Update veryfinal.py
Browse files- veryfinal.py +314 -154
veryfinal.py
CHANGED
@@ -1,83 +1,133 @@
|
|
1 |
-
import os,
|
2 |
from dotenv import load_dotenv
|
3 |
-
from typing import
|
|
|
4 |
|
5 |
# Load environment variables
|
6 |
load_dotenv()
|
7 |
|
8 |
-
#
|
9 |
-
from
|
10 |
-
from
|
11 |
-
from
|
12 |
-
from agno.tools.yfinance import YFinanceTools
|
13 |
|
14 |
-
#
|
15 |
-
from
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
from
|
19 |
|
20 |
-
# Advanced Rate Limiter
|
21 |
class AdvancedRateLimiter:
|
22 |
-
def __init__(self, requests_per_minute: int
|
23 |
self.requests_per_minute = requests_per_minute
|
24 |
-
self.tokens_per_minute = tokens_per_minute
|
25 |
self.request_times = []
|
26 |
-
self.token_usage = []
|
27 |
-
self.consecutive_failures = 0
|
28 |
|
29 |
-
def wait_if_needed(self
|
30 |
current_time = time.time()
|
31 |
-
|
32 |
# Clean old requests (older than 1 minute)
|
33 |
self.request_times = [t for t in self.request_times if current_time - t < 60]
|
34 |
-
self.token_usage = [(t, tokens) for t, tokens in self.token_usage if current_time - t < 60]
|
35 |
|
36 |
-
#
|
37 |
if len(self.request_times) >= self.requests_per_minute:
|
38 |
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8)
|
39 |
-
time.sleep(wait_time)
|
40 |
|
41 |
# Record this request
|
42 |
self.request_times.append(current_time)
|
43 |
-
if self.tokens_per_minute:
|
44 |
-
self.token_usage.append((current_time, estimated_tokens))
|
45 |
-
|
46 |
-
def record_success(self):
|
47 |
-
self.consecutive_failures = 0
|
48 |
-
|
49 |
-
def record_failure(self):
|
50 |
-
self.consecutive_failures += 1
|
51 |
|
52 |
# Initialize rate limiters for free tiers
|
53 |
-
groq_limiter = AdvancedRateLimiter(requests_per_minute=30
|
54 |
-
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2
|
|
|
55 |
tavily_limiter = AdvancedRateLimiter(requests_per_minute=50)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# Initialize Tavily client
|
58 |
-
tavily_client = TavilyClient(os.getenv("TAVILY_API_KEY"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
# Custom
|
|
|
61 |
def multiply_tool(a: float, b: float) -> float:
|
62 |
-
"""Multiply two numbers
|
63 |
return a * b
|
64 |
|
|
|
65 |
def add_tool(a: float, b: float) -> float:
|
66 |
-
"""Add two numbers
|
67 |
return a + b
|
68 |
|
|
|
69 |
def subtract_tool(a: float, b: float) -> float:
|
70 |
-
"""Subtract two numbers
|
71 |
return a - b
|
72 |
|
|
|
73 |
def divide_tool(a: float, b: float) -> float:
|
74 |
-
"""Divide two numbers
|
75 |
if b == 0:
|
76 |
raise ValueError("Cannot divide by zero.")
