Joshua Sundance Bailey
commited on
Commit
Β·
38e6840
1
Parent(s):
ad0c8c1
experimental session_state
Browse files- langchain-streamlit-demo/app.py +209 -195
langchain-streamlit-demo/app.py
CHANGED
@@ -10,21 +10,38 @@ from langchain.callbacks.base import BaseCallbackHandler
|
|
10 |
from langchain.callbacks.tracers.langchain import wait_for_all_tracers
|
11 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
12 |
from langchain.chat_models import ChatOpenAI, ChatAnyscale, ChatAnthropic
|
13 |
-
from langchain.chat_models.base import BaseChatModel
|
14 |
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
15 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
16 |
from langchain.schema.runnable import RunnableConfig
|
17 |
from langsmith.client import Client
|
18 |
from streamlit_feedback import streamlit_feedback
|
19 |
|
|
|
20 |
st.set_page_config(
|
21 |
page_title="langchain-streamlit-demo",
|
22 |
page_icon="π¦",
|
23 |
)
|
24 |
|
25 |
-
st.sidebar.markdown("# Menu")
|
26 |
|
|
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
_STMEMORY = StreamlitChatMessageHistory(key="langchain_messages")
|
29 |
_MEMORY = ConversationBufferMemory(
|
30 |
chat_memory=_STMEMORY,
|
@@ -32,11 +49,22 @@ _MEMORY = ConversationBufferMemory(
|
|
32 |
memory_key="chat_history",
|
33 |
)
|
34 |
|
35 |
-
_DEFAULT_SYSTEM_PROMPT = os.environ.get(
|
36 |
-
"DEFAULT_SYSTEM_PROMPT",
|
37 |
-
"You are a helpful chatbot.",
|
38 |
-
)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
_MODEL_DICT = {
|
41 |
"gpt-3.5-turbo": "OpenAI",
|
42 |
"gpt-4": "OpenAI",
|
@@ -47,106 +75,133 @@ _MODEL_DICT = {
|
|
47 |
"meta-llama/Llama-2-70b-chat-hf": "Anyscale Endpoints",
|
48 |
}
|
49 |
_SUPPORTED_MODELS = list(_MODEL_DICT.keys())
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
openai_api_key=provider_api_key,
|
71 |
temperature=temperature,
|
72 |
streaming=True,
|
73 |
max_tokens=max_tokens,
|
74 |
)
|
75 |
-
elif
|
76 |
-
|
77 |
-
model_name=model,
|
78 |
anthropic_api_key=provider_api_key,
|
79 |
temperature=temperature,
|
80 |
streaming=True,
|
81 |
max_tokens_to_sample=max_tokens,
|
82 |
)
|
83 |
-
elif
|
84 |
-
|
85 |
-
model=model,
|
86 |
anyscale_api_key=provider_api_key,
|
87 |
temperature=temperature,
|
88 |
streaming=True,
|
89 |
max_tokens=max_tokens,
|
90 |
)
|
91 |
-
else:
|
92 |
-
raise NotImplementedError(f"Unknown model {model}")
|
93 |
-
|
94 |
|
95 |
-
def get_llm_chain(
|
96 |
-
model: str,
|
97 |
-
provider_api_key: str,
|
98 |
-
system_prompt: str = _DEFAULT_SYSTEM_PROMPT,
|
99 |
-
temperature: float = _DEFAULT_TEMPERATURE,
|
100 |
-
max_tokens: int = _DEFAULT_MAX_TOKENS,
|
101 |
-
) -> LLMChain:
|
102 |
-
"""Return a basic LLMChain with memory."""
