Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,242 +1,177 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
import requests
|
| 4 |
-
import pandas as pd
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
-
from langchain_groq import ChatGroq
|
| 9 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Load environment variables
|
| 12 |
load_dotenv()
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
)
|
| 44 |
-
else:
|
| 45 |
-
raise ValueError("Unsupported provider. Choose from: nvidia, groq, google, openai.")
|
| 46 |
-
|
| 47 |
-
self.instructions = (
|
| 48 |
-
"You are a helpful assistant. For every question, reply with only the answer—no explanation, "
|
| 49 |
-
"no units, and no extra words. If the answer is a number, just return the number. "
|
| 50 |
-
"If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. "
|
| 51 |
-
"Do not include any prefix, suffix, or explanation."
|
| 52 |
)
|
| 53 |
-
print(f"BasicAgent initialized with provider: {self.provider}")
|
| 54 |
-
|
| 55 |
-
def __call__(self, question: str) -> str:
|
| 56 |
-
prompt = f"{self.instructions}\n\n{question}"
|
| 57 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 58 |
-
response = self.llm.invoke(prompt)
|
| 59 |
-
answer = response.content.strip() if hasattr(response, "content") else str(response)
|
| 60 |
-
# Remove "FINAL ANSWER:" or similar prefixes if present
|
| 61 |
-
for prefix in ["FINAL ANSWER:", "Final answer:", "final answer:"]:
|
| 62 |
-
if answer.lower().startswith(prefix.lower()):
|
| 63 |
-
answer = answer[len(prefix):].strip()
|
| 64 |
-
print(f"Agent returning answer: {answer}")
|
| 65 |
-
return answer
|
| 66 |
-
|
| 67 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None, provider="nvidia"):
|
| 68 |
-
"""
|
| 69 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 70 |
-
and displays the results.
|
| 71 |
-
"""
|
| 72 |
-
space_id = os.getenv("SPACE_ID") # For codebase link
|
| 73 |
-
|
| 74 |
-
if profile:
|
| 75 |
-
username = f"{profile.username}"
|
| 76 |
-
print(f"User logged in: {username}")
|
| 77 |
else:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
|
|
|
| 86 |
try:
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
except Exception as e:
|
| 89 |
-
|
| 90 |
-
return f"Error initializing agent: {e}", None
|
| 91 |
-
|
| 92 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 93 |
-
print(agent_code)
|
| 94 |
|
| 95 |
-
|
| 96 |
-
print(f"Fetching questions from: {questions_url}")
|
| 97 |
-
try:
|
| 98 |
-
response = requests.get(questions_url, timeout=15)
|
| 99 |
-
response.raise_for_status()
|
| 100 |
-
questions_data = response.json()
|
| 101 |
-
if not questions_data:
|
| 102 |
-
print("Fetched questions list is empty.")
|
| 103 |
-
return "Fetched questions list is empty or invalid format.", None
|
| 104 |
-
print(f"Fetched {len(questions_data)} questions.")
|
| 105 |
-
except requests.exceptions.RequestException as e:
|
| 106 |
-
print(f"Error fetching questions: {e}")
|
| 107 |
-
return f"Error fetching questions: {e}", None
|
| 108 |
-
except requests.exceptions.JSONDecodeError as e:
|
| 109 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 110 |
-
print(f"Response text: {response.text[:500]}")
|
| 111 |
-
return f"Error decoding server response for questions: {e}", None
|
| 112 |
-
except Exception as e:
|
| 113 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
| 114 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
| 115 |
-
|
| 116 |
-
# 3. Run your Agent
|
| 117 |
-
results_log = []
|
| 118 |
-
answers_payload = []
|
| 119 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
| 120 |
-
for item in questions_data:
|
| 121 |
-
task_id = item.get("task_id")
|
| 122 |
-
question_text = item.get("question")
|
| 123 |
-
if not task_id or question_text is None:
|
| 124 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
| 125 |
-
continue
|
| 126 |
-
try:
|
| 127 |
-
submitted_answer = agent(question_text)
|
| 128 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 129 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 130 |
-
except Exception as e:
|
| 131 |
-
print(f"Error running agent on task {task_id}: {e}")
|
| 132 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 133 |
-
|
| 134 |
-
if not answers_payload:
|
| 135 |
-
print("Agent did not produce any answers to submit.")
