Merge pull request #38 from joshuasundance-swca/lcel
Browse files- langchain-streamlit-demo/app.py +83 -112
- langchain-streamlit-demo/qagen.py +27 -24
- langchain-streamlit-demo/summarize.py +15 -0
langchain-streamlit-demo/app.py
CHANGED
@@ -7,7 +7,6 @@ import anthropic
|
|
7 |
import langsmith.utils
|
8 |
import openai
|
9 |
import streamlit as st
|
10 |
-
from langchain.callbacks import StreamlitCallbackHandler
|
11 |
from langchain.callbacks.base import BaseCallbackHandler
|
12 |
from langchain.callbacks.tracers.langchain import LangChainTracer, wait_for_all_tracers
|
13 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
@@ -26,8 +25,8 @@ from langchain.vectorstores import FAISS
|
|
26 |
from langsmith.client import Client
|
27 |
from streamlit_feedback import streamlit_feedback
|
28 |
|
29 |
-
from qagen import
|
30 |
-
from summarize import
|
31 |
|
32 |
__version__ = "0.0.10"
|
33 |
|
@@ -124,12 +123,15 @@ MIN_CHUNK_OVERLAP = 0
|
|
124 |
MAX_CHUNK_OVERLAP = 10000
|
125 |
DEFAULT_CHUNK_OVERLAP = 0
|
126 |
|
|
|
|
|
127 |
|
128 |
@st.cache_data
|
129 |
def get_texts_and_retriever(
|
130 |
uploaded_file_bytes: bytes,
|
131 |
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
132 |
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
|
|
133 |
) -> Tuple[List[Document], BaseRetriever]:
|
134 |
with NamedTemporaryFile() as temp_file:
|
135 |
temp_file.write(uploaded_file_bytes)
|
@@ -145,10 +147,10 @@ def get_texts_and_retriever(
|
|
145 |
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
146 |
|
147 |
bm25_retriever = BM25Retriever.from_documents(texts)
|
148 |
-
bm25_retriever.k =
|
149 |
|
150 |
faiss_vectorstore = FAISS.from_documents(texts, embeddings)
|
151 |
-
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k":
|
152 |
|
153 |
ensemble_retriever = EnsembleRetriever(
|
154 |
retrievers=[bm25_retriever, faiss_retriever],
|
@@ -200,15 +202,23 @@ with sidebar:
|
|
200 |
help="Uploaded document will provide context for the chat.",
|
201 |
)
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
chunk_size = st.slider(
|
204 |
-
label="
|
205 |
help="Size of each chunk of text",
|
206 |
min_value=MIN_CHUNK_SIZE,
|
207 |
max_value=MAX_CHUNK_SIZE,
|
208 |
value=DEFAULT_CHUNK_SIZE,
|
209 |
)
|
210 |
chunk_overlap = st.slider(
|
211 |
-
label="
|
212 |
help="Number of characters to overlap between chunks",
|
213 |
min_value=MIN_CHUNK_OVERLAP,
|
214 |
max_value=MAX_CHUNK_OVERLAP,
|
@@ -251,6 +261,7 @@ with sidebar:
|
|
251 |
uploaded_file_bytes=uploaded_file.getvalue(),
|
252 |
chunk_size=chunk_size,
|
253 |
chunk_overlap=chunk_overlap,
|
|
|
254 |
)
|
255 |
else:
|
256 |
st.error("Please enter a valid OpenAI API key.", icon="❌")
|
@@ -311,7 +322,7 @@ with sidebar:
|
|
311 |
if provider_api_key:
|
312 |
if st.session_state.provider == "OpenAI":
|
313 |
st.session_state.llm = ChatOpenAI(
|
314 |
-
|
315 |
openai_api_key=provider_api_key,
|
316 |
temperature=temperature,
|
317 |
streaming=True,
|
@@ -319,7 +330,7 @@ if provider_api_key:
|
|
319 |
)
|
320 |
elif st.session_state.provider == "Anthropic":
|
321 |
