Update veryfinal.py
Browse files- veryfinal.py +121 -234
veryfinal.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
"""Enhanced LangGraph + Agno Hybrid Agent System"""
|
2 |
import os
|
3 |
import time
|
4 |
import random
|
@@ -6,160 +5,49 @@ from dotenv import load_dotenv
|
|
6 |
from typing import List, Dict, Any, TypedDict, Annotated
|
7 |
import operator
|
8 |
|
9 |
-
# LangGraph imports
|
10 |
-
from langgraph.graph import START, StateGraph, MessagesState
|
11 |
-
from langgraph.prebuilt import tools_condition, ToolNode
|
12 |
-
from langgraph.checkpoint.memory import MemorySaver
|
13 |
-
|
14 |
-
# LangChain imports
|
15 |
-
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
16 |
from langchain_core.tools import tool
|
17 |
-
from langchain_groq import ChatGroq
|
18 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
19 |
-
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
|
20 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
21 |
-
from langchain_community.document_loaders import WikipediaLoader
|
22 |
-
from langchain_community.vectorstores import
|
23 |
from langchain.tools.retriever import create_retriever_tool
|
24 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
from
|
28 |
-
from agno.models.groq import GroqChat
|
29 |
-
from agno.models.google import GeminiChat
|
30 |
-
from agno.tools.tavily import TavilyTools
|
31 |
-
from agno.memory.agent import AgentMemory
|
32 |
-
from agno.storage.sqlite import SqliteStorage
|
33 |
-
from agno.memory.v2.db.sqlite import SqliteMemoryDb # Correct import for memory DB
|
34 |
-
|
35 |
-
load_dotenv()
|
36 |
-
|
37 |
-
# Rate limiter with exponential backoff
|
38 |
-
class PerformanceRateLimiter:
|
39 |
-
def __init__(self, rpm: int, name: str):
|
40 |
-
self.rpm = rpm
|
41 |
-
self.name = name
|
42 |
-
self.times: List[float] = []
|
43 |
-
self.failures = 0
|
44 |
-
|
45 |
-
def wait_if_needed(self):
|
46 |
-
now = time.time()
|
47 |
-
self.times = [t for t in self.times if now - t < 60]
|
48 |
-
if len(self.times) >= self.rpm:
|
49 |
-
wait = 60 - (now - self.times[0]) + random.uniform(1, 3)
|
50 |
-
time.sleep(wait)
|
51 |
-
if self.failures:
|
52 |
-
backoff = min(2 ** self.failures, 30) + random.uniform(0.5, 1.5)
|
53 |
-
time.sleep(backoff)
|
54 |
-
self.times.append(now)
|
55 |
-
|
56 |
-
def record_success(self):
|
57 |
-
self.failures = 0
|
58 |
-
|
59 |
-
def record_failure(self):
|
60 |
-
self.failures += 1
|
61 |
-
|
62 |
-
# Initialize rate limiters
|
63 |
-
gemini_limiter = PerformanceRateLimiter(28, "Gemini")
|
64 |
-
groq_limiter = PerformanceRateLimiter(28, "Groq")
|
65 |
-
nvidia_limiter = PerformanceRateLimiter(4, "NVIDIA")
|
66 |
-
|
67 |
-
# Create Agno agents with corrected SQLite storage and memory
|
68 |
-
def create_agno_agents():
