|
import os, json, time, random, asyncio |
|
from dotenv import load_dotenv |
|
from typing import Optional, Dict, Any |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
from agno.agent import Agent |
|
from agno.models.groq import Groq |
|
from agno.models.google import Gemini |
|
from agno.tools.yfinance import YFinanceTools |
|
|
|
|
|
from tavily import TavilyClient |
|
|
|
|
|
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader |
|
|
|
|
|
class AdvancedRateLimiter: |
|
def __init__(self, requests_per_minute: int, tokens_per_minute: int = None): |
|
self.requests_per_minute = requests_per_minute |
|
self.tokens_per_minute = tokens_per_minute |
|
self.request_times = [] |
|
self.token_usage = [] |
|
self.consecutive_failures = 0 |
|
|
|
async def wait_if_needed(self, estimated_tokens: int = 1000): |
|
current_time = time.time() |
|
|
|
|
|
self.request_times = [t for t in self.request_times if current_time - t < 60] |
|
self.token_usage = [(t, tokens) for t, tokens in self.token_usage if current_time - t < 60] |
|
|
|
|
|
if len(self.request_times) >= self.requests_per_minute: |
|
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8) |
|
await asyncio.sleep(wait_time) |
|
|
|
|
|
self.request_times.append(current_time) |
|
if self.tokens_per_minute: |
|
self.token_usage.append((current_time, estimated_tokens)) |
|
|
|
def record_success(self): |
|
self.consecutive_failures = 0 |
|
|
|
def record_failure(self): |
|
self.consecutive_failures += 1 |
|
|
|
|
|
groq_limiter = AdvancedRateLimiter(requests_per_minute=30, tokens_per_minute=6000) |
|
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2, tokens_per_minute=32000) |
|
tavily_limiter = AdvancedRateLimiter(requests_per_minute=50) |
|
|
|
|
|
tavily_client = TavilyClient(os.getenv("TAVILY_API_KEY")) |
|
|
|
|
|
def multiply_tool(a: float, b: float) -> float: |
|
"""Multiply two numbers.""" |
|
return a * b |
|
|
|
def add_tool(a: float, b: float) -> float: |
|
"""Add two numbers.""" |
|
return a + b |
|
|
|
def subtract_tool(a: float, b: float) -> float: |
|
"""Subtract two numbers.""" |
|
return a - b |
|
|
|
def divide_tool(a: float, b: float) -> float: |
|
"""Divide two numbers.""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
async def tavily_search_tool(query: str) -> str: |
|
"""Search using Tavily with rate limiting.""" |
|
try: |
|
await tavily_limiter.wait_if_needed() |
|
response = tavily_client.search( |
|
query=query, |
|
max_results=3, |
|
search_depth="basic", |
|
include_answer=False |
|
) |
|
|
|
|
|
results = [] |
|
for result in response.get('results', []): |
|
results.append(f"Title: {result.get('title', '')}\nContent: {result.get('content', '')}") |
|
|
|
return "\n\n---\n\n".join(results) |
|
|
|
except Exception as e: |
|
return f"Tavily search failed: {str(e)}" |
|
|
|
async def wiki_search_tool(query: str) -> str: |
|
"""Search Wikipedia with rate limiting.""" |
|
try: |
|
await asyncio.sleep(random.uniform(1, 3)) |
|
loader = WikipediaLoader(query=query, load_max_docs=1) |
|
data = loader.load() |
|
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in data]) |
|
except Exception as e: |
|
return f"Wikipedia search failed: {str(e)}" |
|
|
|
async def arxiv_search_tool(query: str) -> str: |
|
"""Search ArXiv with rate limiting.""" |
|
try: |
|
await asyncio.sleep(random.uniform(1, 4)) |
|
search_docs = ArxivLoader(query=query, load_max_docs=2).load() |
|
return "\n\n---\n\n".join([doc.page_content[:800] for doc in search_docs]) |
|
except Exception as e: |
|
return f"ArXiv search failed: {str(e)}" |
|
|
|
|
|
def create_agno_agents(): |
|
"""Create specialized Agno agents with the best free models""" |
|
|
|
|
|
math_agent = Agent( |
|
name="Math Specialist", |
|
model=Groq( |
|
id="llama-3.3-70b-versatile", |
|
api_key=os.getenv("GROQ_API_KEY"), |
|
temperature=0 |
|
), |
|
tools=[multiply_tool, add_tool, subtract_tool, divide_tool], |
|
instructions=[ |
|
"You are a mathematical specialist with access to calculation tools.", |
|
"Use the appropriate math tools for calculations.", |
|
"Show your work step by step.", |
|
"Always provide precise numerical answers.", |
|
"Finish with: FINAL ANSWER: [numerical result]" |
|
], |
|
show_tool_calls=False, |
|
markdown=False |
|
) |
|
|
|
|
|
research_agent = Agent( |
|
name="Research Specialist", |
|
model=Gemini( |
|
id="gemini-2.0-flash-thinking-exp", |
