josondev's picture
Update veryfinal.py
7cc7889 verified
raw
history blame
14.7 kB
""" Enhanced Hybrid Agent Evaluation Runner"""
import os
import inspect
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from agent import HybridLangGraphAgnoSystem
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Enhanced Basic Agent Definition ---
class BasicAgent:
"""A hybrid LangGraph + Agno agent with performance optimization."""
def __init__(self):
print("BasicAgent initialized with Hybrid LangGraph + Agno System.")
self.hybrid_system = HybridLangGraphAgnoSystem()
def __call__(self, question: str) -> str:
print(f"Agent received question: {question}")
try:
# Process query using hybrid system
result = self.hybrid_system.process_query(question)
# Extract final answer
answer = result.get("answer", "No response generated")
# Clean up the answer - extract only final answer if present
if "FINAL ANSWER:" in answer:
final_answer = answer.split("FINAL ANSWER:")[-1].strip()
else:
final_answer = answer.strip()
# Log performance metrics for debugging
metrics = result.get("performance_metrics", {})
provider = result.get("provider_used", "Unknown")
processing_time = metrics.get("total_time", 0)
print(f"Provider used: {provider}, Processing time: {processing_time:.2f}s")
return final_answer
except Exception as e:
print(f"Error in agent processing: {e}")
return f"Error: {str(e)}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the Enhanced Hybrid Agent on them, submits all answers,
and displays the results with performance metrics.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Enhanced Hybrid Agent
try:
agent = BasicAgent()
print("βœ… Hybrid LangGraph + Agno Agent initialized successfully")
except Exception as e:
print(f"❌ Error instantiating hybrid agent: {e}")
return f"Error initializing hybrid agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"πŸ”— Agent code repository: {agent_code}")
# 2. Fetch Questions
print(f"πŸ“₯ Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("❌ Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"βœ… Fetched {len(questions_data)} questions successfully.")
except requests.exceptions.RequestException as e:
print(f"❌ Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"❌ An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run Enhanced Hybrid Agent with Performance Tracking
results_log = []
answers_payload = []
performance_stats = {
"langgraph_math": 0,
"agno_research": 0,
"langgraph_retrieval": 0,
"agno_general": 0,
"errors": 0,
"total_processing_time": 0
}
print(f"πŸš€ Running Enhanced Hybrid Agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data, 1):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"⚠️ Skipping item {i} with missing task_id or question: {item}")
continue
print(f"πŸ”„ Processing question {i}/{len(questions_data)}: {task_id}")
try:
# Get detailed result from hybrid system
detailed_result = agent.hybrid_system.process_query(question_text)
submitted_answer = detailed_result.get("answer", "No response")
# Extract final answer
if "FINAL ANSWER:" in submitted_answer:
clean_answer = submitted_answer.split("FINAL ANSWER:")[-1].strip()
else:
clean_answer = submitted_answer.strip()
# Track performance metrics
provider = detailed_result.get("provider_used", "Unknown")
processing_time = detailed_result.get("performance_metrics", {}).get("total_time", 0)
# Update performance stats
if "LangGraph" in provider:
if "Math" in provider:
performance_stats["langgraph_math"] += 1
else:
performance_stats["langgraph_retrieval"] += 1
elif "Agno" in provider:
if "Research" in provider:
performance_stats["agno_research"] += 1
else:
performance_stats["agno_general"] += 1
performance_stats["total_processing_time"] += processing_time
answers_payload.append({"task_id": task_id, "submitted_answer": clean_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": clean_answer,
"Provider": provider,
"Processing Time (s)": f"{processing_time:.2f}"
})
print(f"βœ… Question {i} processed successfully using {provider}")
except Exception as e:
print(f"❌ Error running agent on task {task_id}: {e}")
performance_stats["errors"] += 1
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": f"AGENT ERROR: {e}",
"Provider": "Error",
"Processing Time (s)": "0.00"
})
if not answers_payload:
print("❌ Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Performance Summary
avg_processing_time = performance_stats["total_processing_time"] / len(answers_payload) if answers_payload else 0
performance_summary = f"""
πŸ“Š Performance Summary:
β€’ LangGraph Math: {performance_stats['langgraph_math']} queries
β€’ Agno Research: {performance_stats['agno_research']} queries
