josondev's picture
Update app.py
e25ef11 verified
raw
history blame
10.7 kB
import os
import gradio as gr
import requests
import pandas as pd
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
# Load environment variables
load_dotenv()
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self, provider="nvidia"):
self.provider = provider.lower()
if self.provider == "nvidia":
self.llm = ChatNVIDIA(
model="meta/llama-3.3-70b-instruct",
nvidia_api_key=os.getenv("NVIDIA_API_KEY")
)
elif self.provider == "groq":
self.llm = ChatGroq(
model="llama3-70b-8192",
api_key=os.getenv("GROQ_API_KEY")
)
elif self.provider == "google":
self.llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0.1,
max_tokens=1024,
api_key=os.getenv("GOOGLE_API_KEY"),
streaming=False
)
elif self.provider == "openai":
self.llm = ChatOpenAI(
model="gpt-3.5-turbo",
api_key=os.getenv("OPENAI_API_KEY")
)
else:
raise ValueError("Unsupported provider. Choose from: nvidia, groq, google, openai.")
self.instructions = (
"You are a helpful assistant. For every question, reply with only the answer—no explanation, "
"no units, and no extra words. If the answer is a number, just return the number. "
"If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. "
"Do not include any prefix, suffix, or explanation."
)
print(f"BasicAgent initialized with provider: {self.provider}")
def __call__(self, question: str) -> str:
prompt = f"{self.instructions}\n\n{question}"
print(f"Agent received question (first 50 chars): {question[:50]}...")
response = self.llm.invoke(prompt)
answer = response.content.strip() if hasattr(response, "content") else str(response)
# Remove "FINAL ANSWER:" or similar prefixes if present
for prefix in ["FINAL ANSWER:", "Final answer:", "final answer:"]:
if answer.lower().startswith(prefix.lower()):
answer = answer[len(prefix):].strip()
print(f"Agent returning answer: {answer}")
return answer
def run_and_submit_all(profile: gr.OAuthProfile | None, provider="nvidia"):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID") # For codebase link
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent(provider=provider)
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Select your preferred provider and click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit" button, it can take quite some time (this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance, for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
"""
)
gr.LoginButton()
provider_dropdown = gr.Dropdown(
choices=["nvidia", "groq", "google", "openai"],
value="nvidia",
label="Choose LLM Provider"
)
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=lambda profile, provider: run_and_submit_all(profile, provider),
inputs=[gr.OAuthProfile(), provider_dropdown],
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)