Update app.py
Browse files
app.py
CHANGED
@@ -2,43 +2,82 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
|
|
5 |
from dotenv import load_dotenv
|
6 |
-
from
|
7 |
-
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
8 |
|
9 |
# Load environment variables
|
10 |
load_dotenv()
|
11 |
|
12 |
-
# ---
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
self.
|
19 |
-
self.instructions =
|
|
|
20 |
"no units, and no extra words. If the answer is a number, just return the number. "
|
21 |
"If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. "
|
22 |
-
"Do not include any prefix, suffix, or explanation."
|
23 |
-
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
prompt = f"{self.instructions}\n\n{question}"
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
36 |
-
""
|
37 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
38 |
-
and displays the results.
|
39 |
-
"""
|
40 |
-
space_id = os.getenv("SPACE_ID") # For codebase link
|
41 |
-
|
42 |
if profile:
|
43 |
username = f"{profile.username}"
|
44 |
print(f"User logged in: {username}")
|
@@ -50,9 +89,8 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
50 |
questions_url = f"{api_url}/questions"
|
51 |
submit_url = f"{api_url}/submit"
|
52 |
|
53 |
-
# 1. Instantiate Agent
|
54 |
try:
|
55 |
-
agent =
|
56 |
except Exception as e:
|
57 |
print(f"Error instantiating agent: {e}")
|
58 |
return f"Error initializing agent: {e}", None
|
@@ -60,7 +98,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
60 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
61 |
print(agent_code)
|
62 |
|
63 |
-
# 2. Fetch Questions
|
64 |
print(f"Fetching questions from: {questions_url}")
|
65 |
try:
|
66 |
response = requests.get(questions_url, timeout=15)
|
@@ -81,18 +118,19 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
81 |
print(f"An unexpected error occurred fetching questions: {e}")
|
82 |
return f"An unexpected error occurred fetching questions: {e}", None
|
83 |
|
84 |
-
# 3. Run your Agent
|
85 |
results_log = []
|
86 |
answers_payload = []
|
87 |
print(f"Running agent on {len(questions_data)} questions...")
|
88 |
for item in questions_data:
|
89 |
task_id = item.get("task_id")
|
90 |
question_text = item.get("question")
|
|
|
|
|
91 |
if not task_id or question_text is None:
|
92 |
print(f"Skipping item with missing task_id or question: {item}")
|
93 |
continue
|
94 |
try:
|
95 |
-
submitted_answer = agent(question_text)
|
96 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
97 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
98 |
except Exception as e:
|
@@ -103,12 +141,10 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
103 |
print("Agent did not produce any answers to submit.")
|
104 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
105 |
|
106 |
-
# 4. Prepare Submission
|
107 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
108 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
109 |
print(status_update)
|
110 |
|
111 |
-
# 5. Submit
|
112 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
113 |
try:
|
114 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
@@ -163,7 +199,7 @@ with gr.Blocks() as demo:
|
|
163 |
---
|
164 |
**Disclaimers:**
|
165 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
166 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a
|
167 |
"""
|
168 |
)
|
169 |
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
+
import base64
|
6 |
from dotenv import load_dotenv
|
7 |
+
from groq import Groq
|
|
|
8 |
|
9 |
# Load environment variables
|
10 |
load_dotenv()
|
11 |
|
12 |
+
# --- Groq Multimodal Agent ---
|
13 |
+
class GroqMultimodalAgent:
|
14 |
+
def __init__(self):
|
15 |
+
self.client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
16 |
+
self.llava_model = "llava-v1.5-7b-4096-preview" # For image Q&A
|
17 |
+
self.llama_model = "llama-3-70b-8192" # For text Q&A
|
18 |
+
self.whisper_model = "whisper-large-v3" # For audio transcription
|
19 |
+
self.instructions = (
|
20 |
+
"You are a helpful assistant. For every question or media, reply with only the answer—no explanation, "
|
21 |
"no units, and no extra words. If the answer is a number, just return the number. "
|
22 |
"If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. "
|
23 |
+
"Do not include any prefix, suffix, or explanation."