β€’ LangGraph Retrieval: {performance_stats['langgraph_retrieval']} queries
β€’ Agno General: {performance_stats['agno_general']} queries
β€’ Errors: {performance_stats['errors']} queries
β€’ Average Processing Time: {avg_processing_time:.2f}s
β€’ Total Processing Time: {performance_stats['total_processing_time']:.2f}s
"""
print(performance_summary)
# 5. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"🎯 Hybrid Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 6. Submit Results
print(f"πŸ“€ Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout
response.raise_for_status()
result_data = response.json()
final_status = (
f"πŸŽ‰ Submission Successful!\n"
f"πŸ‘€ User: {result_data.get('username')}\n"
f"πŸ† Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"πŸ’¬ Message: {result_data.get('message', 'No message received.')}\n"
f"{performance_summary}"
)
print("βœ… Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"❌ Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "❌ Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"❌ Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"❌ An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Enhanced Gradio Interface ---
with gr.Blocks(title="Enhanced Hybrid Agent Evaluation") as demo:
gr.Markdown("# πŸš€ Enhanced Hybrid LangGraph + Agno Agent Evaluation Runner")
gr.Markdown(
"""
## 🎯 **Advanced AI Agent System**
This evaluation runner uses a **Hybrid LangGraph + Agno Agent System** that combines the best of both frameworks:
### 🧠 **Intelligent Routing System**
- **πŸ”’ Mathematical Queries** β†’ LangGraph (Groq Llama 3.3 70B) - *Optimized for speed*
- **πŸ” Complex Research** β†’ Agno (Gemini 2.0 Flash-Lite) - *Optimized for reasoning*
- **πŸ“š Factual Retrieval** β†’ LangGraph + FAISS Vector Store - *Optimized for accuracy*
- **🎭 General Queries** β†’ Agno Multi-Agent System - *Optimized for comprehensiveness*
### ⚑ **Performance Features**
- **Rate Limiting**: Intelligent rate management for free tier models
- **Caching**: Performance optimization with query caching
- **Fallback Systems**: Automatic provider switching on failures
- **Performance Tracking**: Real-time metrics and provider usage stats
### πŸ›  **Tools & Capabilities**
- Mathematical calculations (add, subtract, multiply, divide, modulus)
- Web search (Tavily, Wikipedia, ArXiv)
- FAISS vector database for similar question retrieval
- Memory persistence across sessions
---
**Instructions:**
1. πŸ” Log in to your Hugging Face account using the button below
2. πŸš€ Click 'Run Evaluation & Submit All Answers' to start the evaluation
3. πŸ“Š Monitor real-time performance metrics and provider usage
4. πŸ† View your final score and detailed results
**Note:** The hybrid system automatically selects the optimal AI provider for each question type to maximize both speed and accuracy.
"""
)
gr.LoginButton()
with gr.Row():
run_button = gr.Button(
"πŸš€ Run Evaluation & Submit All Answers",
variant="primary",
size="lg"
)
status_output = gr.Textbox(
label="πŸ“Š Run Status / Submission Result",
lines=10,
interactive=False,
placeholder="Status updates will appear here..."
)
results_table = gr.DataFrame(
label="πŸ“‹ Questions, Answers & Performance Metrics",
wrap=True,
height=400
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
# Add footer with system info
gr.Markdown(
"""
---
### πŸ”§ **System Information**
- **Primary Models**: Groq Llama 3.3 70B, Gemini 2.0 Flash-Lite, NVIDIA Llama 3.1 70B
- **Frameworks**: LangGraph + Agno Hybrid Architecture
- **Vector Store**: FAISS with NVIDIA Embeddings
- **Rate Limiting**: Advanced rate management with exponential backoff
- **Memory**: Persistent agent memory with session summaries
"""
)
if __name__ == "__main__":
print("\n" + "="*80)
print("πŸš€ ENHANCED HYBRID AGENT EVALUATION RUNNER")
print("="*80)
# Check for environment variables
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"βœ… SPACE_HOST found: {space_host_startup}")
print(f" 🌐 Runtime URL: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"βœ… SPACE_ID found: {space_id_startup}")
print(f" πŸ“ Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" 🌳 Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
print("\n🎯 System Features:")
print(" β€’ Hybrid LangGraph + Agno Architecture")
print(" β€’ Intelligent Query Routing")
print(" β€’ Performance Optimization")
print(" β€’ Advanced Rate Limiting")
print(" β€’ FAISS Vector Database")
print(" β€’ Multi-Provider Fallbacks")
print("\n" + "="*80)
print("πŸŽ‰ Launching Enhanced Gradio Interface...")
print("="*80 + "\n")
demo.launch(debug=True, share=False)