|
69 |
-
# 1. Storage for the agent's overall state (conversations, etc.)
|
70 |
-
storage = SqliteStorage(
|
71 |
-
table_name="agent_sessions",
|
72 |
-
db_file="tmp/agent_sessions.db",
|
73 |
-
auto_upgrade_schema=True
|
74 |
-
)
|
75 |
-
# 2. A separate database for the agent's memory
|
76 |
-
memory_db = SqliteMemoryDb(db_file="tmp/agent_memory.db")
|
77 |
-
|
78 |
-
# 3. The AgentMemory object, which uses the memory_db
|
79 |
-
agent_memory = AgentMemory(
|
80 |
-
db=memory_db, # Pass the SqliteMemoryDb here
|
81 |
-
create_user_memories=True,
|
82 |
-
create_session_summary=True
|
83 |
-
)
|
84 |
-
|
85 |
-
math_agent = Agent(
|
86 |
-
name="MathSpecialist",
|
87 |
-
model=GroqChat(
|
88 |
-
model="llama-3.3-70b-versatile",
|
89 |
-
api_key=os.getenv("GROQ_API_KEY"),
|
90 |
-
temperature=0
|
91 |
-
),
|
92 |
-
description="Expert mathematical problem solver",
|
93 |
-
instructions=[
|
94 |
-
"Solve math problems with precision",
|
95 |
-
"Show step-by-step calculations",
|
96 |
-
"Finish with: FINAL ANSWER: [result]"
|
97 |
-
],
|
98 |
-
storage=storage, # Use SqliteStorage for the agent's persistence
|
99 |
-
memory=agent_memory, # Use the configured AgentMemory
|
100 |
-
show_tool_calls=False,
|
101 |
-
markdown=False
|
102 |
-
)
|
103 |
-
research_agent = Agent(
|
104 |
-
name="ResearchSpecialist",
|
105 |
-
model=GeminiChat(
|
106 |
-
model="gemini-2.0-flash-lite",
|
107 |
-
api_key=os.getenv("GOOGLE_API_KEY"),
|
108 |
-
temperature=0
|
109 |
-
),
|
110 |
-
description="Expert research and information gathering specialist",
|
111 |
-
instructions=[
|
112 |
-
"Conduct thorough research using available tools",
|
113 |
-
"Synthesize information from multiple sources",
|
114 |
-
"Finish with: FINAL ANSWER: [answer]"
|
115 |
-
],
|
116 |
-
tools=[
|
117 |
-
TavilyTools(
|
118 |
-
api_key=os.getenv("TAVILY_API_KEY"),
|
119 |
-
search=True,
|
120 |
-
max_tokens=6000,
|
121 |
-
search_depth="advanced",
|
122 |
-
format="markdown"
|
123 |
-
)
|
124 |
-
],
|
125 |
-
storage=storage, # Use the same storage for persistence
|
126 |
-
memory=agent_memory, # Use the same memory configuration
|
127 |
-
show_tool_calls=False,
|
128 |
-
markdown=False
|
129 |
-
)
|
130 |
-
return {"math": math_agent, "research": research_agent}
|
131 |
|
132 |
-
#
|
133 |
@tool
|
134 |
def multiply(a: int, b: int) -> int:
|
135 |
-
"""Multiply two
|
136 |
return a * b
|
137 |
|
138 |
@tool
|
139 |
def add(a: int, b: int) -> int:
|
140 |
-
"""Add two
|
141 |
return a + b
|
142 |
|
143 |
@tool
|
144 |
def subtract(a: int, b: int) -> int:
|
145 |
-
"""Subtract
|
146 |
return a - b
|
147 |
|
148 |
@tool
|
149 |
def divide(a: int, b: int) -> float:
|
150 |
-
"""Divide
|
151 |
if b == 0:
|
152 |
raise ValueError("Cannot divide by zero.")
|
153 |
return a / b
|
154 |
|
155 |
@tool
|
156 |
def modulus(a: int, b: int) -> int:
|
157 |
-
"""Return the remainder of
|
158 |
return a % b
|
159 |
|
160 |
@tool
|
161 |
def optimized_web_search(query: str) -> str:
|
162 |
-
"""
|
163 |
try:
|
164 |
time.sleep(random.uniform(1, 2))
|
165 |
docs = TavilySearchResults(max_results=2).invoke(query=query)
|
@@ -172,7 +60,7 @@ def optimized_web_search(query: str) -> str:
|
|
172 |
|
173 |
@tool
|
174 |
def optimized_wiki_search(query: str) -> str:
|
175 |
-
"""
|
176 |
try:
|
177 |
time.sleep(random.uniform(0.5, 1))
|
178 |
docs = WikipediaLoader(query=query, load_max_docs=1).load()
|
@@ -183,24 +71,45 @@ def optimized_wiki_search(query: str) -> str:
|
|
183 |
except Exception as e:
|
184 |
return f"Wikipedia search failed: {e}"
|
185 |
|
186 |
-
#
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
try:
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
201 |
except Exception as e:
|
202 |
-
|
203 |
-
|
|
|
204 |
|
205 |
class EnhancedAgentState(TypedDict):
|
206 |
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
|
@@ -210,117 +119,95 @@ class EnhancedAgentState(TypedDict):
|
|
210 |
perf: Dict[str,Any]
|
211 |
agno_resp: str
|
212 |
|
213 |
-
class
|
214 |
def __init__(self):
|
215 |
-
self.agno = create_agno_agents()
|
216 |
-