|
103 |
-
prompt = ChatPromptTemplate.from_messages(
|
104 |
-
[
|
105 |
-
(
|
106 |
-
"system",
|
107 |
-
system_prompt + "\nIt's currently {time}.",
|
108 |
-
),
|
109 |
-
MessagesPlaceholder(variable_name="chat_history"),
|
110 |
-
("human", "{input}"),
|
111 |
-
],
|
112 |
-
).partial(time=lambda: str(datetime.now()))
|
113 |
-
llm = get_llm(model, provider_api_key, temperature, max_tokens)
|
114 |
-
return LLMChain(prompt=prompt, llm=llm, memory=_MEMORY)
|
115 |
|
116 |
-
|
117 |
-
class StreamHandler(BaseCallbackHandler):
|
118 |
-
def __init__(self, container, initial_text=""):
|
119 |
-
self.container = container
|
120 |
-
self.text = initial_text
|
121 |
-
|
122 |
-
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
123 |
-
self.text += token
|
124 |
-
self.container.markdown(self.text)
|
125 |
-
|
126 |
-
|
127 |
-
def feedback_component(client):
|
128 |
-
scores = {"π": 1, "π": 0.75, "π": 0.5, "π": 0.25, "π": 0}
|
129 |
-
if feedback := streamlit_feedback(
|
130 |
-
feedback_type="faces",
|
131 |
-
optional_text_label="[Optional] Please provide an explanation",
|
132 |
-
key=f"feedback_{st.session_state.run_id}",
|
133 |
-
):
|
134 |
-
score = scores[feedback["score"]]
|
135 |
-
feedback = client.create_feedback(
|
136 |
-
st.session_state.run_id,
|
137 |
-
feedback["type"],
|
138 |
-
score=score,
|
139 |
-
comment=feedback.get("text", None),
|
140 |
-
)
|
141 |
-
st.session_state.feedback = {"feedback_id": str(feedback.id), "score": score}
|
142 |
-
st.toast("Feedback recorded!", icon="π")
|
143 |
-
|
144 |
-
|
145 |
-
# Initialize State
|
146 |
-
if "trace_link" not in st.session_state:
|
147 |
-
st.session_state.trace_link = None
|
148 |
-
if "run_id" not in st.session_state:
|
149 |
-
st.session_state.run_id = None
|
150 |
if len(_STMEMORY.messages) == 0:
|
151 |
_STMEMORY.add_ai_message("Hello! I'm a helpful AI chatbot. Ask me a question!")
|
152 |
|
@@ -156,138 +211,97 @@ for msg in _STMEMORY.messages:
|
|
156 |
avatar="π¦" if msg.type in ("ai", "assistant") else None,
|
157 |
).write(msg.content)
|
158 |
|
159 |
-
model = st.sidebar.selectbox(
|
160 |
-
label="Chat Model",
|
161 |
-
options=_SUPPORTED_MODELS,
|
162 |
-
index=_SUPPORTED_MODELS.index(_DEFAULT_MODEL),
|
163 |
-
)
|
164 |
-
provider = _MODEL_DICT[model]
|
165 |
-
|
166 |
-
|
167 |
-
def api_key_from_env(_provider: str) -> Union[str, None]:
|
168 |
-
if _provider == "OpenAI":
|
169 |
-
return os.environ.get("OPENAI_API_KEY")
|
170 |
-
elif _provider == "Anthropic":
|
171 |
-
return os.environ.get("ANTHROPIC_API_KEY")
|
172 |
-
elif _provider == "Anyscale Endpoints":
|
173 |
-
return os.environ.get("ANYSCALE_API_KEY")
|
174 |
-
elif _provider == "LANGSMITH":
|
175 |
-
return os.environ.get("LANGCHAIN_API_KEY")
|
176 |
-
else:
|
177 |
-
return None
|
178 |
-
|
179 |
-
|
180 |
-
provider_api_key = api_key_from_env(provider) or st.sidebar.text_input(
|
181 |
-
f"{provider} API key",
|
182 |
-
type="password",
|
183 |
-
)
|
184 |
-
langsmith_api_key = api_key_from_env("LANGSMITH") or st.sidebar.text_input(
|
185 |
-
"LangSmith API Key (optional)",
|
186 |
-
type="password",
|
187 |
-
)
|
188 |
-
if langsmith_api_key:
|
189 |
-
langsmith_project = os.environ.get("LANGCHAIN_PROJECT") or st.sidebar.text_input(
|
190 |
-
"LangSmith Project Name",