|
| 136 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 137 |
-
|
| 138 |
-
# 4. Prepare Submission
|
| 139 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 140 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 141 |
-
print(status_update)
|
| 142 |
-
# 5. Submit
|
| 143 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 144 |
-
try:
|
| 145 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 146 |
-
response.raise_for_status()
|
| 147 |
-
result_data = response.json()
|
| 148 |
-
final_status = (
|
| 149 |
-
f"Submission Successful!\n"
|
| 150 |
-
f"User: {result_data.get('username')}\n"
|
| 151 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 152 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 153 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
| 154 |
-
)
|
| 155 |
-
print("Submission successful.")
|
| 156 |
-
results_df = pd.DataFrame(results_log)
|
| 157 |
-
return final_status, results_df
|
| 158 |
-
except requests.exceptions.HTTPError as e:
|
| 159 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
| 160 |
-
try:
|
| 161 |
-
error_json = e.response.json()
|
| 162 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 163 |
-
except requests.exceptions.JSONDecodeError:
|
| 164 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
| 165 |
-
status_message = f"Submission Failed: {error_detail}"
|
| 166 |
-
print(status_message)
|
| 167 |
-
results_df = pd.DataFrame(results_log)
|
| 168 |
-
return status_message, results_df
|
| 169 |
-
except requests.exceptions.Timeout:
|
| 170 |
-
status_message = "Submission Failed: The request timed out."
|
| 171 |
-
print(status_message)
|
| 172 |
-
results_df = pd.DataFrame(results_log)
|
| 173 |
-
return status_message, results_df
|
| 174 |
-
except requests.exceptions.RequestException as e:
|
| 175 |
-
status_message = f"Submission Failed: Network error - {e}"
|
| 176 |
-
print(status_message)
|
| 177 |
-
results_df = pd.DataFrame(results_log)
|
| 178 |
-
return status_message, results_df
|
| 179 |
-
except Exception as e:
|
| 180 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
| 181 |
-
print(status_message)
|
| 182 |
-
results_df = pd.DataFrame(results_log)
|
| 183 |
-
return status_message, results_df
|
| 184 |
-
|
| 185 |
-
# --- Build Gradio Interface using Blocks ---
|
| 186 |
with gr.Blocks() as demo:
|
| 187 |
-
gr.Markdown("
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
3. Select your preferred provider and click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 194 |
-
---
|
| 195 |
-
**Disclaimers:**
|
| 196 |
-
Once clicking on the "submit" button, it can take quite some time (this is the time for the agent to go through all the questions).
|
| 197 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance, for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
|
| 198 |
-
"""
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
gr.LoginButton()
|
| 202 |
-
|
| 203 |
-
provider_dropdown = gr.Dropdown(
|
| 204 |
-
choices=["nvidia", "groq", "google", "openai"],
|
| 205 |
-
value="nvidia",
|
| 206 |
-
label="Choose LLM Provider"
|
| 207 |
)
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
outputs=[status_output, results_table]
|
| 218 |
)
|
| 219 |
|
| 220 |
if __name__ == "__main__":
|
| 221 |
-
|
| 222 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
| 223 |
-
space_id_startup = os.getenv("SPACE_ID")
|
| 224 |
-
|
| 225 |
-
if space_host_startup:
|
| 226 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 227 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 228 |
-
else:
|
| 229 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 230 |
-
|
| 231 |
-
if space_id_startup:
|
| 232 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 233 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 234 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 235 |
-
else:
|
| 236 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 237 |
-
|
| 238 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 239 |
-
|
| 240 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 241 |
-
demo.launch(debug=True, share=False)
|
| 242 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
| 5 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
|
|
|
| 6 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 7 |
+
from langchain_groq import ChatGroq
|
| 8 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 10 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 11 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
| 12 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
| 13 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
| 14 |
+
from langchain_core.tools import tool
|
| 15 |
+
from supabase import create_client, Client
|
| 16 |
|
| 17 |
# Load environment variables
|
| 18 |
load_dotenv()
|
| 19 |
|
| 20 |
+
# Tool definitions remain unchanged
|
| 21 |
+
@tool
|
| 22 |
+
def multiply(a: int, b: int) -> int:
|
| 23 |
+
return a * b
|
| 24 |
+
|
| 25 |
+
@tool
|
| 26 |
+
def add(a: int, b: int) -> int:
|
| 27 |
+
return a + b
|
| 28 |
+
|
| 29 |
+
@tool
|
| 30 |
+
def subtract(a: int, b: int) -> int:
|
| 31 |
+
return a - b
|
| 32 |
+
|
| 33 |
+
@tool
|
| 34 |
+
def divide(a: int, b: int) -> int:
|
| 35 |
+
if b == 0:
|
| 36 |
+
raise ValueError("Cannot divide by zero.")