self.store = setup_faiss()
|
217 |
self.tools = [
|
218 |
multiply, add, subtract, divide, modulus,
|
219 |
optimized_web_search, optimized_wiki_search
|
220 |
]
|
221 |
-
if self.store:
|
222 |
-
retr = self.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
|
223 |
-
self.tools.append(create_retriever_tool(
|
224 |
-
retriever=retr,
|
225 |
-
name="Question_Search",
|
226 |
-
description="Retrieve similar questions"
|
227 |
-
))
|
228 |
self.graph = self._build_graph()
|
229 |
|
230 |
def _build_graph(self):
|
231 |
-
groq_llm = ChatGroq(model="
|
232 |
-
|
233 |
-
nvidia_llm = ChatNVIDIA(model="meta/llama-3.1-70b-instruct", temperature=0)
|
234 |
|
235 |
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
236 |
q = st["query"].lower()
|
237 |
-
if
|
238 |
-
elif
|
239 |
-
elif
|
240 |
-
|
|
|
|
|
241 |
return {**st, "agent_type": t}
|
242 |
|
243 |
-
def
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
resp=self.agno["research"].run(st["query"],stream=False)
|
272 |
-
return {**st, "final_answer":resp, "perf":{"time":time.time()-t0,"prov":"Agno-General"}}
|
273 |
|
274 |
def pick(st: EnhancedAgentState) -> str:
|
275 |
return st["agent_type"]
|
276 |
|
277 |
-
g=StateGraph(EnhancedAgentState)
|
278 |
-
g.add_node("router",router)
|
279 |
-
g.add_node("
|
280 |
-
g.add_node("
|
281 |
-
g.add_node("
|
282 |
-
g.add_node("
|
|
|
283 |
g.set_entry_point("router")
|
284 |
-
g.add_conditional_edges("router",pick,{
|
285 |
-
"
|
286 |
-
"
|
|
|
|
|
|
|
287 |
})
|
288 |
-
for n in ["
|
289 |
-
g.add_edge(n,
|
290 |
return g.compile(checkpointer=MemorySaver())
|
291 |
|
292 |
-
def process_query(self, q: str) ->
|
293 |
-
state={
|
294 |
-
"messages":[HumanMessage(content=q)],
|
295 |
-
"query":q,
|
296 |
-
"
|
|
|
|
|
|
|
297 |
}
|
298 |
-
cfg={"configurable":{"thread_id":f"hyb_{hash(q)}"}}
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
def build_graph(provider: str = "hybrid"):
|
310 |
-
"""
|
311 |
-
Build and return the StateGraph for the requested provider.
|
312 |
-
- "hybrid", "groq", "google", and "nvidia" are all valid and
|
313 |
-
will return the full HybridLangGraphAgnoSystem graph.
|
314 |
-
"""
|
315 |
-
if provider in ("hybrid", "groq", "google", "nvidia"):
|
316 |
-
return HybridLangGraphAgnoSystem().graph
|
317 |
-
else:
|
318 |
-
raise ValueError(f"Unsupported provider: '{provider}'. Please use 'hybrid', 'groq', 'google', or 'nvidia'.")
|
319 |
-
|
320 |
-
# Test
|
321 |
-
if __name__=="__main__":
|
322 |
-
graph=build_graph()
|
323 |
-
msgs=[HumanMessage(content="What are the names of the US presidents who were assassinated?")]
|
324 |
-
res=graph.invoke({"messages":msgs},{"configurable":{"thread_id":"test"}})
|
325 |
-
for m in res["messages"]:
|
326 |
-
m.pretty_print()
|
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import random
|
|
|
5 |
from typing import List, Dict, Any, TypedDict, Annotated
|
6 |
import operator
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from langchain_core.tools import tool
|
|
|
|
|
|
|
9 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
10 |
+
from langchain_community.document_loaders import WikipediaLoader
|
11 |
+
from langchain_community.vectorstores import Chroma
|
12 |
from langchain.tools.retriever import create_retriever_tool
|
13 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
14 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
15 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
16 |
|
17 |
+
from langgraph.graph import StateGraph, START, END
|
18 |
+
from langgraph.checkpoint.memory import MemorySaver
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# ---- Tool Definitions ----
|
21 |
@tool
|
22 |
def multiply(a: int, b: int) -> int:
|
23 |
+
"""Multiply two integers and return the product."""
|
24 |
return a * b
|
25 |
|
26 |
@tool
|
27 |
def add(a: int, b: int) -> int:
|
28 |
+
"""Add two integers and return the sum."""
|
29 |
return a + b
|
30 |
|
31 |
@tool
|
32 |
def subtract(a: int, b: int) -> int:
|
33 |
+
"""Subtract the second integer from the first and return the difference."""