|
191 |
-
value="langchain-streamlit-demo",
|
192 |
-
)
|
193 |
-
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
194 |
-
os.environ["LANGCHAIN_API_KEY"] = langsmith_api_key
|
195 |
-
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
196 |
-
os.environ["LANGCHAIN_PROJECT"] = langsmith_project
|
197 |
-
|
198 |
-
client = Client(api_key=langsmith_api_key)
|
199 |
-
else:
|
200 |
-
langsmith_project = None
|
201 |
-
client = None
|
202 |
-
|
203 |
-
system_prompt = (
|
204 |
-
st.sidebar.text_area(
|
205 |
-
"Custom Instructions",
|
206 |
-
_DEFAULT_SYSTEM_PROMPT,
|
207 |
-
help="Custom instructions to provide the language model to determine style, personality, etc.",
|
208 |
-
)
|
209 |
-
.strip()
|
210 |
-
.replace("{", "{{")
|
211 |
-
.replace("}", "}}")
|
212 |
-
)
|
213 |
-
|
214 |
-
if st.sidebar.button("Clear message history"):
|
215 |
-
print("Clearing message history")
|
216 |
-
_STMEMORY.clear()
|
217 |
-
st.session_state.trace_link = None
|
218 |
-
st.session_state.run_id = None
|
219 |
-
|
220 |
-
temperature = st.sidebar.slider(
|
221 |
-
"Temperature",
|
222 |
-
min_value=_MIN_TEMPERATURE,
|
223 |
-
max_value=_MAX_TEMPERATURE,
|
224 |
-
value=_DEFAULT_TEMPERATURE,
|
225 |
-
help="Higher values give more random results.",
|
226 |
-
)
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
)
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
def _reset_feedback():
|
249 |
-
st.session_state.feedback_update = None
|
250 |
-
st.session_state.feedback = None
|
251 |
-
|
252 |
-
|
253 |
-
if chain:
|
254 |
prompt = st.chat_input(placeholder="Ask me a question!")
|
255 |
if prompt:
|
256 |
st.chat_message("user").write(prompt)
|
257 |
-
|
|
|
258 |
|
|
|
259 |
with st.chat_message("assistant", avatar="π¦"):
|
260 |
message_placeholder = st.empty()
|
261 |
stream_handler = StreamHandler(message_placeholder)
|
262 |
runnable_config = RunnableConfig(
|
263 |
-
callbacks=[run_collector, stream_handler],
|
264 |
tags=["Streamlit Chat"],
|
265 |
)
|
266 |
try:
|
267 |
-
full_response = chain.invoke(
|
268 |
{"input": prompt},
|
269 |
config=runnable_config,
|
270 |
)["text"]
|
271 |
except (openai.error.AuthenticationError, anthropic.AuthenticationError):
|
272 |
-
st.error(
|
|
|
|
|
|
|
273 |
st.stop()
|
274 |
message_placeholder.markdown(full_response)
|
275 |
|
|
|
276 |
if client:
|
277 |
-
run = run_collector.traced_runs[0]
|
278 |
-
run_collector.traced_runs = []
|
279 |
st.session_state.run_id = run.id
|
280 |
wait_for_all_tracers()
|
281 |
url = client.read_run(run.id).url
|
282 |
st.session_state.trace_link = url
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
if client and st.session_state.get("run_id"):
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
else:
|
287 |
-
st.error(f"Please enter a valid {provider} API key.", icon="β")
|
288 |
-
|
289 |
-
if client and st.session_state.get("trace_link"):
|
290 |
-
st.sidebar.markdown(
|
291 |
-
f'<a href="{st.session_state.trace_link}" target="_blank"><button>Latest Trace: π οΈ</button></a>',
|
292 |
-
unsafe_allow_html=True,
|
293 |
-
)
|
|
|
10 |
from langchain.callbacks.tracers.langchain import wait_for_all_tracers
|
11 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
12 |
from langchain.chat_models import ChatOpenAI, ChatAnyscale, ChatAnthropic
