File size: 11,719 Bytes
7c04f3e
1fa6961
 
 
 
 
 
 
e85946a
7c04f3e
 
1fa6961
 
 
 
 
 
 
 
 
 
 
 
7c04f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa6961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c04f3e
 
 
 
 
 
 
 
 
 
 
1fa6961
 
 
 
 
 
 
 
7c04f3e
 
 
 
 
 
 
 
 
 
 
 
1fa6961
 
 
 
 
 
 
 
7c04f3e
 
 
 
 
 
 
 
 
 
1fa6961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c04f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c870dc0
7c04f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa6961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c04f3e
 
 
1fa6961
7c04f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa6961
7c04f3e
1fa6961
7c04f3e
 
 
1fa6961
 
7c04f3e
 
 
 
1fa6961
7c04f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os, json, time, random
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Imports
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import FAISS
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import JSONLoader
from langgraph.prebuilt import create_react_agent
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.rate_limiters import InMemoryRateLimiter

# Rate limiters for different providers
groq_rate_limiter = InMemoryRateLimiter(
    requests_per_second=0.5,  # 30 requests per minute
    check_every_n_seconds=0.1,
    max_bucket_size=10
)

google_rate_limiter = InMemoryRateLimiter(
    requests_per_second=0.33,  # 20 requests per minute
    check_every_n_seconds=0.1,
    max_bucket_size=10
)

nvidia_rate_limiter = InMemoryRateLimiter(
    requests_per_second=0.25,  # 15 requests per minute
    check_every_n_seconds=0.1,
    max_bucket_size=10
)

# Define all tools
@tool
def multiply(a: int | float, b: int | float) -> int | float:
    """Multiply two numbers.
    Args:
        a: first int | float
        b: second int | float
    """
    return a * b

@tool
def add(a: int | float, b: int | float) -> int | float:
    """Add two numbers.
    
    Args:
        a: first int | float
        b: second int | float
    """
    return a + b

@tool
def subtract(a: int | float , b: int | float) -> int | float:
    """Subtract two numbers.
    
    Args:
        a: first int | float
        b: second int | float
    """
    return a - b

@tool
def divide(a: int | float, b: int | float) -> int | float:
    """Divide two numbers.
    
    Args:
        a: first int | float
        b: second int | float
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int | float, b: int | float) -> int | float:
    """Get the modulus of two numbers.
    
    Args:
        a: first int | float
        b: second int | float
    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search the wikipedia for a query and return the first paragraph
    args:
        query: the query to search for
    """
    try:
        loader = WikipediaLoader(query=query, load_max_docs=1)
        data = loader.load()
        formatted_search_docs = "\n\n---\n\n".join(
            [
                f'\n{doc.page_content}\n'
                for doc in data
            ])
        return formatted_search_docs
    except Exception as e:
        return f"Wikipedia search failed: {str(e)}"

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query.
    """
    try:
        # Add delay to prevent rate limiting
        time.sleep(random.uniform(1, 3))
        search_docs = TavilySearchResults(max_results=3).invoke(query=query)
        formatted_search_docs = "\n\n---\n\n".join(
            [
                f'\n{doc.get("content", "")}\n'
                for doc in search_docs
            ])
        return formatted_search_docs
    except Exception as e:
        return f"Web search failed: {str(e)}"

@tool
def arxiv_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query.
    """
    try:
        search_docs = ArxivLoader(query=query, load_max_docs=3).load()
        formatted_search_docs = "\n\n---\n\n".join(
            [
                f'\n{doc.page_content[:1000]}\n'
                for doc in search_docs
            ])
        return formatted_search_docs
    except Exception as e:
        return f"ArXiv search failed: {str(e)}"

# Load and process your JSONL data
jq_schema = """
{
  page_content: .Question,
  metadata: {
    task_id: .task_id,
    Level: .Level,
    Final_answer: ."Final answer",
    file_name: .file_name,
    Steps: .["Annotator Metadata"].Steps,
    Number_of_steps: .["Annotator Metadata"]["Number of steps"],
    How_long: .["Annotator Metadata"]["How long did this take?"],
    Tools: .["Annotator Metadata"].Tools,
    Number_of_tools: .["Annotator Metadata"]["Number of tools"]
  }
}
"""

# Load documents and create vector database
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
json_docs = json_loader.load()

# Split documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200)
json_chunks = text_splitter.split_documents(json_docs)