|
34 |
return a - b
|
35 |
|
36 |
@tool
|
37 |
def divide(a: int, b: int) -> float:
|
38 |
+
"""Divide the first integer by the second and return the quotient."""
|
39 |
if b == 0:
|
40 |
raise ValueError("Cannot divide by zero.")
|
41 |
return a / b
|
42 |
|
43 |
@tool
|
44 |
def modulus(a: int, b: int) -> int:
|
45 |
+
"""Return the remainder of the division of the first integer by the second."""
|
46 |
return a % b
|
47 |
|
48 |
@tool
|
49 |
def optimized_web_search(query: str) -> str:
|
50 |
+
"""Perform an optimized web search using TavilySearchResults and return concatenated document snippets."""
|
51 |
try:
|
52 |
time.sleep(random.uniform(1, 2))
|
53 |
docs = TavilySearchResults(max_results=2).invoke(query=query)
|
|
|
60 |
|
61 |
@tool
|
62 |
def optimized_wiki_search(query: str) -> str:
|
63 |
+
"""Perform an optimized Wikipedia search and return concatenated document snippets."""
|
64 |
try:
|
65 |
time.sleep(random.uniform(0.5, 1))
|
66 |
docs = WikipediaLoader(query=query, load_max_docs=1).load()
|
|
|
71 |
except Exception as e:
|
72 |
return f"Wikipedia search failed: {e}"
|
73 |
|
74 |
+
# ---- LLM Integrations ----
|
75 |
+
load_dotenv()
|
76 |
+
|
77 |
+
# Groq (Llama 3, DeepSeek, etc. via LangChain integration)
|
78 |
+
from langchain_groq import ChatGroq
|
79 |
+
|
80 |
+
# NVIDIA NIM (LangChain integration)
|
81 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
82 |
+
|
83 |
+
from google import genai
|
84 |
+
|
85 |
+
# DeepSeek (via Ollama or API)
|
86 |
+
import requests
|
87 |
+
|
88 |
+
# Baidu ERNIE (assume open source API, use requests as placeholder)
|
89 |
+
def baidu_ernie_generate(prompt, api_key=None):
|
90 |
+
"""Call Baidu ERNIE open source API (pseudo-code, replace with actual endpoint and params)."""
|
91 |
+
# Example endpoint and payload for demonstration purposes only:
|
92 |
+
url = "https://api.baidu.com/ernie/v1/generate"
|
93 |
+
headers = {"Authorization": f"Bearer {api_key}"}
|
94 |
+
data = {"model": "ernie-4.5", "prompt": prompt}
|
95 |
try:
|
96 |
+
resp = requests.post(url, headers=headers, json=data, timeout=30)
|
97 |
+
return resp.json().get("result", "")
|
98 |
+
except Exception as e:
|
99 |
+
return f"ERNIE API error: {e}"
|
100 |
+
|
101 |
+
def deepseek_generate(prompt, api_key=None):
|
102 |
+
"""Call DeepSeek open source API (pseudo-code, replace with actual endpoint and params)."""
|
103 |
+
url = "https://api.deepseek.com/v1/chat/completions"
|
104 |
+
headers = {"Authorization": f"Bearer {api_key}"}
|
105 |
+
data = {"model": "deepseek-chat", "messages": [{"role": "user", "content": prompt}]}
|
106 |
+
try:
|
107 |
+
resp = requests.post(url, headers=headers, json=data, timeout=30)
|
108 |
+
return resp.json().get("choices", [{}])[0].get("message", {}).get("content", "")
|
109 |
except Exception as e:
|
110 |
+
return f"DeepSeek API error: {e}"
|
111 |
+
|
112 |
+
# ---- Graph State and System ----
|
113 |
|
114 |
class EnhancedAgentState(TypedDict):
|
115 |
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
|
|
|
119 |
perf: Dict[str,Any]
|
120 |
agno_resp: str
|
121 |
|
122 |
+
class HybridLangGraphMultiLLMSystem:
|
123 |
def __init__(self):
|
|
|
|
|
124 |
self.tools = [
|
125 |
multiply, add, subtract, divide, modulus,
|
126 |
optimized_web_search, optimized_wiki_search
|
127 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
self.graph = self._build_graph()
|
129 |
|
130 |
def _build_graph(self):
|
131 |
+
groq_llm = ChatGroq(model="llama3-70b-8192", temperature=0, api_key=os.getenv("GROQ_API_KEY"))
|
132 |
+
nvidia_llm = ChatNVIDIA(model="meta/llama3-70b-instruct", temperature=0, api_key=os.getenv("NVIDIA_API_KEY"))
|
|
|
133 |
|
134 |
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
135 |
q = st["query"].lower()
|
136 |
+
if "groq" in q: t = "groq"
|
137 |
+
elif "nvidia" in q: t = "nvidia"
|
138 |
+
elif "gemini" in q or "google" in q: t = "gemini"
|
139 |
+
elif "deepseek" in q: t = "deepseek"
|
140 |
+
elif "ernie" in q or "baidu" in q: t = "baidu"
|
141 |
+
else: t = "groq" # default
|
142 |
return {**st, "agent_type": t}
|
143 |
|
144 |
+
def groq_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
145 |
+
t0 = time.time()
|
146 |
+
sys = SystemMessage(content="Answer as an expert.")
