josondev's picture
Update veryfinal.py
58a708e verified
"""
Enhanced Agno Multi-LLM Agent System with NVIDIA Integration
Uses open-source models + NVIDIA NIM models available through Agno framework
"""
import os
import time
import random
import operator
from typing import List, Dict, Any, TypedDict, Annotated, Optional
from dotenv import load_dotenv
from datetime import datetime
from textwrap import dedent
# Core LangChain imports for compatibility
from langchain_core.tools import tool
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
# Agno imports for open-source models + NVIDIA
try:
from agno.agent import Agent
from agno.models.groq import Groq
from agno.models.ollama import Ollama
from agno.models.together import Together
from agno.models.anyscale import Anyscale
from agno.models.huggingface import HuggingFaceChat
from agno.models.nvidia import Nvidia # NVIDIA NIM integration
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.tools.wikipedia import WikipediaTools
from agno.tools.calculator import Calculator
from agno.tools.reasoning import ReasoningTools
from agno.memory import AgentMemory
from agno.storage import AgentStorage
from agno.knowledge import AgentKnowledge
AGNO_AVAILABLE = True
except ImportError:
AGNO_AVAILABLE = False
print("Agno not available. Install with: pip install agno")
# Vector database imports
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
import json
load_dotenv()
# Enhanced system prompt for Agno agents
AGNO_SYSTEM_PROMPT = dedent("""\
You are a helpful assistant tasked with answering questions using available tools.
You must provide accurate, comprehensive answers based on available information.
Your capabilities include:
- Using search tools to find current information
- Performing mathematical calculations
- Reasoning through complex problems step by step
- Accessing Wikipedia for encyclopedic knowledge
Guidelines:
1. Use available tools to gather information when needed
2. Provide precise, factual answers
3. For numbers: don't use commas or units unless specified
4. For strings: don't use articles or abbreviations, write digits in plain text
5. For lists: apply above rules based on element type
6. Always end with 'FINAL ANSWER: [YOUR ANSWER]'
7. Be concise but thorough in your reasoning
8. If you cannot find the answer, state that clearly
""")
# ---- Enhanced Model Manager with NVIDIA Support ----
class AgnoEnhancedModelManager:
"""Manages open-source models + NVIDIA NIM models available through Agno"""
def __init__(self):
self.available_models = {}
self._initialize_all_models()
def _initialize_all_models(self):
"""Initialize open-source models + NVIDIA NIM models through Agno"""
if not AGNO_AVAILABLE:
return
# 1. NVIDIA NIM Models (Enterprise-grade open-source models)
if os.getenv("NVIDIA_API_KEY"):
try:
# NVIDIA NIM provides access to optimized open-source models
self.available_models['nvidia_llama3_70b'] = Nvidia(id="meta/llama3-70b-instruct")
self.available_models['nvidia_llama3_8b'] = Nvidia(id="meta/llama3-8b-instruct")
self.available_models['nvidia_mixtral'] = Nvidia(id="mistralai/mixtral-8x7b-instruct-v0.1")
self.available_models['nvidia_codellama'] = Nvidia(id="meta/codellama-70b-instruct")
self.available_models['nvidia_gemma'] = Nvidia(id="google/gemma-7b-it")
self.available_models['nvidia_yi'] = Nvidia(id="01-ai/yi-34b-chat")
print("NVIDIA NIM models initialized")
except Exception as e:
print(f"NVIDIA models not available: {e}")
# 2. Groq (Free tier with open-source models)
if os.getenv("GROQ_API_KEY"):
try:
self.available_models['groq_llama3_70b'] = Groq(id="llama3-70b-8192")
self.available_models['groq_llama3_8b'] = Groq(id="llama3-8b-8192")
self.available_models['groq_mixtral'] = Groq(id="mixtral-8x7b-32768")
self.available_models['groq_gemma'] = Groq(id="gemma-7b-it")
print("Groq open-source models initialized")
except Exception as e:
print(f"Groq models not available: {e}")
# 3. Ollama (Completely free local models)
try:
self.available_models['ollama_llama3'] = Ollama(id="llama3")
self.available_models['ollama_llama3_70b'] = Ollama(id="llama3:70b")
self.available_models['ollama_mistral'] = Ollama(id="mistral")
self.available_models['ollama_phi3'] = Ollama(id="phi3")
self.available_models['ollama_codellama'] = Ollama(id="codellama")
self.available_models['ollama_gemma'] = Ollama(id="gemma")
self.available_models['ollama_qwen'] = Ollama(id="qwen")
print("Ollama local models initialized")
except Exception as e:
print(f"Ollama models not available: {e}")
# 4. Together AI (Open-source models)
if os.getenv("TOGETHER_API_KEY"):
try:
self.available_models['together_llama3_70b'] = Together(id="meta-llama/Llama-3-70b-chat-hf")
