |
+
DEFAULT_MAX_TOKENS,
|
| 114 |
+
DEFAULT_LANGSMITH_PROJECT,
|
| 115 |
+
AZURE_VARS,
|
| 116 |
+
AZURE_DICT,
|
| 117 |
+
PROVIDER_KEY_DICT,
|
| 118 |
+
OPENAI_API_KEY,
|
| 119 |
+
MIN_CHUNK_SIZE,
|
| 120 |
+
MAX_CHUNK_SIZE,
|
| 121 |
+
DEFAULT_CHUNK_SIZE,
|
| 122 |
+
MIN_CHUNK_OVERLAP,
|
| 123 |
+
MAX_CHUNK_OVERLAP,
|
| 124 |
+
DEFAULT_CHUNK_OVERLAP,
|
| 125 |
+
DEFAULT_RETRIEVER_K,
|
| 126 |
+
SHOW_LANGSMITH_OPTIONS,
|
| 127 |
+
SHOW_AZURE_OPTIONS,
|
| 128 |
+
)
|
langchain-streamlit-demo/llm_resources.py
CHANGED
|
@@ -1,9 +1,8 @@
|
|
| 1 |
from tempfile import NamedTemporaryFile
|
| 2 |
from typing import Tuple, List
|
| 3 |
|
| 4 |
-
from langchain import LLMChain, FAISS
|
| 5 |
from langchain.callbacks.base import BaseCallbackHandler
|
| 6 |
-
from langchain.chains import RetrievalQA
|
| 7 |
from langchain.chat_models import (
|
| 8 |
AzureChatOpenAI,
|
| 9 |
ChatOpenAI,
|
|
@@ -15,8 +14,8 @@ from langchain.embeddings import OpenAIEmbeddings
|
|
| 15 |
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
| 16 |
from langchain.schema import Document, BaseRetriever
|
| 17 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
| 18 |
|
| 19 |
-
from app import chat_prompt, prompt, openai_api_key
|
| 20 |
from defaults import DEFAULT_CHUNK_SIZE, DEFAULT_CHUNK_OVERLAP, DEFAULT_RETRIEVER_K
|
| 21 |
from qagen import get_rag_qa_gen_chain
|
| 22 |
from summarize import get_rag_summarization_chain
|
|
@@ -28,6 +27,8 @@ def get_runnable(
|
|
| 28 |
llm,
|
| 29 |
retriever,
|
| 30 |
memory,
|
|
|
|
|
|
|
| 31 |
):
|
| 32 |
if not use_document_chat:
|
| 33 |
return LLMChain(
|
|
@@ -43,7 +44,7 @@ def get_runnable(
|
|
| 43 |
)
|
| 44 |
elif document_chat_chain_type == "Summarization":
|
| 45 |
return get_rag_summarization_chain(
|
| 46 |
-
|
| 47 |
retriever,
|
| 48 |
llm,
|
| 49 |
)
|
|
@@ -112,6 +113,7 @@ def get_llm(
|
|
| 112 |
|
| 113 |
def get_texts_and_retriever(
|
| 114 |
uploaded_file_bytes: bytes,
|
|
|
|
| 115 |
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
| 116 |
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
| 117 |
k: int = DEFAULT_RETRIEVER_K,
|
|
|
|
| 1 |
from tempfile import NamedTemporaryFile
|
| 2 |
from typing import Tuple, List
|
| 3 |
|
|
|
|
| 4 |
from langchain.callbacks.base import BaseCallbackHandler
|
| 5 |
+
from langchain.chains import RetrievalQA, LLMChain
|
| 6 |
from langchain.chat_models import (
|
| 7 |
AzureChatOpenAI,
|
| 8 |
ChatOpenAI,
|
|
|
|
| 14 |
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
| 15 |
from langchain.schema import Document, BaseRetriever
|
| 16 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 17 |
+
from langchain.vectorstores import FAISS
|
| 18 |
|
|
|
|
| 19 |
from defaults import DEFAULT_CHUNK_SIZE, DEFAULT_CHUNK_OVERLAP, DEFAULT_RETRIEVER_K
|
| 20 |
from qagen import get_rag_qa_gen_chain
|
| 21 |
from summarize import get_rag_summarization_chain
|
|
|
|
| 27 |
llm,
|
| 28 |
retriever,
|
| 29 |
memory,
|
| 30 |
+
chat_prompt,
|
| 31 |
+
summarization_prompt,
|
| 32 |
):
|
| 33 |
if not use_document_chat:
|
| 34 |
return LLMChain(
|
|
|
|
| 44 |
)
|
| 45 |
elif document_chat_chain_type == "Summarization":
|
| 46 |
return get_rag_summarization_chain(
|
| 47 |
+
summarization_prompt,
|
| 48 |
retriever,
|
| 49 |
llm,
|
| 50 |
)
|
|
|
|
| 113 |
|
| 114 |
def get_texts_and_retriever(
|
| 115 |
uploaded_file_bytes: bytes,
|
| 116 |
+
openai_api_key: str,
|
| 117 |
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
| 118 |
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
| 119 |
k: int = DEFAULT_RETRIEVER_K,
|