|
77 |
return a / b
|
78 |
|
|
|
79 |
def tavily_search_tool(query: str) -> str:
|
80 |
-
"""Search using Tavily
|
81 |
try:
|
82 |
tavily_limiter.wait_if_needed()
|
83 |
response = tavily_client.search(
|
@@ -97,106 +147,231 @@ def tavily_search_tool(query: str) -> str:
|
|
97 |
except Exception as e:
|
98 |
return f"Tavily search failed: {str(e)}"
|
99 |
|
|
|
100 |
def wiki_search_tool(query: str) -> str:
|
101 |
-
"""Search Wikipedia
|
102 |
try:
|
103 |
-
time.sleep(random.uniform(1, 3))
|
|
|
104 |
loader = WikipediaLoader(query=query, load_max_docs=1)
|
105 |
data = loader.load()
|
106 |
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in data])
|
107 |
except Exception as e:
|
108 |
return f"Wikipedia search failed: {str(e)}"
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
try:
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
116 |
except Exception as e:
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
api_key=os.getenv("GROQ_API_KEY"),
|
129 |
-
temperature=0
|
130 |
-
),
|
131 |
-
tools=[multiply_tool, add_tool, subtract_tool, divide_tool],
|
132 |
-
instructions=[
|
133 |
-
"You are a mathematical specialist with access to calculation tools.",
|
134 |
-
"Use the appropriate math tools for calculations.",
|
135 |
-
"Show your work step by step.",
|
136 |
-
"Always provide precise numerical answers.",
|
137 |
-
"Finish with: FINAL ANSWER: [numerical result]"
|
138 |
-
],
|
139 |
-
show_tool_calls=False, # SILENT
|
140 |
-
markdown=False
|
141 |
-
)
|
142 |
|
143 |
-
#
|
144 |
-
|
145 |
-
name="Research Specialist",
|
146 |
-
model=Gemini(
|
147 |
-
id="gemini-2.0-flash-thinking-exp",
|
148 |
-
api_key=os.getenv("GOOGLE_API_KEY"),
|
149 |
-
temperature=0
|
150 |
-
),
|
151 |
-
tools=[tavily_search_tool, wiki_search_tool, arxiv_search_tool], # All synchronous now
|
152 |
-
instructions=[
|
153 |
-
"You are a research specialist with access to multiple search tools.",
|
154 |
-
"Use Tavily search for current web information, Wikipedia for encyclopedic content, and ArXiv for academic papers.",
|
155 |
-
"Always cite sources and provide well-researched answers.",
|
156 |
-
"Synthesize information from multiple sources when possible.",
|
157 |
-
"Finish with: FINAL ANSWER: [your researched answer]"
|
158 |
-
],
|
159 |
-
show_tool_calls=False, # SILENT
|
160 |
-
markdown=False
|
161 |
-
)
|
162 |
|
163 |
-
#
|
164 |
-
|
165 |
-
|
166 |
-
model=Groq(
|
167 |
-
id="llama-3.3-70b-versatile",
|
168 |
-
api_key=os.getenv("GROQ_API_KEY"),
|
169 |
-
temperature=0
|
170 |
-
),
|
171 |
-
tools=[tavily_search_tool, wiki_search_tool], # All synchronous now
|
172 |
-
instructions=[
|
173 |
-
"You are the main coordinator agent.",
|
174 |
-
"Analyze queries and provide comprehensive responses.",
|
175 |
-
"Use Tavily search for current information and Wikipedia for background context.",
|
176 |
-
"Always finish with: FINAL ANSWER: [your final answer]"
|
177 |
-
],
|
178 |
-
show_tool_calls=False, # SILENT
|
179 |
-
markdown=False
|
180 |
-
)
|
181 |
|
182 |
-
|
183 |
-
"
|
184 |
-
"
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
def __init__(self):
|
193 |
-
self.agents = create_agno_agents()
|
194 |
self.request_count = 0
|
195 |
self.last_request_time = time.time()
|
|
|
196 |
|
197 |
-
def
|
198 |
-
"""
|
|
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
# Global rate limiting (SILENT)
|
201 |