|
|
|
13 |
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
14 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
15 |
from langchain.schema.runnable import RunnableConfig
|
16 |
from langsmith.client import Client
|
17 |
from streamlit_feedback import streamlit_feedback
|
18 |
|
19 |
+
# --- Initialization ---
|
20 |
st.set_page_config(
|
21 |
page_title="langchain-streamlit-demo",
|
22 |
page_icon="π¦",
|
23 |
)
|
24 |
|
|
|
25 |
|
26 |
+
def st_init_null(*variable_names) -> None:
|
27 |
+
for variable_name in variable_names:
|
28 |
+
if variable_name not in st.session_state:
|
29 |
+
st.session_state[variable_name] = None
|
30 |
|
31 |
+
|
32 |
+
st_init_null(
|
33 |
+
"trace_link",
|
34 |
+
"run_id",
|
35 |
+
"model",
|
36 |
+
"provider",
|
37 |
+
"system_prompt",
|
38 |
+
"llm",
|
39 |
+
"chain",
|
40 |
+
"retriever",
|
41 |
+
"client",
|
42 |
+
)
|
43 |
+
|
44 |
+
# --- Memory ---
|
45 |
_STMEMORY = StreamlitChatMessageHistory(key="langchain_messages")
|
46 |
_MEMORY = ConversationBufferMemory(
|
47 |
chat_memory=_STMEMORY,
|
|
|
49 |
memory_key="chat_history",
|
50 |
)
|
51 |
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# --- Callbacks ---
|
54 |
+
class StreamHandler(BaseCallbackHandler):
|
55 |
+
def __init__(self, container, initial_text=""):
|
56 |
+
self.container = container
|
57 |
+
self.text = initial_text
|
58 |
+
|
59 |
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
60 |
+
self.text += token
|
61 |
+
self.container.markdown(self.text)
|
62 |
+
|
63 |
+
|
64 |
+
st.session_state.run_collector = RunCollectorCallbackHandler()
|
65 |
+
|
66 |
+
|
67 |
+
# --- Model Selection Helpers ---
|
68 |
_MODEL_DICT = {
|
69 |
"gpt-3.5-turbo": "OpenAI",
|
70 |
"gpt-4": "OpenAI",
|
|
|
75 |
"meta-llama/Llama-2-70b-chat-hf": "Anyscale Endpoints",
|
76 |
}
|
77 |
_SUPPORTED_MODELS = list(_MODEL_DICT.keys())
|
78 |
+
|
79 |
+
|
80 |
+
def api_key_from_env(provider_name: str) -> Union[str, None]:
|
81 |
+
if provider_name == "OpenAI":
|
82 |
+
return os.environ.get("OPENAI_API_KEY")
|
83 |
+
elif provider_name == "Anthropic":
|
84 |
+
return os.environ.get("ANTHROPIC_API_KEY")
|
85 |
+
elif provider_name == "Anyscale Endpoints":
|
86 |
+
return os.environ.get("ANYSCALE_API_KEY")
|
87 |
+
elif provider_name == "LANGSMITH":
|
88 |
+
return os.environ.get("LANGCHAIN_API_KEY")
|
89 |
+
else:
|
90 |
+
return None
|
91 |
+
|
92 |
+
|
93 |
+
# --- Sidebar ---
|
94 |
+
sidebar = st.sidebar
|
95 |
+
with sidebar:
|
96 |
+
st.markdown("# Menu")
|
97 |
+
|
98 |
+
st.session_state.model = st.selectbox(
|
99 |
+
label="Chat Model",
|
100 |
+
options=_SUPPORTED_MODELS,
|
101 |
+
index=_SUPPORTED_MODELS.index(
|
102 |
+
st.session_state.model
|
103 |
+
or os.environ.get("DEFAULT_MODEL")
|
104 |
+
or "gpt-3.5-turbo",
|
105 |
+
),
|
106 |
+
)
|
107 |
+
|
108 |
+
# document_chat = st.checkbox(
|
109 |
+
# "Document Chat",
|
110 |
+
# value=False,
|
111 |
+
# help="Upload a document",
|
112 |
+
# )
|
113 |
+
|
114 |
+
if st.button("Clear message history"):
|
115 |
+
_STMEMORY.clear()
|
116 |
+
st.session_state.trace_link = None
|
117 |
+
st.session_state.run_id = None
|
118 |
+
|
119 |
+
# --- Advanced Options ---
|
120 |
+
with st.expander("Advanced Options", expanded=False):
|
121 |
+
