|
import os, json
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
|
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
from langchain_community.tools.tavily_search import TavilySearchResults
|
|
from langchain_community.document_loaders import WikipediaLoader
|
|
from langchain_community.document_loaders import ArxivLoader
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain_core.messages import SystemMessage, HumanMessage
|
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
from langchain_core.tools import tool
|
|
from langchain.tools.retriever import create_retriever_tool
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
from langchain_community.document_loaders import JSONLoader
|
|
from langgraph.prebuilt import create_react_agent
|
|
from langgraph.checkpoint.memory import MemorySaver
|
|
|
|
|
|
@tool
|
|
def multiply(a: int | float, b: int | float) -> int | float:
|
|
"""Multiply two numbers.
|
|
Args:
|
|
a: first int | float
|
|
b: second int | float
|
|
"""
|
|
return a * b
|
|
|
|
@tool
|
|
def add(a: int | float, b: int | float) -> int | float:
|
|
"""Add two numbers.
|
|
|
|
Args:
|
|
a: first int | float
|
|
b: second int | float
|
|
"""
|
|
return a + b
|
|
|
|
@tool
|
|
def subtract(a: int | float , b: int | float) -> int | float:
|
|
"""Subtract two numbers.
|
|
|
|
Args:
|
|
a: first int | float
|
|
b: second int | float
|
|
"""
|
|
return a - b
|
|
|
|
@tool
|
|
def divide(a: int | float, b: int | float) -> int | float:
|
|
"""Divide two numbers.
|
|
|
|
Args:
|
|
a: first int | float
|
|
b: second int | float
|
|
"""
|
|
if b == 0:
|
|
raise ValueError("Cannot divide by zero.")
|
|
return a / b
|
|
|
|
@tool
|
|
def modulus(a: int | float, b: int | float) -> int | float:
|
|
"""Get the modulus of two numbers.
|
|
|
|
Args:
|
|
a: first int | float
|
|
b: second int | float
|
|
"""
|
|
return a % b
|
|
|
|
@tool
|
|
def wiki_search(query: str) -> str:
|
|
"""Search the wikipedia for a query and return the first paragraph
|
|
args:
|
|
query: the query to search for
|
|
"""
|
|
loader = WikipediaLoader(query=query, load_max_docs=1)
|
|
data = loader.load()
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'\n{doc.page_content}\n'
|
|
for doc in data
|
|
])
|
|
return formatted_search_docs
|
|
|
|
@tool
|
|
def web_search(query: str) -> str:
|
|
"""Search Tavily for a query and return maximum 3 results.
|
|
|
|
Args:
|
|
query: The search query.
|
|
"""
|
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'\n{doc.get("content", "")}\n'
|
|
for doc in search_docs
|
|
])
|
|
return formatted_search_docs
|
|
|
|
@tool
|
|
def arxiv_search(query: str) -> str:
|
|
"""Search Arxiv for a query and return maximum 3 result.
|
|
|
|
Args:
|
|
query: The search query.
|
|
"""
|
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'\n{doc.page_content[:1000]}\n'
|
|
for doc in search_docs
|
|
])
|
|
return formatted_search_docs
|
|
|
|
|
|
jq_schema = """
|
|
{
|
|
page_content: .Question,
|
|
metadata: {
|
|
task_id: .task_id,
|
|
Level: .Level,
|
|
Final_answer: ."Final answer",
|
|
file_name: .file_name,
|
|
Steps: .["Annotator Metadata"].Steps,
|
|
Number_of_steps: .["Annotator Metadata"]["Number of steps"],
|
|
How_long: .["Annotator Metadata"]["How long did this take?"],
|
|
Tools: .["Annotator Metadata"].Tools,
|
|
Number_of_tools: .["Annotator Metadata"]["Number of tools"]
|
|
}
|
|
}
|
|
"""
|
|
|
|
|
|
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
|
|
json_docs = json_loader.load()
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200)
|
|
json_chunks = text_splitter.split_documents(json_docs)
|
|
|
|
|
|
database = FAISS.from_documents(json_chunks, NVIDIAEmbeddings())
|
|
|
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
|
|
|
|
|
retriever = database.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
|
|
|
retriever_tool = create_retriever_tool(
|
|
retriever=retriever,
|
|
name="question_search",
|
|
description="Search for similar questions and their solutions from the knowledge base."
|
|
)
|
|
|
|
|
|
tools = [
|
|
multiply,
|
|
add,
|
|
subtract,
|
|
divide,
|
|
modulus,
|
|
wiki_search,
|
|
web_search,
|
|
arxiv_search,
|
|
retriever_tool
|
|
]
|
|
|
|
|
|
memory = MemorySaver()
|
|
|
|
|
|
agent_executor = create_react_agent(
|
|
model=llm,
|
|
tools=tools,
|
|
checkpointer=memory
|
|
)
|
|
|
|
|
|
def run_agent(query, thread_id="conversation_1"):
|
|
"""Run the agent with a query"""
|
|
config = {"configurable": {"thread_id": thread_id}}
|
|
|
|
system_msg = SystemMessage(content='''You are a helpful assistant tasked with answering questions using a set of tools.
|
|
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
|
FINAL ANSWER: [YOUR FINAL ANSWER].
|
|
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
|
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.''')
|
|
|
|
user_msg = HumanMessage(content=query)
|
|
|
|
print(f"User: {query}")
|
|
print("\nAgent:")
|
|
|
|
for step in agent_executor.stream(
|
|
{"messages": [system_msg, user_msg]},
|
|
config,
|
|
stream_mode="values"
|
|
):
|
|
step["messages"][-1].pretty_print()
|
|
|
|
|
|
def robust_agent_run(query, thread_id="robust_conversation"):
|
|
"""Run agent with error handling"""
|
|
config = {"configurable": {"thread_id": thread_id}}
|
|
|
|
try:
|
|
system_msg = SystemMessage(content='''You are a helpful assistant tasked with answering questions using a set of tools.
|
|
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
|
FINAL ANSWER: [YOUR FINAL ANSWER].
|
|
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
|
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.''')
|
|
|
|
user_msg = HumanMessage(content=query)
|
|
result = []
|
|
|
|
for step in agent_executor.stream(
|
|
{"messages": [system_msg, user_msg]},
|
|
config,
|
|
stream_mode="values"
|
|
):
|
|
result = step["messages"]
|
|
|
|
return result[-1].content if result else "No response generated"
|
|
|
|
except Exception as e:
|
|
return f"Error occurred: {str(e)}"
|
|
|
|
|
|
def main(query: str) -> str:
|
|
"""Main function to run the agent"""
|
|
return(robust_agent_run(query))
|
|
|
|
|
|
|
|
|
|
|
|
|