current_time = time.time()
|
202 |
if current_time - self.last_request_time > 3600:
|
@@ -207,47 +382,32 @@ class AgnoMultiAgentSystem:
|
|
207 |
|
208 |
# Add delay between requests (SILENT)
|
209 |
if self.request_count > 1:
|
210 |
-
time.sleep(random.uniform(3, 10))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
-
for
|
213 |
-
|
214 |
-
# Route to appropriate agent based on query type (SILENT)
|
215 |
-
if any(word in query.lower() for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide', 'compute']):
|
216 |
-
response = self.agents["math"].run(query, stream=False)
|
217 |
-
|
218 |
-
elif any(word in query.lower() for word in ['search', 'find', 'research', 'what is', 'who is', 'when', 'where']):
|
219 |
-
response = self.agents["research"].run(query, stream=False)
|
220 |
-
|
221 |
-
else:
|
222 |
-
response = self.agents["coordinator"].run(query, stream=False)
|
223 |
-
|
224 |
-
return response.content if hasattr(response, 'content') else str(response)
|
225 |
-
|
226 |
-
except Exception as e:
|
227 |
-
error_msg = str(e).lower()
|
228 |
-
|
229 |
-
if any(keyword in error_msg for keyword in ['rate limit', '429', 'quota', 'too many requests']):
|
230 |
-
wait_time = (2 ** attempt) + random.uniform(15, 45)
|
231 |
-
time.sleep(wait_time) # Changed from asyncio.sleep
|
232 |
-
continue
|
233 |
-
|
234 |
-
elif attempt == max_retries - 1:
|
235 |
-
try:
|
236 |
-
return self.agents["coordinator"].run(f"Answer this as best you can: {query}", stream=False)
|
237 |
-
except:
|
238 |
-
return f"Error: {str(e)}"
|
239 |
-
|
240 |
-
else:
|
241 |
-
wait_time = (2 ** attempt) + random.uniform(2, 8)
|
242 |
-
time.sleep(wait_time) # Changed from asyncio.sleep
|
243 |
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
-
#
|
247 |
def main(query: str) -> str:
|
248 |
-
"""Main function using
|
249 |
-
|
250 |
-
return
|
251 |
|
252 |
def get_final_answer(query: str) -> str:
|
253 |
"""Extract only the FINAL ANSWER from the response"""
|
@@ -260,6 +420,6 @@ def get_final_answer(query: str) -> str:
|
|
260 |
return full_response.strip()
|
261 |
|
262 |
if __name__ == "__main__":
|
263 |
-
# Test the
|
264 |
result = get_final_answer("What are the names of the US presidents who were assassinated?")
|
265 |
print(result)
|
|
|
1 |
+
import os, time, random
|
2 |
from dotenv import load_dotenv
|
3 |
+
from typing import List, Dict, Any, TypedDict, Annotated
|
4 |
+
import operator
|
5 |
|
6 |
# Load environment variables
|
7 |
load_dotenv()
|
8 |
|
9 |
+
# LangGraph imports
|
10 |
+
from langgraph.graph import StateGraph, END
|
11 |
+
from langgraph.prebuilt import create_react_agent
|
12 |
+
from langgraph.checkpoint.memory import MemorySaver
|
|
|
13 |
|
14 |
+
# LangChain imports
|
15 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
16 |
+
from langchain_core.tools import tool
|
17 |
+
from langchain_groq import ChatGroq
|
18 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
19 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
20 |
+
from langchain_core.rate_limiters import InMemoryRateLimiter
|
21 |
|
22 |
+
# Tavily import
|
23 |
+
from tavily import TavilyClient
|
24 |
|
25 |
+
# Advanced Rate Limiter (SILENT)
|
26 |
class AdvancedRateLimiter:
|
27 |
+
def __init__(self, requests_per_minute: int):
|
28 |
self.requests_per_minute = requests_per_minute
|
|
|
29 |
self.request_times = []
|
|
|
|