st.session_state.system_prompt = (
|
122 |
+
st.text_area(
|
123 |
+
"Custom Instructions",
|
124 |
+
st.session_state.system_prompt
|
125 |
+
or os.environ.get("DEFAULT_SYSTEM_PROMPT")
|
126 |
+
or "You are a helpful chatbot.",
|
127 |
+
help="Custom instructions to provide the language model to determine style, personality, etc.",
|
128 |
+
)
|
129 |
+
.strip()
|
130 |
+
.replace("{", "{{")
|
131 |
+
.replace("}", "}}")
|
132 |
+
)
|
133 |
+
|
134 |
+
temperature = st.slider(
|
135 |
+
"Temperature",
|
136 |
+
min_value=float(os.environ.get("MIN_TEMPERATURE", 0.0)),
|
137 |
+
max_value=float(os.environ.get("MIN_TEMPERATURE", 1.0)),
|
138 |
+
value=float(os.environ.get("DEFAULT_TEMPERATURE", 0.7)),
|
139 |
+
help="Higher values give more random results.",
|
140 |
+
)
|
141 |
+
|
142 |
+
max_tokens = st.slider(
|
143 |
+
"Max Tokens",
|
144 |
+
min_value=int(os.environ.get("MIN_MAX_TOKENS", 1)),
|
145 |
+
max_value=int(os.environ.get("MAX_MAX_TOKENS", 100000)),
|
146 |
+
value=int(os.environ.get("DEFAULT_MAX_TOKENS", 1000)),
|
147 |
+
help="Higher values give longer results.",
|
148 |
+
)
|
149 |
+
|
150 |
+
# --- API Keys ---
|
151 |
+
st.session_state.provider = _MODEL_DICT[st.session_state.model]
|
152 |
+
|
153 |
+
provider_api_key = st.text_input(
|
154 |
+
f"{st.session_state.provider} API key",
|
155 |
+
value=api_key_from_env(st.session_state.provider) or "",
|
156 |
+
type="password",
|
157 |
+
)
|
158 |
+
|
159 |
+
langsmith_api_key = st.text_input(
|
160 |
+
"LangSmith API Key (optional)",
|
161 |
+
value=api_key_from_env("LANGSMITH") or "",
|
162 |
+
type="password",
|
163 |
+
)
|
164 |
+
langsmith_project = st.text_input(
|
165 |
+
"LangSmith Project Name",
|
166 |
+
value=os.environ.get("LANGCHAIN_PROJECT") or "langchain-streamlit-demo",
|
167 |
+
)
|
168 |
+
if langsmith_api_key:
|
169 |
+
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
170 |
+
os.environ["LANGCHAIN_API_KEY"] = langsmith_api_key
|
171 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
172 |
+
os.environ["LANGCHAIN_PROJECT"] = langsmith_project
|
173 |
+
client = Client(api_key=langsmith_api_key)
|
174 |
+
|
175 |
+
|
176 |
+
# --- LLM Instantiation ---
|
177 |
+
if provider_api_key:
|
178 |
+
if st.session_state.provider == "OpenAI":
|
179 |
+
llm = ChatOpenAI(
|
180 |
+
model=st.session_state.model,
|
181 |
openai_api_key=provider_api_key,
|
182 |
temperature=temperature,
|
183 |
streaming=True,
|
184 |
max_tokens=max_tokens,
|
185 |
)
|
186 |
+
elif st.session_state.provider == "Anthropic":
|
187 |
+
llm = ChatAnthropic(
|
188 |
+
model_name=st.session_state.model,
|
189 |
anthropic_api_key=provider_api_key,
|
190 |
temperature=temperature,
|
191 |
streaming=True,
|
192 |
max_tokens_to_sample=max_tokens,
|
193 |
)
|
194 |
+
elif st.session_state.provider == "Anyscale Endpoints":
|
195 |
+
llm = ChatAnyscale(
|
196 |
+
model=st.session_state.model,
|
197 |
anyscale_api_key=provider_api_key,
|
198 |
temperature=temperature,
|
199 |
streaming=True,
|
200 |
max_tokens=max_tokens,
|
201 |
)
|
|
|
|
|
|
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
# --- Chat History ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
if len(_STMEMORY.messages) == 0:
|
206 |
_STMEMORY.add_ai_message("Hello! I'm a helpful AI chatbot. Ask me a question!")