self.available_models['together_llama3_8b'] = Together(id="meta-llama/Llama-3-8b-chat-hf")
self.available_models['together_mistral'] = Together(id="mistralai/Mistral-7B-Instruct-v0.1")
self.available_models['together_qwen'] = Together(id="Qwen/Qwen2-72B-Instruct")
print("Together AI open-source models initialized")
except Exception as e:
print(f"Together AI models not available: {e}")
# 5. Anyscale (Open-source models)
if os.getenv("ANYSCALE_API_KEY"):
try:
self.available_models['anyscale_llama3_70b'] = Anyscale(id="meta-llama/Llama-3-70b-chat-hf")
self.available_models['anyscale_mistral'] = Anyscale(id="mistralai/Mistral-7B-Instruct-v0.1")
print("Anyscale open-source models initialized")
except Exception as e:
print(f"Anyscale models not available: {e}")
# 6. Hugging Face (Open-source models)
try:
if os.getenv("HUGGINGFACE_API_KEY"):
self.available_models['hf_llama3_8b'] = HuggingFaceChat(id="meta-llama/Meta-Llama-3-8B-Instruct")
self.available_models['hf_mistral'] = HuggingFaceChat(id="mistralai/Mistral-7B-Instruct-v0.1")
print("Hugging Face open-source models initialized")
except Exception as e:
print(f"Hugging Face models not available: {e}")
print(f"Total available models: {len(self.available_models)}")
def get_model(self, model_name: str):
"""Get a specific model by name"""
return self.available_models.get(model_name)
def list_available_models(self) -> List[str]:
"""List all available model names"""
return list(self.available_models.keys())
def get_best_model_for_task(self, task_type: str):
"""Get the best available model for a specific task type"""
if task_type == "reasoning":
# Prefer larger, more capable models for reasoning
for model_name in ['nvidia_llama3_70b', 'groq_llama3_70b', 'together_llama3_70b', 'anyscale_llama3_70b', 'ollama_llama3_70b']:
if model_name in self.available_models:
return self.available_models[model_name]
elif task_type == "coding":
# Prefer code-specialized models
for model_name in ['nvidia_codellama', 'ollama_codellama', 'nvidia_llama3_70b', 'groq_llama3_70b']:
if model_name in self.available_models:
return self.available_models[model_name]
elif task_type == "fast":
# Prefer fast, smaller models
for model_name in ['groq_llama3_8b', 'nvidia_llama3_8b', 'groq_gemma', 'ollama_phi3', 'hf_llama3_8b']:
if model_name in self.available_models:
return self.available_models[model_name]
elif task_type == "enterprise":
# Prefer NVIDIA NIM for enterprise-grade tasks
for model_name in ['nvidia_llama3_70b', 'nvidia_mixtral', 'nvidia_codellama']:
if model_name in self.available_models:
return self.available_models[model_name]
# Default fallback to first available
if self.available_models:
return list(self.available_models.values())[0]
return None
# ---- Enhanced Specialized Agno Agents with NVIDIA ----
class AgnoEnhancedAgentSystem:
"""System of specialized Agno agents using open-source + NVIDIA models"""
def __init__(self):
self.model_manager = AgnoEnhancedModelManager()
self.agents = {}
self._create_specialized_agents()
def _create_specialized_agents(self):
"""Create specialized agents for different tasks using best available models"""
if not AGNO_AVAILABLE:
print("Agno not available, agents cannot be created")
return
# Enterprise Research Agent (NVIDIA preferred)
enterprise_model = self.model_manager.get_best_model_for_task("enterprise")
if enterprise_model:
self.agents['enterprise_research'] = Agent(
model=enterprise_model,
tools=[DuckDuckGoTools(), WikipediaTools(), ReasoningTools()],
description=dedent("""\
You are an enterprise-grade research specialist with access to optimized models.
Your expertise lies in comprehensive analysis, fact-checking, and providing
detailed, accurate responses for complex research tasks.
Your approach is:
- Enterprise-level accuracy and reliability
- Comprehensive and thorough analysis
- Multi-source verification
- Professional-grade output quality
"""),
instructions=dedent("""\
1. Use advanced reasoning capabilities for complex analysis
2. Cross-reference multiple sources for maximum accuracy
3. Provide comprehensive, well-structured responses
4. Include confidence levels and source reliability assessment
5. Always end with 'FINAL ANSWER: [your comprehensive answer]'
6. Prioritize accuracy and completeness over speed
"""),
memory=AgentMemory(),
markdown=True,
show_tool_calls=True,
add_datetime_to_instructions=True
)
# Advanced Math Agent (Best reasoning model)
math_model = self.model_manager.get_best_model_for_task("reasoning")
if math_model:
self.agents['advanced_math'] = Agent(
model=math_model,
tools=[Calculator(), ReasoningTools()],
description=dedent("""\
You are an advanced mathematics expert with access to powerful reasoning models.