|
api_key=os.getenv("GOOGLE_API_KEY"), |
|
temperature=0 |
|
), |
|
tools=[tavily_search_tool, wiki_search_tool, arxiv_search_tool], |
|
instructions=[ |
|
"You are a research specialist with access to multiple search tools.", |
|
"Use Tavily search for current web information, Wikipedia for encyclopedic content, and ArXiv for academic papers.", |
|
"Always cite sources and provide well-researched answers.", |
|
"Synthesize information from multiple sources when possible.", |
|
"Finish with: FINAL ANSWER: [your researched answer]" |
|
], |
|
show_tool_calls=False, |
|
markdown=False |
|
) |
|
|
|
|
|
coordinator_agent = Agent( |
|
name="Coordinator", |
|
model=Groq( |
|
id="llama-3.3-70b-versatile", |
|
api_key=os.getenv("GROQ_API_KEY"), |
|
temperature=0 |
|
), |
|
tools=[tavily_search_tool, wiki_search_tool], |
|
instructions=[ |
|
"You are the main coordinator agent.", |
|
"Analyze queries and provide comprehensive responses.", |
|
"Use Tavily search for current information and Wikipedia for background context.", |
|
"Always finish with: FINAL ANSWER: [your final answer]" |
|
], |
|
show_tool_calls=False, |
|
markdown=False |
|
) |
|
|
|
return { |
|
"math": math_agent, |
|
"research": research_agent, |
|
"coordinator": coordinator_agent |
|
} |
|
|
|
|
|
class AgnoMultiAgentSystem: |
|
"""Agno multi-agent system with comprehensive rate limiting""" |
|
|
|
def __init__(self): |
|
self.agents = create_agno_agents() |
|
self.request_count = 0 |
|
self.last_request_time = time.time() |
|
|
|
async def process_query(self, query: str, max_retries: int = 5) -> str: |
|
"""Process query using Agno agents with advanced rate limiting (SILENT)""" |
|
|
|
|
|
current_time = time.time() |
|
if current_time - self.last_request_time > 3600: |
|
self.request_count = 0 |
|
self.last_request_time = current_time |
|
|
|
self.request_count += 1 |
|
|
|
|
|
if self.request_count > 1: |
|
await asyncio.sleep(random.uniform(3, 10)) |
|
|
|
for attempt in range(max_retries): |
|
try: |
|
|
|
if any(word in query.lower() for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide', 'compute']): |
|
response = self.agents["math"].run(query, stream=False) |
|
|
|
elif any(word in query.lower() for word in ['search', 'find', 'research', 'what is', 'who is', 'when', 'where']): |
|
response = self.agents["research"].run(query, stream=False) |
|
|
|
else: |
|
response = self.agents["coordinator"].run(query, stream=False) |
|
|
|
return response.content if hasattr(response, 'content') else str(response) |
|
|
|
except Exception as e: |
|
error_msg = str(e).lower() |
|
|
|
if any(keyword in error_msg for keyword in ['rate limit', '429', 'quota', 'too many requests']): |
|
wait_time = (2 ** attempt) + random.uniform(15, 45) |
|
await asyncio.sleep(wait_time) |
|
continue |
|
|
|
elif attempt == max_retries - 1: |
|
try: |
|
return self.agents["coordinator"].run(f"Answer this as best you can: {query}", stream=False) |
|
except: |
|
return f"Error: {str(e)}" |
|
|
|
else: |
|
wait_time = (2 ** attempt) + random.uniform(2, 8) |
|
await asyncio.sleep(wait_time) |
|
|
|
return "Maximum retries exceeded. Please try again later." |
|
|
|
|
|
async def main_async(query: str) -> str: |
|
"""Async main function compatible with Jupyter notebooks (SILENT)""" |
|
agno_system = AgnoMultiAgentSystem() |
|
return await agno_system.process_query(query) |
|
|
|
def main(query: str) -> str: |
|
"""Main function using Agno multi-agent system (SILENT)""" |
|
try: |
|
loop = asyncio.get_event_loop() |
|
if loop.is_running(): |
|
import nest_asyncio |
|
nest_asyncio.apply() |
|
return asyncio.run(main_async(query)) |
|
else: |
|
return asyncio.run(main_async(query)) |
|
except RuntimeError: |
|
return asyncio.run(main_async(query)) |
|
|
|
def get_final_answer(query: str) -> str: |
|
"""Extract only the FINAL ANSWER from the response""" |
|
full_response = main(query) |
|
|
|
if "FINAL ANSWER:" in full_response: |
|
final_answer = full_response.split("FINAL ANSWER:")[-1].strip() |
|
return final_answer |
|
else: |
|
return full_response.strip() |
|
|
|
|
|
async def run_query(query: str) -> str: |
|
"""Direct async function for Jupyter notebooks (SILENT)""" |
|
return await main_async(query) |
|
|
|
if __name__ == "__main__": |
|
|
|
result = get_final_answer("What are the names of the US presidents who were assassinated?") |
|
print(result) |
|
|