josondev's picture
Update app.py
e6232e1 verified
raw
history blame
8.21 kB
""" Basic Agent Evaluation Runner"""
import os
import inspect
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
class BasicAgent:
"""A langgraph agent."""
def __init__(self):
print("BasicAgent initialized.")
try:
self.graph = build_graph(provider="groq") # Using Groq as default
print("Graph built successfully.")
except Exception as e:
print(f"Error building graph: {e}")
self.graph = None
def __call__(self, question: str) -> str:
print(f"Agent received question: {question}")
if self.graph is None:
return "Error: Agent not properly initialized"
# Create complete state structure that matches EnhancedAgentState
state = {
"messages": [HumanMessage(content=question)],
"query": question, # This was the critical missing field
"agent_type": "",
"final_answer": "",
"perf": {},
"agno_resp": ""
}
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
try:
result = self.graph.invoke(state, config)
# Handle different response formats
if isinstance(result, dict):
if 'messages' in result and result['messages']:
answer = result['messages'][-1].content
elif 'final_answer' in result:
answer = result['final_answer']
else:
answer = str(result)
else:
answer = str(result)
# Extract final answer if present
if "FINAL ANSWER:" in answer:
return answer.split("FINAL ANSWER:")[-1].strip()
else:
return answer.strip()
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
if agent.graph is None:
return "Error: Failed to initialize agent properly", None
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
print(f"Agent code URL: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
print(f"Error running agent on task {task_id}: {e}")
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_msg
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# LangGraph Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
**Agent Features:**
- Uses FAISS vector database for similar question retrieval
- Includes mathematical calculation tools
- Web search capabilities (Tavily, Wikipedia, ArXiv)
- Rate limiting for free tier models
- Best free models: Groq Llama 3.3 70B, Gemini 2.0 Flash, NVIDIA Llama 3.1 70B
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
demo.launch(debug=True, share=False)