|
30 |
|
31 |
+
def wait_if_needed(self):
|
32 |
current_time = time.time()
|
|
|
33 |
# Clean old requests (older than 1 minute)
|
34 |
self.request_times = [t for t in self.request_times if current_time - t < 60]
|
|
|
35 |
|
36 |
+
# Check if we need to wait
|
37 |
if len(self.request_times) >= self.requests_per_minute:
|
38 |
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8)
|
39 |
+
time.sleep(wait_time)
|
40 |
|
41 |
# Record this request
|
42 |
self.request_times.append(current_time)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Initialize rate limiters for free tiers
|
45 |
+
groq_limiter = AdvancedRateLimiter(requests_per_minute=30)
|
46 |
+
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2)
|
47 |
+
nvidia_limiter = AdvancedRateLimiter(requests_per_minute=5) # NVIDIA free tier
|
48 |
tavily_limiter = AdvancedRateLimiter(requests_per_minute=50)
|
49 |
|
50 |
+
# Initialize LangChain rate limiters for NVIDIA
|
51 |
+
nvidia_rate_limiter = InMemoryRateLimiter(
|
52 |
+
requests_per_second=0.083, # 5 requests per minute
|
53 |
+
check_every_n_seconds=0.1,
|
54 |
+
max_bucket_size=5
|
55 |
+
)
|
56 |
+
|
57 |
+
# Initialize LLMs with best free models
|
58 |
+
groq_llm = ChatGroq(
|
59 |
+
model="llama-3.3-70b-versatile",
|
60 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
61 |
+
temperature=0
|
62 |
+
)
|
63 |
+
|
64 |
+
gemini_llm = ChatGoogleGenerativeAI(
|
65 |
+
model="gemini-2.0-flash-thinking-exp",
|
66 |
+
api_key=os.getenv("GOOGLE_API_KEY"),
|
67 |
+
temperature=0
|
68 |
+
)
|
69 |
+
|
70 |
+
# Best NVIDIA models based on search results
|
71 |
+
nvidia_general_llm = ChatNVIDIA(
|
72 |
+
model="meta/llama3-70b-instruct", # Best general model from NVIDIA
|
73 |
+
api_key=os.getenv("NVIDIA_API_KEY"),
|
74 |
+
temperature=0,
|
75 |
+
max_tokens=4000,
|
76 |
+
rate_limiter=nvidia_rate_limiter
|
77 |
+
)
|
78 |
+
|
79 |
+
nvidia_code_llm = ChatNVIDIA(
|
80 |
+
model="meta/codellama-70b", # Best code generation model from NVIDIA
|
81 |
+
api_key=os.getenv("NVIDIA_API_KEY"),
|
82 |
+
temperature=0,
|
83 |
+
max_tokens=4000,
|
84 |
+
rate_limiter=nvidia_rate_limiter
|
85 |
+
)
|
86 |
+
|
87 |
+
nvidia_math_llm = ChatNVIDIA(
|
88 |
+
model="mistralai/mixtral-8x22b-instruct-v0.1", # Best reasoning model from NVIDIA
|
89 |
+
api_key=os.getenv("NVIDIA_API_KEY"),
|
90 |
+
temperature=0,
|
91 |
+
max_tokens=4000,
|
92 |
+
rate_limiter=nvidia_rate_limiter
|
93 |
+
)
|
94 |
+
|
95 |
# Initialize Tavily client
|
96 |
+
tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))
|
97 |
+
|
98 |
+
# Define State
|
99 |
+
class AgentState(TypedDict):
|
100 |
+
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
|
101 |
+
query: str
|
102 |
+
agent_type: str
|
103 |
+
final_answer: str
|
104 |
|
105 |
+
# Custom Tools
|
106 |
+
@tool
|
107 |
def multiply_tool(a: float, b: float) -> float:
|
108 |
+
"""Multiply two numbers together"""
|
109 |
return a * b
|
110 |
|
111 |
+
@tool
|
112 |
def add_tool(a: float, b: float) -> float:
|
113 |
+
"""Add two numbers together"""
|
114 |
return a + b
|
115 |
|
116 |
+
@tool
|
117 |
def subtract_tool(a: float, b: float) -> float:
|
118 |
+
"""Subtract two numbers"""
|
119 |
return a - b
|
120 |
|
121 |
+
@tool
|
122 |
def divide_tool(a: float, b: float) -> float:
|
123 |
+
"""Divide two numbers"""
|
124 |
if b == 0:
|
125 |
raise ValueError("Cannot divide by zero.")