st.session_state.llm = ChatAnthropic(
|
322 |
-
|
323 |
anthropic_api_key=provider_api_key,
|
324 |
temperature=temperature,
|
325 |
streaming=True,
|
@@ -327,7 +338,7 @@ if provider_api_key:
|
|
327 |
)
|
328 |
elif st.session_state.provider == "Anyscale Endpoints":
|
329 |
st.session_state.llm = ChatAnyscale(
|
330 |
-
|
331 |
anyscale_api_key=provider_api_key,
|
332 |
temperature=temperature,
|
333 |
streaming=True,
|
@@ -348,38 +359,17 @@ for msg in STMEMORY.messages:
|
|
348 |
|
349 |
# --- Current Chat ---
|
350 |
if st.session_state.llm:
|
351 |
-
# ---
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
retriever=st.session_state.retriever,
|
363 |
-
memory=MEMORY,
|
364 |
-
)
|
365 |
-
|
366 |
-
else:
|
367 |
-
# --- Regular Chat ---
|
368 |
-
chat_prompt = ChatPromptTemplate.from_messages(
|
369 |
-
[
|
370 |
-
(
|
371 |
-
"system",
|
372 |
-
system_prompt + "\nIt's currently {time}.",
|
373 |
-
),
|
374 |
-
MessagesPlaceholder(variable_name="chat_history"),
|
375 |
-
("human", "{query}"),
|
376 |
-
],
|
377 |
-
).partial(time=lambda: str(datetime.now()))
|
378 |
-
st.session_state.chain = LLMChain(
|
379 |
-
prompt=chat_prompt,
|
380 |
-
llm=st.session_state.llm,
|
381 |
-
memory=MEMORY,
|
382 |
-
)
|
383 |
|
384 |
# --- Chat Input ---
|
385 |
prompt = st.chat_input(placeholder="Ask me a question!")
|
@@ -395,89 +385,70 @@ if st.session_state.llm:
|
|
395 |
if st.session_state.ls_tracer:
|
396 |
callbacks.append(st.session_state.ls_tracer)
|
397 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
use_document_chat = all(
|
399 |
[
|
400 |
document_chat,
|
401 |
-
st.session_state.doc_chain,
|
402 |
st.session_state.retriever,
|
403 |
],
|
404 |
)
|
405 |
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
tags=["Streamlit Chat"],
|
425 |
-
)
|
426 |
-
if st.session_state.provider == "Anthropic":
|
427 |
-
config["max_concurrency"] = 5
|
428 |
-
raw_results = st.session_state.doc_chain.batch(
|
429 |
-
[
|
430 |
-
{"input": doc.page_content, "prompt": prompt}
|
431 |
-
for doc in st.session_state.texts
|
432 |
-
],
|
433 |
-
config,
|
434 |
-
)
|
435 |
-
results = combine_qa_pair_lists(raw_results).QuestionAnswerPairs
|
436 |
-
|
437 |
-
def _to_str(idx, qap):
|
438 |
-
question_piece = f"{idx}. **Q:** {qap.question}"
|
439 |
-
whitespace = " " * (len(str(idx)) + 2)
|
440 |
-
answer_piece = f"{whitespace}**A:** {qap.answer}"
|
441 |
-
return f"{question_piece}\n\n{answer_piece}"
|
442 |
-
|
443 |
-
full_response = "\n\n".join(
|
444 |
-
[
|
445 |
-
_to_str(idx, qap)
|
446 |
-
for idx, qap in enumerate(results, start=1)
|
447 |
-
],
|
448 |
-
)
|
449 |
-
|
450 |
-
st.markdown(full_response)
|
451 |
-
|
452 |
-
else:
|
453 |
-
st_handler = StreamlitCallbackHandler(st.container())
|
454 |
-
callbacks.append(st_handler)
|
455 |
-
full_response = st.session_state.doc_chain(
|
456 |
-
{"query": prompt},
|
457 |
-
callbacks=callbacks,
|
458 |
-
tags=["Streamlit Chat"],
|
459 |
-
return_only_outputs=True,
|
460 |
-
)[st.session_state.doc_chain.output_key]
|
461 |
-
st_handler._complete_current_thought()
|
462 |
-