|
147 |
+
res = groq_llm.invoke([sys, HumanMessage(content=st["query"])])
|
148 |
+
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "Groq"}}
|
149 |
+
|
150 |
+
def nvidia_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
151 |
+
t0 = time.time()
|
152 |
+
sys = SystemMessage(content="Answer as an expert.")
|
153 |
+
res = nvidia_llm.invoke([sys, HumanMessage(content=st["query"])])
|
154 |
+
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "NVIDIA"}}
|
155 |
+
|
156 |
+
def gemini_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
157 |
+
t0 = time.time()
|
158 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
159 |
+
model = genai.GenerativeModel("gemini-1.5-pro-latest")
|
160 |
+
res = model.generate_content(st["query"])
|
161 |
+
return {**st, "final_answer": res.text, "perf": {"time": time.time() - t0, "prov": "Gemini"}}
|
162 |
+
|
163 |
+
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
164 |
+
t0 = time.time()
|
165 |
+
resp = deepseek_generate(st["query"], api_key=os.getenv("DEEPSEEK_API_KEY"))
|
166 |
+
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "DeepSeek"}}
|
167 |
+
|
168 |
+
def baidu_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
169 |
+
t0 = time.time()
|
170 |
+
resp = baidu_ernie_generate(st["query"], api_key=os.getenv("BAIDU_API_KEY"))
|
171 |
+
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "ERNIE"}}
|
|
|
|
|
172 |
|
173 |
def pick(st: EnhancedAgentState) -> str:
|
174 |
return st["agent_type"]
|
175 |
|
176 |
+
g = StateGraph(EnhancedAgentState)
|
177 |
+
g.add_node("router", router)
|
178 |
+
g.add_node("groq", groq_node)
|
179 |
+
g.add_node("nvidia", nvidia_node)
|
180 |
+
g.add_node("gemini", gemini_node)
|
181 |
+
g.add_node("deepseek", deepseek_node)
|
182 |
+
g.add_node("baidu", baidu_node)
|
183 |
g.set_entry_point("router")
|
184 |
+
g.add_conditional_edges("router", pick, {
|
185 |
+
"groq": "groq",
|
186 |
+
"nvidia": "nvidia",
|
187 |
+
"gemini": "gemini",
|
188 |
+
"deepseek": "deepseek",
|
189 |
+
"baidu": "baidu"
|
190 |
})
|
191 |
+
for n in ["groq", "nvidia", "gemini", "deepseek", "baidu"]:
|
192 |
+
g.add_edge(n, END)
|
193 |
return g.compile(checkpointer=MemorySaver())
|
194 |
|
195 |
+
def process_query(self, q: str) -> str:
|
196 |
+
state = {
|
197 |
+
"messages": [HumanMessage(content=q)],
|
198 |
+
"query": q,
|
199 |
+
"agent_type": "",
|
200 |
+
"final_answer": "",
|
201 |
+
"perf": {},
|
202 |
+
"agno_resp": ""
|
203 |
}
|
204 |
+
cfg = {"configurable": {"thread_id": f"hyb_{hash(q)}"}}
|
205 |
+
out = self.graph.invoke(state, cfg)
|
206 |
+
raw_answer = out["final_answer"]
|
207 |
+
parts = raw_answer.split('\n\n', 1)
|
208 |
+
answer_part = parts[1].strip() if len(parts) > 1 else raw_answer.strip()
|
209 |
+
return answer_part
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
query = "What are the names of the US presidents who were assassinated? (groq)"
|
213 |
+
print("LangGraph Hybrid:", HybridLangGraphMultiLLMSystem().process_query(query))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|