josondev's picture
Update veryfinal.py
cc467c2 verified
raw
history blame
10.8 kB
import os, json, time, random, asyncio
from dotenv import load_dotenv
from typing import Optional, Dict, Any
# Load environment variables
load_dotenv()
# Agno imports (corrected based on search results)
from agno.agent import Agent
from agno.models.groq import Groq
from agno.models.google import Gemini
from agno.tools.yfinance import YFinanceTools
# Tavily import (replacing DuckDuckGo)
from tavily import TavilyClient
# Additional imports for custom tools
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
# Advanced Rate Limiter with exponential backoff (SILENT)
class AdvancedRateLimiter:
def __init__(self, requests_per_minute: int, tokens_per_minute: int = None):
self.requests_per_minute = requests_per_minute
self.tokens_per_minute = tokens_per_minute
self.request_times = []
self.token_usage = []
self.consecutive_failures = 0
async def wait_if_needed(self, estimated_tokens: int = 1000):
current_time = time.time()
# Clean old requests (older than 1 minute)
self.request_times = [t for t in self.request_times if current_time - t < 60]
self.token_usage = [(t, tokens) for t, tokens in self.token_usage if current_time - t < 60]
# Calculate wait time for requests (SILENT)
if len(self.request_times) >= self.requests_per_minute:
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8)
await asyncio.sleep(wait_time)
# Record this request
self.request_times.append(current_time)
if self.tokens_per_minute:
self.token_usage.append((current_time, estimated_tokens))
def record_success(self):
self.consecutive_failures = 0
def record_failure(self):
self.consecutive_failures += 1
# Initialize rate limiters for free tiers
groq_limiter = AdvancedRateLimiter(requests_per_minute=30, tokens_per_minute=6000)
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2, tokens_per_minute=32000)
tavily_limiter = AdvancedRateLimiter(requests_per_minute=50) # Tavily rate limit
# Initialize Tavily client
tavily_client = TavilyClient(os.getenv("TAVILY_API_KEY"))
# Custom tool functions with rate limiting (SILENT)
def multiply_tool(a: float, b: float) -> float:
"""Multiply two numbers."""
return a * b
def add_tool(a: float, b: float) -> float:
"""Add two numbers."""
return a + b
def subtract_tool(a: float, b: float) -> float:
"""Subtract two numbers."""
return a - b
def divide_tool(a: float, b: float) -> float:
"""Divide two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
async def tavily_search_tool(query: str) -> str:
"""Search using Tavily with rate limiting."""
try:
await tavily_limiter.wait_if_needed()
response = tavily_client.search(
query=query,
max_results=3,
search_depth="basic",
include_answer=False
)
# Format results
results = []
for result in response.get('results', []):
results.append(f"Title: {result.get('title', '')}\nContent: {result.get('content', '')}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"Tavily search failed: {str(e)}"
async def wiki_search_tool(query: str) -> str:
"""Search Wikipedia with rate limiting."""
try:
await asyncio.sleep(random.uniform(1, 3))
loader = WikipediaLoader(query=query, load_max_docs=1)
data = loader.load()
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in data])
except Exception as e:
return f"Wikipedia search failed: {str(e)}"
async def arxiv_search_tool(query: str) -> str:
"""Search ArXiv with rate limiting."""