st.markdown(full_response)
|
463 |
else:
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
474 |
except (openai.error.AuthenticationError, anthropic.AuthenticationError):
|
475 |
st.error(
|
476 |
f"Please enter a valid {st.session_state.provider} API key.",
|
477 |
icon="❌",
|
478 |
)
|
479 |
-
|
480 |
-
if full_response:
|
|
|
|
|
481 |
# --- Tracing ---
|
482 |
if st.session_state.client:
|
483 |
st.session_state.run = RUN_COLLECTOR.traced_runs[0]
|
|
|
7 |
import langsmith.utils
|
8 |
import openai
|
9 |
import streamlit as st
|
|
|
10 |
from langchain.callbacks.base import BaseCallbackHandler
|
11 |
from langchain.callbacks.tracers.langchain import LangChainTracer, wait_for_all_tracers
|
12 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
|
|
25 |
from langsmith.client import Client
|
26 |
from streamlit_feedback import streamlit_feedback
|
27 |
|
28 |
+
from qagen import get_rag_qa_gen_chain
|
29 |
+
from summarize import get_rag_summarization_chain
|
30 |
|
31 |
__version__ = "0.0.10"
|
32 |
|
|
|
123 |
MAX_CHUNK_OVERLAP = 10000
|
124 |
DEFAULT_CHUNK_OVERLAP = 0
|
125 |
|
126 |
+
DEFAULT_RETRIEVER_K = 4
|
127 |
+
|
128 |
|
129 |
@st.cache_data
|
130 |
def get_texts_and_retriever(
|
131 |
uploaded_file_bytes: bytes,
|
132 |
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
133 |
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
134 |
+
k: int = DEFAULT_RETRIEVER_K,
|
135 |
) -> Tuple[List[Document], BaseRetriever]:
|
136 |
with NamedTemporaryFile() as temp_file:
|
137 |
temp_file.write(uploaded_file_bytes)
|
|
|
147 |
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
148 |
|
149 |
bm25_retriever = BM25Retriever.from_documents(texts)
|
150 |
+
bm25_retriever.k = k
|
151 |
|
152 |
faiss_vectorstore = FAISS.from_documents(texts, embeddings)
|
153 |
+
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k": k})
|
154 |
|
155 |
ensemble_retriever = EnsembleRetriever(
|
156 |
retrievers=[bm25_retriever, faiss_retriever],
|
|
|
202 |
help="Uploaded document will provide context for the chat.",
|
203 |
)
|
204 |
|
205 |
+
k = st.slider(
|
206 |
+
label="Number of Chunks",
|
207 |
+
help="How many document chunks will be used for context?",
|
208 |
+
value=DEFAULT_RETRIEVER_K,
|
209 |
+
min_value=1,
|
210 |
+
max_value=10,
|
211 |
+
)
|
212 |
+
|
213 |
chunk_size = st.slider(
|
214 |
+
label="Number of Tokens per Chunk",
|
215 |
help="Size of each chunk of text",
|
216 |
min_value=MIN_CHUNK_SIZE,
|
217 |
max_value=MAX_CHUNK_SIZE,
|
218 |
value=DEFAULT_CHUNK_SIZE,
|
219 |
)
|
220 |
chunk_overlap = st.slider(
|
221 |
+
label="Chunk Overlap",
|
222 |
help="Number of characters to overlap between chunks",
|
223 |
min_value=MIN_CHUNK_OVERLAP,
|
224 |
max_value=MAX_CHUNK_OVERLAP,
|
|
|
261 |
uploaded_file_bytes=uploaded_file.getvalue(),
|
262 |
chunk_size=chunk_size,
|
263 |
chunk_overlap=chunk_overlap,
|
264 |
+
k=k,
|
265 |
)
|
266 |
else:
|
267 |
st.error("Please enter a valid OpenAI API key.", icon="❌")
|
|
|
322 |
if provider_api_key:
|
323 |
if st.session_state.provider == "OpenAI":
|
324 |
st.session_state.llm = ChatOpenAI(