You excel at complex mathematical problem solving, statistical analysis,
and providing step-by-step solutions with high accuracy.
Your approach is:
- Rigorous mathematical methodology
- Step-by-step problem decomposition
- High-precision calculations
- Clear mathematical communication
"""),
instructions=dedent("""\
1. Break down complex mathematical problems systematically
2. Use advanced reasoning for multi-step problems
3. Show detailed work and methodology
4. Verify calculations using multiple approaches when possible
5. Provide exact numerical answers without commas or units unless specified
6. Always end with 'FINAL ANSWER: [precise numerical result]'
"""),
memory=AgentMemory(),
markdown=True,
show_tool_calls=True
)
# Fast Response Agent (Optimized for speed)
fast_model = self.model_manager.get_best_model_for_task("fast")
if fast_model:
self.agents['fast_response'] = Agent(
model=fast_model,
tools=[DuckDuckGoTools(), WikipediaTools()],
description=dedent("""\
You are a rapid response specialist optimized for quick, accurate answers.
You provide concise, direct responses while maintaining high quality standards.
Your approach is:
- Speed-optimized processing
- Direct and concise communication
- Efficient tool usage
- Quality maintained at high speed
"""),
instructions=dedent("""\
1. Provide quick, accurate answers
2. Use tools efficiently - only when necessary
3. Be direct and avoid unnecessary elaboration
4. Maintain accuracy despite speed focus
5. Always end with 'FINAL ANSWER: [your concise answer]'
6. Prioritize clarity and correctness
"""),
markdown=True,
show_tool_calls=False
)
# Advanced Coding Agent (Code-specialized model)
coding_model = self.model_manager.get_best_model_for_task("coding")
if coding_model:
self.agents['advanced_coding'] = Agent(
model=coding_model,
tools=[ReasoningTools()],
description=dedent("""\
You are an advanced programming expert with access to code-specialized models.
You excel at complex code generation, algorithm design, debugging, and
software architecture recommendations.
Your approach is:
- Advanced programming methodologies
- Clean, efficient code generation
- Comprehensive error handling
- Best practices implementation
"""),
instructions=dedent("""\
1. Write production-quality, well-documented code
2. Follow industry best practices and design patterns
3. Include comprehensive error handling and edge cases
4. Provide clear explanations of code logic
5. Consider performance, security, and maintainability
6. Always end with 'FINAL ANSWER: [your code solution]'
"""),
memory=AgentMemory(),
markdown=True,
show_tool_calls=True
)
# Standard Research Agent (Fallback)
research_model = self.model_manager.get_best_model_for_task("reasoning")
if research_model and 'enterprise_research' not in self.agents:
self.agents['research'] = Agent(
model=research_model,
tools=[DuckDuckGoTools(), WikipediaTools(), ReasoningTools()],
description=dedent("""\
You are a research specialist with expertise in finding and analyzing information.
Your specialty lies in gathering comprehensive data from multiple sources.
"""),
instructions=dedent("""\
1. Use search tools to find current and relevant information
2. Apply systematic reasoning to analyze findings
3. Provide comprehensive answers with sources
4. Always end with 'FINAL ANSWER: [your answer]'
"""),
memory=AgentMemory(),
markdown=True,
show_tool_calls=True
)
print(f"Created {len(self.agents)} specialized Agno agents with enhanced models")
def route_query(self, query: str) -> str:
"""Route query to the most appropriate agent"""
q_lower = query.lower()
# Route to specialized agents
if any(keyword in q_lower for keyword in ["calculate", "math", "multiply", "add", "subtract", "divide", "compute", "statistical"]):
if 'advanced_math' in self.agents:
return self._query_agent('advanced_math', query)
elif 'math' in self.agents:
return self._query_agent('math', query)
elif any(keyword in q_lower for keyword in ["code", "programming", "function", "algorithm", "python", "javascript", "debug"]):
if 'advanced_coding' in self.agents:
return self._query_agent('advanced_coding', query)
elif 'coding' in self.agents:
return self._query_agent('coding', query)
elif any(keyword in q_lower for keyword in ["enterprise", "analysis", "comprehensive", "detailed", "professional"]):
if 'enterprise_research' in self.agents:
return self._query_agent('enterprise_research', query)
elif any(keyword in q_lower for keyword in ["research", "find", "search", "information", "study", "analyze"]):
if 'enterprise_research' in self.agents:
return self._query_agent('enterprise_research', query)
elif 'research' in self.agents:
return self._query_agent('research', query)
elif len(query.split()) < 10: # Simple queries
if 'fast_response' in self.agents:
return self._query_agent('fast_response', query)
elif 'fast' in self.agents:
return self._query_agent('fast', query)
# Default to best available agent
if 'enterprise_research' in self.agents:
return self._query_agent('enterprise_research', query)
elif 'research' in self.agents:
return self._query_agent('research', query)
elif self.agents:
agent_name = list(self.agents.keys())[0]
return self._query_agent(agent_name, query)
return "No agents available"
def _query_agent(self, agent_name: str, query: str) -> str:
"""Query a specific agent"""
try:
agent = self.agents[agent_name]
response = agent.run(query)
# Extract final answer if present
if "FINAL ANSWER:" in response:
return response.split("FINAL ANSWER:")[-1].strip()
return response.strip()
except Exception as e:
return f"Error with {agent_name} agent: {e}"
def get_system_info(self) -> Dict[str, Any]:
"""Get information about available agents and models"""
model_breakdown = {
"nvidia_models": [m for m in self.model_manager.list_available_models() if m.startswith("nvidia_")],
"groq_models": [m for m in self.model_manager.list_available_models() if m.startswith("groq_")],
"ollama_models": [m for m in self.model_manager.list_available_models() if m.startswith("ollama_")],
"together_models": [m for m in self.model_manager.list_available_models() if m.startswith("together_")],
"anyscale_models": [m for m in self.model_manager.list_available_models() if m.startswith("anyscale_")],
"hf_models": [m for m in self.model_manager.list_available_models() if m.startswith("hf_")]
}
return {
"available_models": self.model_manager.list_available_models(),
"model_breakdown": model_breakdown,
"active_agents": list(self.agents.keys()),
"agno_available": AGNO_AVAILABLE,
"total_models": len(self.model_manager.available_models),
"nvidia_available": len(model_breakdown["nvidia_models"]) > 0
}
# ---- Enhanced Agent State for LangGraph compatibility ----
class EnhancedAgentState(TypedDict):
"""State structure for compatibility with existing system."""
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
perf: Dict[str, Any]
tools_used: List[str]
reasoning: str
model_used: str
# ---- Unified System with Enhanced NVIDIA Integration ----
class UnifiedAgnoEnhancedSystem:
"""Unified system that integrates Agno agents with NVIDIA + open-source models"""
def __init__(self):
if AGNO_AVAILABLE:
print("Using enhanced Agno-based system with NVIDIA + open-source models")
self.agno_system = AgnoEnhancedAgentSystem()
self.graph = self._build_compatibility_graph()
else:
print("Agno not available")
self.agno_system = None
self.graph = None
def _build_compatibility_graph(self):
"""Build LangGraph for compatibility with existing app.py"""
def process_node(state: EnhancedAgentState) -> EnhancedAgentState:
"""Process query through enhanced Agno system"""
query = state.get("query", "")
if self.agno_system:
answer = self.agno_system.route_query(query)
return {**state, "final_answer": answer}
else:
return {**state, "final_answer": "Enhanced Agno system not available"}
g = StateGraph(EnhancedAgentState)
g.add_node("process", process_node)
g.set_entry_point("process")
g.add_edge("process", END)
return g.compile(checkpointer=MemorySaver())
def process_query(self, query: str) -> str:
"""Process query through the unified enhanced system"""
if self.agno_system:
return self.agno_system.route_query(query)
else:
return "Enhanced Agno system not available"
def get_system_info(self) -> Dict[str, Any]:
"""Get information about the current enhanced system"""
if self.agno_system:
return self.agno_system.get_system_info()
else:
return {"system": "agno_unavailable", "agno_available": False}
# ---- Build Graph Function (for compatibility) ----
def build_graph(provider: str = "agno_enhanced"):
"""Build graph using enhanced Agno models including NVIDIA"""
system = UnifiedAgnoEnhancedSystem()
return system.graph if system.graph else None
# ---- Main execution ----
if __name__ == "__main__":
# Initialize the enhanced unified system
system = UnifiedAgnoEnhancedSystem()
# Print system information
info = system.get_system_info()
print("Enhanced Agno System Information:")
for key, value in info.items():
if isinstance(value, dict):
print(f" {key}:")
for subkey, subvalue in value.items():
print(f" {subkey}: {subvalue}")
else:
print(f" {key}: {value}")
# Test queries
test_questions = [
"Enterprise analysis: What is 25 multiplied by 17?",
"Research the latest developments in quantum computing",
"Write an advanced Python function to calculate factorial with error handling",
"Find comprehensive information about Mercedes Sosa albums between 2000-2009",
"Quick answer: What is the capital of France?"
]
print("\n" + "="*60)
print("Testing Enhanced Agno Multi-LLM System with NVIDIA")
print("="*60)
for i, question in enumerate(test_questions, 1):
print(f"\nQuestion {i}: {question}")
print("-" * 50)
answer = system.process_query(question)
print(f"Answer: {answer}")