josondev's picture
Update veryfinal.py
8dc7ff2 verified
raw
history blame
12.2 kB
"""Enhanced LangGraph + Agno Hybrid Agent System"""
import os
import time
import random
from dotenv import load_dotenv
from typing import List, Dict, Any, TypedDict, Annotated
import operator
# LangGraph imports
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langgraph.checkpoint.memory import MemorySaver
# LangChain imports
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader, JSONLoader
from langchain_community.vectorstores import FAISS
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Agno imports
from agno.agent import Agent
from agno.models.groq import GroqChat
from agno.models.google import GeminiChat
from agno.tools.tavily import TavilyTools
from agno.memory.agent import AgentMemory
from agno.storage.sqlite import SqliteStorage
from agno.memory.v2.db.sqlite import SqliteMemoryDb # Correct import for memory DB
load_dotenv()
# Rate limiter with exponential backoff
class PerformanceRateLimiter:
def __init__(self, rpm: int, name: str):
self.rpm = rpm
self.name = name
self.times: List[float] = []
self.failures = 0
def wait_if_needed(self):
now = time.time()
self.times = [t for t in self.times if now - t < 60]
if len(self.times) >= self.rpm:
wait = 60 - (now - self.times[0]) + random.uniform(1, 3)
time.sleep(wait)
if self.failures:
backoff = min(2 ** self.failures, 30) + random.uniform(0.5, 1.5)
time.sleep(backoff)
self.times.append(now)
def record_success(self):
self.failures = 0
def record_failure(self):
self.failures += 1
# Initialize rate limiters
gemini_limiter = PerformanceRateLimiter(28, "Gemini")
groq_limiter = PerformanceRateLimiter(28, "Groq")
nvidia_limiter = PerformanceRateLimiter(4, "NVIDIA")
# Create Agno agents with corrected SQLite storage and memory
def create_agno_agents():
# 1. Storage for the agent's overall state (conversations, etc.)
storage = SqliteStorage(
table_name="agent_sessions",
db_file="tmp/agent_sessions.db",
auto_upgrade_schema=True
)
# 2. A separate database for the agent's memory
memory_db = SqliteMemoryDb(db_file="tmp/agent_memory.db")
# 3. The AgentMemory object, which uses the memory_db
agent_memory = AgentMemory(
db=memory_db, # Pass the SqliteMemoryDb here
create_user_memories=True,
create_session_summary=True
)
math_agent = Agent(
name="MathSpecialist",
model=GroqChat(
model="llama-3.3-70b-versatile",
api_key=os.getenv("GROQ_API_KEY"),
temperature=0
),
description="Expert mathematical problem solver",
instructions=[
"Solve math problems with precision",
"Show step-by-step calculations",
"Finish with: FINAL ANSWER: [result]"
],
storage=storage, # Use SqliteStorage for the agent's persistence
memory=agent_memory, # Use the configured AgentMemory
show_tool_calls=False,
markdown=False
)
research_agent = Agent(
name="ResearchSpecialist",
model=GeminiChat(
model="gemini-2.0-flash-lite",
api_key=os.getenv("GOOGLE_API_KEY"),
temperature=0
),
description="Expert research and information gathering specialist",
instructions=[
"Conduct thorough research using available tools",
"Synthesize information from multiple sources",
"Finish with: FINAL ANSWER: [answer]"
],
tools=[
TavilyTools(
api_key=os.getenv("TAVILY_API_KEY"),
search=True,
max_tokens=6000,
search_depth="advanced",
format="markdown"
)
],
storage=storage, # Use the same storage for persistence
memory=agent_memory, # Use the same memory configuration
show_tool_calls=False,
markdown=False
)
return {"math": math_agent, "research": research_agent}
# LangGraph tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder of a divided by b."""
return a % b
@tool
def optimized_web_search(query: str) -> str:
"""Optimized Tavily web search."""
try:
time.sleep(random.uniform(1, 2))
docs = TavilySearchResults(max_results=2).invoke(query=query)
return "\n\n---\n\n".join(
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>"
for d in docs
)
except Exception as e:
return f"Web search failed: {e}"
@tool
def optimized_wiki_search(query: str) -> str:
"""Optimized Wikipedia search."""