|
126 |
return a / b
|
127 |
|
128 |
+
@tool
|
129 |
def tavily_search_tool(query: str) -> str:
|
130 |
+
"""Search the web using Tavily for current information"""
|
131 |
try:
|
132 |
tavily_limiter.wait_if_needed()
|
133 |
response = tavily_client.search(
|
|
|
147 |
except Exception as e:
|
148 |
return f"Tavily search failed: {str(e)}"
|
149 |
|
150 |
+
@tool
|
151 |
def wiki_search_tool(query: str) -> str:
|
152 |
+
"""Search Wikipedia for encyclopedic information"""
|
153 |
try:
|
154 |
+
time.sleep(random.uniform(1, 3))
|
155 |
+
from langchain_community.document_loaders import WikipediaLoader
|
156 |
loader = WikipediaLoader(query=query, load_max_docs=1)
|
157 |
data = loader.load()
|
158 |
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in data])
|
159 |
except Exception as e:
|
160 |
return f"Wikipedia search failed: {str(e)}"
|
161 |
|
162 |
+
# Define tools for each agent type
|
163 |
+
math_tools = [multiply_tool, add_tool, subtract_tool, divide_tool]
|
164 |
+
research_tools = [tavily_search_tool, wiki_search_tool]
|
165 |
+
coordinator_tools = [tavily_search_tool, wiki_search_tool]
|
166 |
+
|
167 |
+
# Node functions
|
168 |
+
def router_node(state: AgentState) -> AgentState:
|
169 |
+
"""Route queries to appropriate agent type"""
|
170 |
+
query = state["query"].lower()
|
171 |
+
|
172 |
+
if any(word in query for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide', 'compute']):
|
173 |
+
agent_type = "math"
|
174 |
+
elif any(word in query for word in ['code', 'program', 'python', 'javascript', 'function', 'algorithm']):
|
175 |
+
agent_type = "code"
|
176 |
+
elif any(word in query for word in ['search', 'find', 'research', 'what is', 'who is', 'when', 'where']):
|
177 |
+
agent_type = "research"
|
178 |
+
else:
|
179 |
+
agent_type = "coordinator"
|
180 |
+
|
181 |
+
return {**state, "agent_type": agent_type}
|
182 |
+
|
183 |
+
def math_agent_node(state: AgentState) -> AgentState:
|
184 |
+
"""Mathematical specialist agent using NVIDIA Mixtral"""
|
185 |
+
nvidia_limiter.wait_if_needed()
|
186 |
+
|
187 |
+
system_message = SystemMessage(content="""You are a mathematical specialist with access to calculation tools.
|
188 |
+
Use the appropriate math tools for calculations.
|
189 |
+
Show your work step by step.
|
190 |
+
Always provide precise numerical answers.
|
191 |
+
Finish with: FINAL ANSWER: [numerical result]""")
|
192 |
+
|
193 |
+
# Create math agent with NVIDIA's best reasoning model
|
194 |
+
math_agent = create_react_agent(nvidia_math_llm, math_tools)
|
195 |
+
|
196 |
+
# Process query
|
197 |
+
messages = [system_message, HumanMessage(content=state["query"])]
|
198 |
+
config = {"configurable": {"thread_id": "math_thread"}}
|
199 |
+
|
200 |
try:
|
201 |
+
result = math_agent.invoke({"messages": messages}, config)
|
202 |
+
final_message = result["messages"][-1].content
|
203 |
+
|
204 |
+
return {
|
205 |
+
**state,
|
206 |
+
"messages": state["messages"] + [AIMessage(content=final_message)],
|
207 |
+
"final_answer": final_message
|
208 |
+
}
|
209 |
except Exception as e:
|
210 |
+
error_msg = f"Math agent error: {str(e)}"
|
211 |
+
return {
|
212 |
+
**state,
|
213 |
+
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
214 |
+
"final_answer": error_msg
|
215 |
+
}
|
216 |
|
217 |
+
def code_agent_node(state: AgentState) -> AgentState:
|
218 |
+
"""Code generation specialist agent using NVIDIA CodeLlama"""
|
219 |
+
nvidia_limiter.wait_if_needed()
|
220 |
|
221 |
+
system_message = SystemMessage(content="""You are an expert coding AI specialist.
|
222 |
+
Generate clean, efficient, and well-documented code.
|
223 |
+
Explain your code solutions clearly.
|
224 |
+
Always provide working code examples.