try:
await asyncio.sleep(random.uniform(1, 4))
search_docs = ArxivLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join([doc.page_content[:800] for doc in search_docs])
except Exception as e:
return f"ArXiv search failed: {str(e)}"
# Create specialized Agno agents (SILENT)
def create_agno_agents():
"""Create specialized Agno agents with the best free models"""
# Math specialist agent (using Groq for speed)
math_agent = Agent(
name="Math Specialist",
model=Groq(
id="llama-3.3-70b-versatile",
api_key=os.getenv("GROQ_API_KEY"),
temperature=0
),
tools=[multiply_tool, add_tool, subtract_tool, divide_tool],
instructions=[
"You are a mathematical specialist with access to calculation tools.",
"Use the appropriate math tools for calculations.",
"Show your work step by step.",
"Always provide precise numerical answers.",
"Finish with: FINAL ANSWER: [numerical result]"
],
show_tool_calls=False, # SILENT
markdown=False
)
# Research specialist agent (using Gemini for capability)
research_agent = Agent(
name="Research Specialist",
model=Gemini(
id="gemini-2.0-flash-thinking-exp",
api_key=os.getenv("GOOGLE_API_KEY"),
temperature=0
),
tools=[tavily_search_tool, wiki_search_tool, arxiv_search_tool], # Using Tavily instead of DuckDuckGo
instructions=[
"You are a research specialist with access to multiple search tools.",
"Use Tavily search for current web information, Wikipedia for encyclopedic content, and ArXiv for academic papers.",
"Always cite sources and provide well-researched answers.",
"Synthesize information from multiple sources when possible.",
"Finish with: FINAL ANSWER: [your researched answer]"
],
show_tool_calls=False, # SILENT
markdown=False
)
# Coordinator agent (using Groq for fast coordination)
coordinator_agent = Agent(
name="Coordinator",
model=Groq(
id="llama-3.3-70b-versatile",
api_key=os.getenv("GROQ_API_KEY"),
temperature=0
),
tools=[tavily_search_tool, wiki_search_tool], # Using Tavily instead of DuckDuckGo
instructions=[
"You are the main coordinator agent.",
"Analyze queries and provide comprehensive responses.",
"Use Tavily search for current information and Wikipedia for background context.",
"Always finish with: FINAL ANSWER: [your final answer]"
],
show_tool_calls=False, # SILENT
markdown=False
)
return {
"math": math_agent,
"research": research_agent,
"coordinator": coordinator_agent
}
# Main Agno multi-agent system (SILENT)
class AgnoMultiAgentSystem:
"""Agno multi-agent system with comprehensive rate limiting"""
def __init__(self):
self.agents = create_agno_agents()
self.request_count = 0
self.last_request_time = time.time()
async def process_query(self, query: str, max_retries: int = 5) -> str:
"""Process query using Agno agents with advanced rate limiting (SILENT)"""
# Global rate limiting (SILENT)
current_time = time.time()
if current_time - self.last_request_time > 3600:
self.request_count = 0
self.last_request_time = current_time
self.request_count += 1
# Add delay between requests (SILENT)
if self.request_count > 1:
await asyncio.sleep(random.uniform(3, 10))
for attempt in range(max_retries):
try:
# Route to appropriate agent based on query type (SILENT)
if any(word in query.lower() for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide', 'compute']):
response = self.agents["math"].run(query, stream=False)
elif any(word in query.lower() for word in ['search', 'find', 'research', 'what is', 'who is', 'when', 'where']):
response = self.agents["research"].run(query, stream=False)
else:
response = self.agents["coordinator"].run(query, stream=False)
return response.content if hasattr(response, 'content') else str(response)
except Exception as e:
error_msg = str(e).lower()
if any(keyword in error_msg for keyword in ['rate limit', '429', 'quota', 'too many requests']):
wait_time = (2 ** attempt) + random.uniform(15, 45)
await asyncio.sleep(wait_time)
continue
elif attempt == max_retries - 1:
try:
return self.agents["coordinator"].run(f"Answer this as best you can: {query}", stream=False)
except:
return f"Error: {str(e)}"
else:
wait_time = (2 ** attempt) + random.uniform(2, 8)
await asyncio.sleep(wait_time)
return "Maximum retries exceeded. Please try again later."
# SILENT main function
async def main_async(query: str) -> str:
"""Async main function compatible with Jupyter notebooks (SILENT)"""
agno_system = AgnoMultiAgentSystem()
return await agno_system.process_query(query)
def main(query: str) -> str:
"""Main function using Agno multi-agent system (SILENT)"""
try:
loop = asyncio.get_event_loop()
if loop.is_running():
import nest_asyncio
nest_asyncio.apply()
return asyncio.run(main_async(query))
else:
return asyncio.run(main_async(query))
except RuntimeError:
return asyncio.run(main_async(query))
def get_final_answer(query: str) -> str:
"""Extract only the FINAL ANSWER from the response"""
full_response = main(query)
if "FINAL ANSWER:" in full_response:
final_answer = full_response.split("FINAL ANSWER:")[-1].strip()
return final_answer
else:
return full_response.strip()
# For Jupyter notebooks
async def run_query(query: str) -> str:
"""Direct async function for Jupyter notebooks (SILENT)"""
return await main_async(query)
if __name__ == "__main__":
# Test the Agno system with Tavily - CLEAN OUTPUT ONLY
result = get_final_answer("What are the names of the US presidents who were assassinated?")
print(result)