try:
time.sleep(random.uniform(0.5, 1))
docs = WikipediaLoader(query=query, load_max_docs=1).load()
return "\n\n---\n\n".join(
f"<Doc src='{d.metadata['source']}'>{d.page_content[:800]}</Doc>"
for d in docs
)
except Exception as e:
return f"Wikipedia search failed: {e}"
# FAISS setup
def setup_faiss():
try:
schema = """
{ page_content: .Question, metadata: { task_id: .task_id, Final_answer: ."Final answer" } }
"""
loader = JSONLoader(file_path="metadata.jsonl", jq_schema=schema, json_lines=True, text_content=False)
docs = loader.load()
splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=50)
chunks = splitter.split_documents(docs)
embeds = NVIDIAEmbeddings(
model="nvidia/nv-embedqa-e5-v5",
api_key=os.getenv("NVIDIA_API_KEY")
)
return FAISS.from_documents(chunks, embeds)
except Exception as e:
print(f"FAISS setup failed: {e}")
return None
class EnhancedAgentState(TypedDict):
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
perf: Dict[str,Any]
agno_resp: str
class HybridLangGraphAgnoSystem:
def __init__(self):
self.agno = create_agno_agents()
self.store = setup_faiss()
self.tools = [
multiply, add, subtract, divide, modulus,
optimized_web_search, optimized_wiki_search
]
if self.store:
retr = self.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
self.tools.append(create_retriever_tool(
retriever=retr,
name="Question_Search",
description="Retrieve similar questions"
))
self.graph = self._build_graph()
def _build_graph(self):
groq_llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
gemini_llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-lite", temperature=0)
nvidia_llm = ChatNVIDIA(model="meta/llama-3.1-70b-instruct", temperature=0)
def router(st: EnhancedAgentState) -> EnhancedAgentState:
q = st["query"].lower()
if any(k in q for k in ["calculate","math"]): t="lg_math"
elif any(k in q for k in ["research","analyze"]): t="agno_research"
elif any(k in q for k in ["what is","who is"]): t="lg_retrieval"
else: t="agno_general"
return {**st, "agent_type": t}
def lg_math(st: EnhancedAgentState) -> EnhancedAgentState:
groq_limiter.wait_if_needed()
t0=time.time()
llm=groq_llm.bind_tools([multiply,add,subtract,divide,modulus])
sys=SystemMessage(content="Fast calculator. FINAL ANSWER: [result]")
res=llm.invoke([sys,HumanMessage(content=st["query"])])
return {**st, "final_answer":res.content, "perf":{"time":time.time()-t0,"prov":"LG-Groq"}}
def agno_research(st: EnhancedAgentState) -> EnhancedAgentState:
gemini_limiter.wait_if_needed()
t0=time.time()
resp=self.agno["research"].run(st["query"],stream=False)
return {**st, "final_answer":resp, "perf":{"time":time.time()-t0,"prov":"Agno-Gemini"}}
def lg_retrieval(st: EnhancedAgentState) -> EnhancedAgentState:
groq_limiter.wait_if_needed()
t0=time.time()
llm=groq_llm.bind_tools(self.tools)
sys=SystemMessage(content="Retrieve. FINAL ANSWER: [answer]")
res=llm.invoke([sys,HumanMessage(content=st["query"])])
return {**st, "final_answer":res.content, "perf":{"time":time.time()-t0,"prov":"LG-Retrieval"}}
def agno_general(st: EnhancedAgentState) -> EnhancedAgentState:
nvidia_limiter.wait_if_needed()
t0=time.time()
if any(k in st["query"].lower() for k in ["calculate","compute"]):
resp=self.agno["math"].run(st["query"],stream=False)
else:
resp=self.agno["research"].run(st["query"],stream=False)
return {**st, "final_answer":resp, "perf":{"time":time.time()-t0,"prov":"Agno-General"}}
def pick(st: EnhancedAgentState) -> str:
return st["agent_type"]
g=StateGraph(EnhancedAgentState)
g.add_node("router",router)
g.add_node("lg_math",lg_math)
g.add_node("agno_research",agno_research)
g.add_node("lg_retrieval",lg_retrieval)
g.add_node("agno_general",agno_general)
g.set_entry_point("router")
g.add_conditional_edges("router",pick,{
"lg_math":"lg_math","agno_research":"agno_research",
"lg_retrieval":"lg_retrieval","agno_general":"agno_general"
})
for n in ["lg_math","agno_research","lg_retrieval","agno_general"]:
g.add_edge(n,"END")
return g.compile(checkpointer=MemorySaver())
def process_query(self, q: str) -> Dict[str,Any]:
state={
"messages":[HumanMessage(content=q)],
"query":q,"agent_type":"","final_answer":"",
"perf":{},"agno_resp":""
}
cfg={"configurable":{"thread_id":f"hyb_{hash(q)}"}}
try:
out=self.graph.invoke(state,cfg)
return {
"answer":out["final_answer"],
"performance_metrics":out["perf"],
"provider_used":out["perf"].get("prov")
}
except Exception as e:
return {"answer":f"Error: {e}","performance_metrics":{},"provider_used":"Error"}
def build_graph(provider: str = "hybrid"):
"""
Build and return the StateGraph for the requested provider.
- "hybrid", "groq", "google", and "nvidia" are all valid and
will return the full HybridLangGraphAgnoSystem graph.
"""
if provider in ("hybrid", "groq", "google", "nvidia"):
return HybridLangGraphAgnoSystem().graph
else:
raise ValueError(f"Unsupported provider: '{provider}'. Please use 'hybrid', 'groq', 'google', or 'nvidia'.")
# Test
if __name__=="__main__":
graph=build_graph()
msgs=[HumanMessage(content="What are the names of the US presidents who were assassinated?")]
res=graph.invoke({"messages":msgs},{"configurable":{"thread_id":"test"}})
for m in res["messages"]:
m.pretty_print()