|
225 |
+
Finish with: FINAL ANSWER: [your code solution]""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
+
# Create code agent with NVIDIA's best code model
|
228 |
+
code_agent = create_react_agent(nvidia_code_llm, [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
# Process query
|
231 |
+
messages = [system_message, HumanMessage(content=state["query"])]
|
232 |
+
config = {"configurable": {"thread_id": "code_thread"}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
try:
|
235 |
+
result = code_agent.invoke({"messages": messages}, config)
|
236 |
+
final_message = result["messages"][-1].content
|
237 |
+
|
238 |
+
return {
|
239 |
+
**state,
|
240 |
+
"messages": state["messages"] + [AIMessage(content=final_message)],
|
241 |
+
"final_answer": final_message
|
242 |
+
}
|
243 |
+
except Exception as e:
|
244 |
+
error_msg = f"Code agent error: {str(e)}"
|
245 |
+
return {
|
246 |
+
**state,
|
247 |
+
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
248 |
+
"final_answer": error_msg
|
249 |
+
}
|
250 |
|
251 |
+
def research_agent_node(state: AgentState) -> AgentState:
|
252 |
+
"""Research specialist agent using Gemini"""
|
253 |
+
gemini_limiter.wait_if_needed()
|
254 |
|
255 |
+
system_message = SystemMessage(content="""You are a research specialist with access to web search and Wikipedia.
|
256 |
+
Use appropriate search tools to gather comprehensive information.
|
257 |
+
Always cite sources and provide well-researched answers.
|
258 |
+
Synthesize information from multiple sources when possible.
|
259 |
+
Finish with: FINAL ANSWER: [your researched answer]""")
|
260 |
+
|
261 |
+
# Create research agent
|
262 |
+
research_agent = create_react_agent(gemini_llm, research_tools)
|
263 |
+
|
264 |
+
# Process query
|
265 |
+
messages = [system_message, HumanMessage(content=state["query"])]
|
266 |
+
config = {"configurable": {"thread_id": "research_thread"}}
|
267 |
+
|
268 |
+
try:
|
269 |
+
result = research_agent.invoke({"messages": messages}, config)
|
270 |
+
final_message = result["messages"][-1].content
|
271 |
+
|
272 |
+
return {
|
273 |
+
**state,
|
274 |
+
"messages": state["messages"] + [AIMessage(content=final_message)],
|
275 |
+
"final_answer": final_message
|
276 |
+
}
|
277 |
+
except Exception as e:
|
278 |
+
error_msg = f"Research agent error: {str(e)}"
|
279 |
+
return {
|
280 |
+
**state,
|
281 |
+
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
282 |
+
"final_answer": error_msg
|
283 |
+
}
|
284 |
+
|
285 |
+
def coordinator_agent_node(state: AgentState) -> AgentState:
|
286 |
+
"""Coordinator agent using NVIDIA Llama3"""
|
287 |
+
nvidia_limiter.wait_if_needed()
|
288 |
+
|
289 |
+
system_message = SystemMessage(content="""You are the main coordinator agent.
|
290 |
+
Analyze queries and provide comprehensive responses.
|
291 |
+
Use search tools for factual information when needed.
|
292 |
+
Always finish with: FINAL ANSWER: [your final answer]""")
|
293 |
+
|
294 |
+
# Create coordinator agent with NVIDIA's best general model
|
295 |
+
coordinator_agent = create_react_agent(nvidia_general_llm, coordinator_tools)
|
296 |
+
|
297 |
+
# Process query
|
298 |
+
messages = [system_message, HumanMessage(content=state["query"])]
|
299 |
+
config = {"configurable": {"thread_id": "coordinator_thread"}}
|
300 |
+
|
301 |
+
try:
|
302 |
+
result = coordinator_agent.invoke({"messages": messages}, config)
|
303 |
+
final_message = result["messages"][-1].content
|
304 |
+
|
305 |
+
return {
|
306 |
+
**state,
|
307 |
+
"messages": state["messages"] + [AIMessage(content=final_message)],
|
308 |
+
"final_answer": final_message
|
309 |
+
}
|
310 |
+
except Exception as e:
|
311 |
+
error_msg = f"Coordinator agent error: {str(e)}"
|
312 |
+
return {
|
313 |
+
**state,
|