# Create vector database
database = FAISS.from_documents(json_chunks, NVIDIAEmbeddings())

# Initialize LLMs with rate limiting
def create_rate_limited_llm(provider="groq"):
    """Create rate-limited LLM based on provider"""
    
    if provider == "groq":
        return ChatGroq(
            model="llama-3.3-70b-versatile",
            temperature=0,
            api_key=os.getenv("GROQ_API_KEY"),
            rate_limiter=groq_rate_limiter,
            max_retries=2,
            request_timeout=60
        )
    elif provider == "google":
        return ChatGoogleGenerativeAI(
            model="gemini-2.0-flash-exp",
            temperature=0,
            api_key=os.getenv("GOOGLE_API_KEY"),
            rate_limiter=google_rate_limiter,
            max_retries=2,
            timeout=60
        )
    elif provider == "nvidia":
        return ChatNVIDIA(
            model="meta/llama-3.1-405b-instruct",
            temperature=0,
            api_key=os.getenv("NVIDIA_API_KEY"),
            rate_limiter=nvidia_rate_limiter,
            max_retries=2
        )

# Create fallback chain with exponential backoff
def create_llm_with_smart_fallbacks():
    """Create LLM with intelligent fallback and rate limiting"""
    
    # Primary: Groq (fastest)
    primary_llm = create_rate_limited_llm("groq")
    
    # Fallback 1: Google (most capable)
    fallback_1 = create_rate_limited_llm("google")
    
    # Fallback 2: NVIDIA (reliable)
    fallback_2 = create_rate_limited_llm("nvidia")
    
    # Create fallback chain
    llm_with_fallbacks = primary_llm.with_fallbacks([fallback_1, fallback_2])
    
    return llm_with_fallbacks

# Initialize LLM with smart fallbacks
llm = create_llm_with_smart_fallbacks()

# Create retriever and retriever tool
retriever = database.as_retriever(search_type="similarity", search_kwargs={"k": 3})

retriever_tool = create_retriever_tool(
    retriever=retriever,
    name="question_search",
    description="Search for similar questions and their solutions from the knowledge base."
)

# Combine all tools
tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arxiv_search,
    retriever_tool
]

# Create memory for conversation
memory = MemorySaver()

# Create the agent
agent_executor = create_react_agent(
    model=llm,
    tools=tools,
    checkpointer=memory
)

# Enhanced robust agent run with exponential backoff
def robust_agent_run(query, thread_id="robust_conversation", max_retries=3):
    """Run agent with error handling, rate limiting, and exponential backoff"""
    
    for attempt in range(max_retries):
        try:
            config = {"configurable": {"thread_id": f"{thread_id}_{attempt}"}}
            
            system_msg = SystemMessage(content='''You are a helpful assistant tasked with answering questions using a set of tools. 
                Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: 
                FINAL ANSWER: [YOUR FINAL ANSWER]. 
                YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
                Your answer should only start with "FINAL ANSWER: ", then follows with the answer.''')
            
            user_msg = HumanMessage(content=query)
            result = []
            
            print(f"Attempt {attempt + 1}: Processing query...")
            
            for step in agent_executor.stream(
                {"messages": [system_msg, user_msg]}, 
                config, 
                stream_mode="values"
            ):
                result = step["messages"]
                
            final_response = result[-1].content if result else "No response generated"
            print(f"Query processed successfully on attempt {attempt + 1}")
            return final_response
            
        except Exception as e:
            error_msg = str(e).lower()
            
            # Check for rate limit errors
            if any(keyword in error_msg for keyword in ['rate limit', 'too many requests', '429', 'quota exceeded']):
                wait_time = (2 ** attempt) + random.uniform(1, 3)  # Exponential backoff with jitter
                print(f"Rate limit hit on attempt {attempt + 1}. Waiting {wait_time:.2f} seconds...")
                time.sleep(wait_time)
                
                if attempt == max_retries - 1:
                    return f"Rate limit exceeded after {max_retries} attempts: {str(e)}"
                continue
                
            # Check for other API errors
            elif any(keyword in error_msg for keyword in ['api', 'connection', 'timeout', 'service unavailable']):
                wait_time = (2 ** attempt) + random.uniform(0.5, 1.5)
                print(f"API error on attempt {attempt + 1}. Retrying in {wait_time:.2f} seconds...")
                time.sleep(wait_time)
                
                if attempt == max_retries - 1:
                    return f"API error after {max_retries} attempts: {str(e)}"
                continue
                
            else:
                # Non-recoverable error
                return f"Error occurred: {str(e)}"
    
    return "Maximum retries exceeded"

# Main function with request tracking
request_count = 0
last_request_time = time.time()

def main(query: str) -> str:
    """Main function to run the agent with request tracking"""
    global request_count, last_request_time
    
    current_time = time.time()
    
    # Reset counter every minute
    if current_time - last_request_time > 60:
        request_count = 0
        last_request_time = current_time
    
    request_count += 1
    print(f"Processing request #{request_count}")
    
    # Add small delay between requests to prevent overwhelming APIs
    if request_count > 1:
        time.sleep(random.uniform(2, 5))
    
    return robust_agent_run(query)

if __name__ == "__main__":
    # Test the agent
    result = main("What are the names of the US presidents who were assassinated?")
    print(result)