|
325 |
+
model_name=model,
|
326 |
openai_api_key=provider_api_key,
|
327 |
temperature=temperature,
|
328 |
streaming=True,
|
|
|
330 |
)
|
331 |
elif st.session_state.provider == "Anthropic":
|
332 |
st.session_state.llm = ChatAnthropic(
|
333 |
+
model=model,
|
334 |
anthropic_api_key=provider_api_key,
|
335 |
temperature=temperature,
|
336 |
streaming=True,
|
|
|
338 |
)
|
339 |
elif st.session_state.provider == "Anyscale Endpoints":
|
340 |
st.session_state.llm = ChatAnyscale(
|
341 |
+
model_name=model,
|
342 |
anyscale_api_key=provider_api_key,
|
343 |
temperature=temperature,
|
344 |
streaming=True,
|
|
|
359 |
|
360 |
# --- Current Chat ---
|
361 |
if st.session_state.llm:
|
362 |
+
# --- Regular Chat ---
|
363 |
+
chat_prompt = ChatPromptTemplate.from_messages(
|
364 |
+
[
|
365 |
+
(
|
366 |
+
"system",
|
367 |
+
system_prompt + "\nIt's currently {time}.",
|
368 |
+
),
|
369 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
370 |
+
("human", "{query}"),
|
371 |
+
],
|
372 |
+
).partial(time=lambda: str(datetime.now()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
|
374 |
# --- Chat Input ---
|
375 |
prompt = st.chat_input(placeholder="Ask me a question!")
|
|
|
385 |
if st.session_state.ls_tracer:
|
386 |
callbacks.append(st.session_state.ls_tracer)
|
387 |
|
388 |
+
config: Dict[str, Any] = dict(
|
389 |
+
callbacks=callbacks,
|
390 |
+
tags=["Streamlit Chat"],
|
391 |
+
)
|
392 |
+
if st.session_state.provider == "Anthropic":
|
393 |
+
config["max_concurrency"] = 5
|
394 |
+
|
395 |
use_document_chat = all(
|
396 |
[
|
397 |
document_chat,
|
|
|
398 |
st.session_state.retriever,
|
399 |
],
|
400 |
)
|
401 |
|
402 |
+
full_response: Union[str, None] = None
|
403 |
+
|
404 |
+
message_placeholder = st.empty()
|
405 |
+
stream_handler = StreamHandler(message_placeholder)
|
406 |
+
callbacks.append(stream_handler)
|
407 |
+
|
408 |
+
def get_rag_runnable():
|
409 |
+
if document_chat_chain_type == "Q&A Generation":
|
410 |
+
return get_rag_qa_gen_chain(
|
411 |
+
st.session_state.retriever,
|
412 |
+
st.session_state.llm,
|
413 |
+
)
|
414 |
+
elif document_chat_chain_type == "Summarization":
|
415 |
+
return get_rag_summarization_chain(
|
416 |
+
prompt,
|
417 |
+
st.session_state.retriever,
|
418 |
+
st.session_state.llm,
|
419 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
else:
|
421 |
+
return RetrievalQA.from_chain_type(
|
422 |
+
llm=st.session_state.llm,
|
423 |
+
chain_type=document_chat_chain_type,
|
424 |
+
retriever=st.session_state.retriever,
|
425 |
+
memory=MEMORY,
|
426 |
+
output_key="output_text",
|
427 |
+
) | (lambda output: output["output_text"])
|
428 |
+
|
429 |
+
st.session_state.chain = (
|
430 |
+
get_rag_runnable()
|
431 |
+
if use_document_chat
|
432 |
+
else LLMChain(
|
433 |
+
prompt=chat_prompt,
|
434 |
+
llm=st.session_state.llm,
|
435 |
+
memory=MEMORY,
|
436 |
+
)
|
437 |
+
| (lambda output: output["text"])
|
438 |
+
)
|
439 |
+
|
440 |
+
try:
|
441 |
+
full_response = st.session_state.chain.invoke(prompt, config)
|
442 |
+
|
443 |