314 |
+
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
315 |
+
"final_answer": error_msg
|
316 |
+
}
|
317 |
+
|
318 |
+
# Conditional routing function
|
319 |
+
def route_agent(state: AgentState) -> str:
|
320 |
+
"""Route to appropriate agent based on agent_type"""
|
321 |
+
agent_type = state.get("agent_type", "coordinator")
|
322 |
+
|
323 |
+
if agent_type == "math":
|
324 |
+
return "math_agent"
|
325 |
+
elif agent_type == "code":
|
326 |
+
return "code_agent"
|
327 |
+
elif agent_type == "research":
|
328 |
+
return "research_agent"
|
329 |
+
else:
|
330 |
+
return "coordinator_agent"
|
331 |
+
|
332 |
+
# LangGraph Multi-Agent System
|
333 |
+
class LangGraphMultiAgentSystem:
|
334 |
def __init__(self):
|
|
|
335 |
self.request_count = 0
|
336 |
self.last_request_time = time.time()
|
337 |
+
self.graph = self._create_graph()
|
338 |
|
339 |
+
def _create_graph(self) -> StateGraph:
|
340 |
+
"""Create the LangGraph workflow"""
|
341 |
+
workflow = StateGraph(AgentState)
|
342 |
|
343 |
+
# Add nodes
|
344 |
+
workflow.add_node("router", router_node)
|
345 |
+
workflow.add_node("math_agent", math_agent_node)
|
346 |
+
workflow.add_node("code_agent", code_agent_node)
|
347 |
+
workflow.add_node("research_agent", research_agent_node)
|
348 |
+
workflow.add_node("coordinator_agent", coordinator_agent_node)
|
349 |
+
|
350 |
+
# Add edges
|
351 |
+
workflow.set_entry_point("router")
|
352 |
+
workflow.add_conditional_edges(
|
353 |
+
"router",
|
354 |
+
route_agent,
|
355 |
+
{
|
356 |
+
"math_agent": "math_agent",
|
357 |
+
"code_agent": "code_agent",
|
358 |
+
"research_agent": "research_agent",
|
359 |
+
"coordinator_agent": "coordinator_agent"
|
360 |
+
}
|
361 |
+
)
|
362 |
+
|
363 |
+
# All agents end the workflow
|
364 |
+
workflow.add_edge("math_agent", END)
|
365 |
+
workflow.add_edge("code_agent", END)
|
366 |
+
workflow.add_edge("research_agent", END)
|
367 |
+
workflow.add_edge("coordinator_agent", END)
|
368 |
+
|
369 |
+
# Compile the graph
|
370 |
+
memory = MemorySaver()
|
371 |
+
return workflow.compile(checkpointer=memory)
|
372 |
+
|
373 |
+
def process_query(self, query: str) -> str:
|
374 |
+
"""Process query using LangGraph multi-agent system"""
|
375 |
# Global rate limiting (SILENT)
|
376 |
current_time = time.time()
|
377 |
if current_time - self.last_request_time > 3600:
|
|
|
382 |
|
383 |
# Add delay between requests (SILENT)
|
384 |
if self.request_count > 1:
|
385 |
+
time.sleep(random.uniform(3, 10))
|
386 |
+
|
387 |
+
# Initial state
|
388 |
+
initial_state = {
|
389 |
+
"messages": [HumanMessage(content=query)],
|
390 |
+
"query": query,
|
391 |
+
"agent_type": "",
|
392 |
+
"final_answer": ""
|
393 |
+
}
|
394 |
|
395 |
+
# Configuration for the graph
|
396 |
+
config = {"configurable": {"thread_id": f"thread_{self.request_count}"}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
|
398 |
+
try:
|
399 |
+
# Run the graph
|
400 |
+
final_state = self.graph.invoke(initial_state, config)
|
401 |
+
return final_state.get("final_answer", "No response generated")
|
402 |
+
|
403 |
+
except Exception as e:
|
404 |
+
return f"Error: {str(e)}"
|
405 |
|
406 |
+
# Main functions
|
407 |
def main(query: str) -> str:
|
408 |
+
"""Main function using LangGraph multi-agent system"""
|
409 |
+
langgraph_system = LangGraphMultiAgentSystem()
|
410 |
+
return langgraph_system.process_query(query)
|
411 |
|
412 |
def get_final_answer(query: str) -> str:
|
413 |
"""Extract only the FINAL ANSWER from the response"""
|
|
|
420 |
return full_response.strip()
|
421 |
|
422 |
if __name__ == "__main__":
|
423 |
+
# Test the LangGraph system - CLEAN OUTPUT ONLY
|
424 |
result = get_final_answer("What are the names of the US presidents who were assassinated?")
|
425 |
print(result)
|