|
207 |
|
|
|
211 |
avatar="π¦" if msg.type in ("ai", "assistant") else None,
|
212 |
).write(msg.content)
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
+
# --- Current Chat ---
|
216 |
+
if st.session_state.llm:
|
217 |
+
# if isinstance(retriever, BaseRetriever):
|
218 |
+
# # --- Document Chat ---
|
219 |
+
# chain = ConversationalRetrievalChain.from_llm(
|
220 |
+
# llm,
|
221 |
+
# retriever,
|
222 |
+
# memory=_MEMORY,
|
223 |
+
# )
|
224 |
+
# else:
|
225 |
+
# --- Regular Chat ---
|
226 |
+
prompt = ChatPromptTemplate.from_messages(
|
227 |
+
[
|
228 |
+
(
|
229 |
+
"system",
|
230 |
+
st.session_state.system_prompt + "\nIt's currently {time}.",
|
231 |
+
),
|
232 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
233 |
+
("human", "{input}"),
|
234 |
+
],
|
235 |
+
).partial(time=lambda: str(datetime.now()))
|
236 |
+
st.session_state.chain = LLMChain(
|
237 |
+
prompt=prompt,
|
238 |
+
llm=st.session_state.llm,
|
239 |
+
memory=_MEMORY,
|
240 |
)
|
241 |
|
242 |
+
# --- Chat Input ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
prompt = st.chat_input(placeholder="Ask me a question!")
|
244 |
if prompt:
|
245 |
st.chat_message("user").write(prompt)
|
246 |
+
st.session_state.feedback_update = None
|
247 |
+
st.session_state.feedback = None
|
248 |
|
249 |
+
# --- Chat Output ---
|
250 |
with st.chat_message("assistant", avatar="π¦"):
|
251 |
message_placeholder = st.empty()
|
252 |
stream_handler = StreamHandler(message_placeholder)
|
253 |
runnable_config = RunnableConfig(
|
254 |
+
callbacks=[st.session_state.run_collector, stream_handler],
|
255 |
tags=["Streamlit Chat"],
|
256 |
)
|
257 |
try:
|
258 |
+
full_response = st.session_state.chain.invoke(
|
259 |
{"input": prompt},
|
260 |
config=runnable_config,
|
261 |
)["text"]
|
262 |
except (openai.error.AuthenticationError, anthropic.AuthenticationError):
|
263 |
+
st.error(
|
264 |
+
f"Please enter a valid {st.session_state.provider} API key.",
|
265 |
+
icon="β",
|
266 |
+
)
|
267 |
st.stop()
|
268 |
message_placeholder.markdown(full_response)
|
269 |
|
270 |
+
# --- Tracing ---
|
271 |
if client:
|
272 |
+
run = st.session_state.run_collector.traced_runs[0]
|
273 |
+
st.session_state.run_collector.traced_runs = []
|
274 |
st.session_state.run_id = run.id
|
275 |
wait_for_all_tracers()
|
276 |
url = client.read_run(run.id).url
|
277 |
st.session_state.trace_link = url
|
278 |
+
with sidebar:
|
279 |
+
st.markdown(
|
280 |
+
f'<a href="{st.session_state.trace_link}" target="_blank"><button>Latest Trace: π οΈ</button></a>',
|
281 |
+
unsafe_allow_html=True,
|
282 |
+
)
|
283 |
+
|
284 |
+
# --- Feedback ---
|
285 |
if client and st.session_state.get("run_id"):
|
286 |
+
scores = {"π": 1, "π": 0.75, "π": 0.5, "π": 0.25, "π": 0}
|
287 |
+
feedback = streamlit_feedback(
|
288 |
+
feedback_type="faces",
|
289 |
+
optional_text_label="[Optional] Please provide an explanation",
|
290 |
+
key=f"feedback_{st.session_state.run_id}",
|
291 |
+
)
|
292 |
+
if feedback:
|
293 |
+
score = scores[feedback["score"]]
|
294 |
+
feedback = client.create_feedback(
|
295 |
+
st.session_state.run_id,
|
296 |
+
feedback["type"],
|
297 |
+
score=score,
|
298 |
+
comment=feedback.get("text", None),
|
299 |
+
)
|
300 |
+
st.session_state.feedback = {
|
301 |
+
"feedback_id": str(feedback.id),
|
302 |
+
"score": score,
|
303 |
+
}
|
304 |
+
st.toast("Feedback recorded!", icon="π")
|
305 |
|
306 |
else:
|
307 |
+
st.error(f"Please enter a valid {st.session_state.provider} API key.", icon="β")
|
|
|
|
|
|
|
|
|
|
|
|