josondev's picture
Update app.py
b6e9bbc verified
raw
history blame
10.8 kB
import os
import gradio as gr
import requests
import pandas as pd
import base64
from dotenv import load_dotenv
from groq import Groq
# Load environment variables
load_dotenv()
# --- Groq Multimodal Agent ---
class GroqMultimodalAgent:
def __init__(self):
self.client = Groq(api_key=os.getenv("GROQ_API_KEY"))
self.llava_model = "llava-v1.5-7b-4096-preview" # For image Q&A
self.llama_model = "meta-llama/llama-4-scout-17b-16e-instruct" # For text Q&A
self.whisper_model = "whisper-large-v3" # For audio transcription
self.instructions = (
"You are a helpful assistant. For every question or media, reply with only the answer—no explanation, "
"no units, and no extra words. If the answer is a number, just return the number. "
"If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. "
"Do not include any prefix, suffix, or explanation."
)
def _encode_image(self, image_path):
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode("utf-8")
def _process_image(self, image_path, question):
base64_image = self._encode_image(image_path)
prompt = f"{self.instructions}\n\n{question}"
chat_completion = self.client.chat.completions.create(
model=self.llava_model,
messages=[
{"role": "user", "content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
]}
]
)
answer = chat_completion.choices[0].message.content.strip()
return self._extract_final_answer(answer)
def _process_audio(self, audio_path):
with open(audio_path, "rb") as audio_file:
transcript = self.client.audio.transcriptions.create(
model=self.whisper_model,
file=audio_file
)
return transcript.text.strip()
def _process_text(self, question):
prompt = f"{self.instructions}\n\n{question}"
chat_completion = self.client.chat.completions.create(
model=self.llama_model,
messages=[{"role": "user", "content": prompt}]
)
answer = chat_completion.choices[0].message.content.strip()
return self._extract_final_answer(answer)
def _extract_final_answer(self, llm_output: str) -> str:
for prefix in ["FINAL ANSWER:", "Final answer:", "final answer:"]:
if llm_output.lower().startswith(prefix.lower()):
return llm_output[len(prefix):].strip()
return llm_output
def __call__(self, question: str, image_path: str = None, audio_path: str = None) -> str:
if image_path:
return self._process_image(image_path, question)
elif audio_path:
return self._process_audio(audio_path)
else:
return self._process_text(question)
# --- Gradio Leaderboard Submission App ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GroqMultimodalAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
image_path = item.get("image_path", None)
audio_path = item.get("audio_path", None)
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text, image_path=image_path, audio_path=audio_path)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)