except (openai.error.AuthenticationError, anthropic.AuthenticationError):
|
444 |
st.error(
|
445 |
f"Please enter a valid {st.session_state.provider} API key.",
|
446 |
icon="❌",
|
447 |
)
|
448 |
+
|
449 |
+
if full_response is not None:
|
450 |
+
message_placeholder.markdown(full_response)
|
451 |
+
|
452 |
# --- Tracing ---
|
453 |
if st.session_state.client:
|
454 |
st.session_state.run = RUN_COLLECTOR.traced_runs[0]
|
langchain-streamlit-demo/qagen.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
from functools import reduce
|
2 |
from typing import List
|
3 |
|
4 |
from langchain.output_parsers import PydanticOutputParser, OutputFixingParser
|
@@ -6,7 +5,8 @@ from langchain.prompts.chat import (
|
|
6 |
ChatPromptTemplate,
|
7 |
)
|
8 |
from langchain.schema.language_model import BaseLanguageModel
|
9 |
-
from langchain.schema.
|
|
|
10 |
from pydantic import BaseModel, Field
|
11 |
|
12 |
|
@@ -14,10 +14,24 @@ class QuestionAnswerPair(BaseModel):
|
|
14 |
question: str = Field(..., description="The question that will be answered.")
|
15 |
answer: str = Field(..., description="The answer to the question that was asked.")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
class QuestionAnswerPairList(BaseModel):
|
19 |
QuestionAnswerPairs: List[QuestionAnswerPair]
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
PYDANTIC_PARSER: PydanticOutputParser = PydanticOutputParser(
|
23 |
pydantic_object=QuestionAnswerPairList,
|
@@ -35,7 +49,7 @@ Do not provide additional commentary and do not wrap your response in Markdown f
|
|
35 |
templ2 = """{prompt}
|
36 |
Please create question/answer pairs, in the specified JSON format, for the following text:
|
37 |
----------------
|
38 |
-
{
|
39 |
CHAT_PROMPT = ChatPromptTemplate.from_messages(
|
40 |
[
|
41 |
("system", templ1),
|
@@ -44,26 +58,15 @@ CHAT_PROMPT = ChatPromptTemplate.from_messages(
|
|
44 |
).partial(format_instructions=PYDANTIC_PARSER.get_format_instructions)
|
45 |
|
46 |
|
47 |
-
def
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
current: QuestionAnswerPairList,
|
53 |
-
) -> QuestionAnswerPairList:
|
54 |
-
return QuestionAnswerPairList(
|
55 |
-
QuestionAnswerPairs=accumulator.QuestionAnswerPairs
|
56 |
-
+ current.QuestionAnswerPairs,
|
57 |
-
)
|
58 |
-
|
59 |
-
return reduce(
|
60 |
-
reducer,
|
61 |
-
qa_pair_lists,
|
62 |
-
QuestionAnswerPairList(QuestionAnswerPairs=[]),
|
63 |
-
)
|
64 |
-
|
65 |
-
|
66 |
-
def get_qa_gen_chain(llm: BaseLanguageModel) -> RunnableSequence:
|
67 |
return (
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
)
|
|
|
|
|
1 |
from typing import List
|
2 |
|
3 |
from langchain.output_parsers import PydanticOutputParser, OutputFixingParser
|
|
|
5 |
ChatPromptTemplate,
|
6 |
)
|
7 |
from langchain.schema.language_model import BaseLanguageModel
|
8 |
+
from langchain.schema.retriever import BaseRetriever
|
9 |
+
from langchain.schema.runnable import RunnablePassthrough, RunnableSequence
|
10 |
from pydantic import BaseModel, Field
|
11 |
|
12 |
|
|
|
14 |
question: str = Field(..., description="The question that will be answered.")