|
24 |
+
)
|
25 |
|
26 |
+
def _encode_image(self, image_path):
|
27 |
+
with open(image_path, "rb") as img_file:
|
28 |
+
return base64.b64encode(img_file.read()).decode("utf-8")
|
29 |
|
30 |
+
def _process_image(self, image_path, question):
|
31 |
+
base64_image = self._encode_image(image_path)
|
32 |
+
prompt = f"{self.instructions}\n\n{question}"
|
33 |
+
chat_completion = self.client.chat.completions.create(
|
34 |
+
model=self.llava_model,
|
35 |
+
messages=[
|
36 |
+
{"role": "user", "content": [
|
37 |
+
{"type": "text", "text": prompt},
|
38 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
39 |
+
]}
|
40 |
+
]
|
41 |
+
)
|
42 |
+
answer = chat_completion.choices[0].message.content.strip()
|
43 |
+
return self._extract_final_answer(answer)
|
44 |
+
|
45 |
+
def _process_audio(self, audio_path):
|
46 |
+
with open(audio_path, "rb") as audio_file:
|
47 |
+
transcript = self.client.audio.transcriptions.create(
|
48 |
+
model=self.whisper_model,
|
49 |
+
file=audio_file
|
50 |
+
)
|
51 |
+
return transcript.text.strip()
|
52 |
+
|
53 |
+
def _process_text(self, question):
|
54 |
prompt = f"{self.instructions}\n\n{question}"
|
55 |
+
chat_completion = self.client.chat.completions.create(
|
56 |
+
model=self.llama_model,
|
57 |
+
messages=[{"role": "user", "content": prompt}]
|
58 |
+
)
|
59 |
+
answer = chat_completion.choices[0].message.content.strip()
|
60 |
+
return self._extract_final_answer(answer)
|
61 |
+
|
62 |
+
def _extract_final_answer(self, llm_output: str) -> str:
|
63 |
+
for prefix in ["FINAL ANSWER:", "Final answer:", "final answer:"]:
|
64 |
+
if llm_output.lower().startswith(prefix.lower()):
|
65 |
+
return llm_output[len(prefix):].strip()
|
66 |
+
return llm_output
|
67 |
+
|
68 |
+
def __call__(self, question: str, image_path: str = None, audio_path: str = None) -> str:
|
69 |
+
if image_path:
|
70 |
+
return self._process_image(image_path, question)
|
71 |
+
elif audio_path:
|
72 |
+
return self._process_audio(audio_path)
|
73 |
+
else:
|
74 |
+
return self._process_text(question)
|
75 |
+
|
76 |
+
# --- Gradio Leaderboard Submission App ---
|
77 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
78 |
|
79 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
80 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
|
|
|
|
|
|
|
|
81 |
if profile:
|
82 |
username = f"{profile.username}"
|
83 |
print(f"User logged in: {username}")
|
|
|
89 |
questions_url = f"{api_url}/questions"
|
90 |
submit_url = f"{api_url}/submit"
|
91 |
|
|
|
92 |
try:
|
93 |
+
agent = GroqMultimodalAgent()
|
94 |
except Exception as e:
|
95 |
print(f"Error instantiating agent: {e}")
|
96 |
return f"Error initializing agent: {e}", None
|
|
|
98 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
99 |
print(agent_code)
|
100 |
|
|
|
101 |
print(f"Fetching questions from: {questions_url}")
|
102 |
try:
|
103 |
response = requests.get(questions_url, timeout=15)
|
|
|
118 |
print(f"An unexpected error occurred fetching questions: {e}")
|
119 |
return f"An unexpected error occurred fetching questions: {e}", None
|
120 |
|
|
|
121 |
results_log = []
|
122 |
answers_payload = []
|
123 |
print(f"Running agent on {len(questions_data)} questions...")
|
124 |
for item in questions_data:
|
125 |
task_id = item.get("task_id")
|
126 |
question_text = item.get("question")
|
127 |
+
image_path = item.get("image_path", None)
|
128 |
+
audio_path = item.get("audio_path", None)
|
129 |
if not task_id or question_text is None:
|
130 |
print(f"Skipping item with missing task_id or question: {item}")
|
131 |
continue
|
132 |
try:
|
133 |
+
submitted_answer = agent(question_text, image_path=image_path, audio_path=audio_path)
|
134 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
135 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
136 |
except Exception as e:
|
|
|
141 |
print("Agent did not produce any answers to submit.")
|
142 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
143 |
|
|
|
144 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
145 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
146 |
print(status_update)
|
147 |
|
|
|
148 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
149 |
try:
|
150 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
199 |
---
|
200 |
**Disclaimers:**
|
201 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
202 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
|
203 |
"""
|
204 |
)
|
205 |
|