|
15 |
answer: str = Field(..., description="The answer to the question that was asked.")
|
16 |
|
17 |
+
def to_str(self, idx: int) -> str:
|
18 |
+
question_piece = f"{idx}. **Q:** {self.question}"
|
19 |
+
whitespace = " " * (len(str(idx)) + 2)
|
20 |
+
answer_piece = f"{whitespace}**A:** {self.answer}"
|
21 |
+
return f"{question_piece}\n\n{answer_piece}"
|
22 |
+
|
23 |
|
24 |
class QuestionAnswerPairList(BaseModel):
|
25 |
QuestionAnswerPairs: List[QuestionAnswerPair]
|
26 |
|
27 |
+
def to_str(self) -> str:
|
28 |
+
return "\n\n".join(
|
29 |
+
[
|
30 |
+
qap.to_str(idx)
|
31 |
+
for idx, qap in enumerate(self.QuestionAnswerPairs, start=1)
|
32 |
+
],
|
33 |
+
)
|
34 |
+
|
35 |
|
36 |
PYDANTIC_PARSER: PydanticOutputParser = PydanticOutputParser(
|
37 |
pydantic_object=QuestionAnswerPairList,
|
|
|
49 |
templ2 = """{prompt}
|
50 |
Please create question/answer pairs, in the specified JSON format, for the following text:
|
51 |
----------------
|
52 |
+
{context}"""
|
53 |
CHAT_PROMPT = ChatPromptTemplate.from_messages(
|
54 |
[
|
55 |
("system", templ1),
|
|
|
58 |
).partial(format_instructions=PYDANTIC_PARSER.get_format_instructions)
|
59 |
|
60 |
|
61 |
+
def get_rag_qa_gen_chain(
|
62 |
+
retriever: BaseRetriever,
|
63 |
+
llm: BaseLanguageModel,
|
64 |
+
input_key: str = "prompt",
|
65 |
+
) -> RunnableSequence:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return (
|
67 |
+
{"context": retriever, input_key: RunnablePassthrough()}
|
68 |
+
| CHAT_PROMPT
|
69 |
+
| llm
|
70 |
+
| OutputFixingParser.from_llm(llm=llm, parser=PYDANTIC_PARSER)
|
71 |
+
| (lambda parsed_output: parsed_output.to_str())
|
72 |
)
|
langchain-streamlit-demo/summarize.py
CHANGED
@@ -2,6 +2,8 @@ from langchain.chains.base import Chain
|
|
2 |
from langchain.chains.summarize import load_summarize_chain
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
from langchain.schema.language_model import BaseLanguageModel
|
|
|
|
|
5 |
|
6 |
prompt_template = """Write a concise summary of the following text, based on the user input.
|
7 |
User input: {query}
|
@@ -49,3 +51,16 @@ def get_summarization_chain(
|
|
49 |
input_key="input_documents",
|
50 |
output_key="output_text",
|
51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from langchain.chains.summarize import load_summarize_chain
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
from langchain.schema.language_model import BaseLanguageModel
|
5 |
+
from langchain.schema.retriever import BaseRetriever
|
6 |
+
from langchain.schema.runnable import RunnableSequence, RunnablePassthrough
|
7 |
|
8 |
prompt_template = """Write a concise summary of the following text, based on the user input.
|
9 |
User input: {query}
|
|
|
51 |
input_key="input_documents",
|
52 |
output_key="output_text",
|
53 |
)
|
54 |
+
|
55 |
+
|
56 |
+
def get_rag_summarization_chain(
|
57 |
+
prompt: str,
|
58 |
+
retriever: BaseRetriever,
|
59 |
+
llm: BaseLanguageModel,
|
60 |
+
input_key: str = "prompt",
|
61 |
+
) -> RunnableSequence:
|
62 |
+
return (
|
63 |
+
{"input_documents": retriever, input_key: RunnablePassthrough()}
|
64 |
+
| get_summarization_chain(llm, prompt)
|
65 |
+
| (lambda output: output["output_text"])
|
66 |
+
)
|