|
| 37 |
+
return a / b
|
| 38 |
+
|
| 39 |
+
@tool
|
| 40 |
+
def modulus(a: int, b: int) -> int:
|
| 41 |
+
return a % b
|
| 42 |
+
|
| 43 |
+
@tool
|
| 44 |
+
def wiki_search(query: str) -> str:
|
| 45 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 46 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 47 |
+
[f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>'
|
| 48 |
+
for doc in search_docs])
|
| 49 |
+
return {"wiki_results": formatted_search_docs}
|
| 50 |
+
|
| 51 |
+
@tool
|
| 52 |
+
def web_search(query: str) -> str:
|
| 53 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query)
|
| 54 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 55 |
+
[f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>'
|
| 56 |
+
for doc in search_docs])
|
| 57 |
+
return {"web_results": formatted_search_docs}
|
| 58 |
+
|
| 59 |
+
@tool
|
| 60 |
+
def arvix_search(query: str) -> str:
|
| 61 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 62 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 63 |
+
[f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 64 |
+
for doc in search_docs])
|
| 65 |
+
return {"arvix_results": formatted_search_docs}
|
| 66 |
+
|
| 67 |
+
# System prompt definition
|
| 68 |
+
SYSTEM_PROMPT = """You are a helpful assistant. For every question, reply with only the answer—no explanation,
|
| 69 |
+
no units, and no extra words. If the answer is a number, just return the number.
|
| 70 |
+
If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words.
|
| 71 |
+
Do not include any prefix, suffix, or explanation."""
|
| 72 |
+
sys_msg = SystemMessage(content=SYSTEM_PROMPT)
|
| 73 |
+
|
| 74 |
+
# Initialize vector store
|
| 75 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 76 |
+
supabase: Client = create_client(
|
| 77 |
+
os.environ["SUPABASE_URL"],
|
| 78 |
+
os.environ["SUPABASE_SERVICE_KEY"]
|
| 79 |
+
)
|
| 80 |
+
vector_store = SupabaseVectorStore(
|
| 81 |
+
client=supabase,
|
| 82 |
+
embedding=embeddings,
|
| 83 |
+
table_name="documents",
|
| 84 |
+
query_name="match_documents_langchain",
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
tools = [multiply, add, subtract, divide, modulus,
|
| 88 |
+
wiki_search, web_search, arvix_search]
|
| 89 |
+
|
| 90 |
+
# Build graph function with multi-provider support
|
| 91 |
+
def build_graph(provider: str = "groq"):
|
| 92 |
+
# Provider selection
|
| 93 |
+
if provider == "google":
|
| 94 |
+
llm = ChatGoogleGenerativeAI(
|
| 95 |
+
model="gemini-2.0-flash",
|
| 96 |
+
temperature=0,
|
| 97 |
+
api_key=os.getenv("GOOGLE_API_KEY")
|
| 98 |
+
)
|
| 99 |
+
elif provider == "groq":
|
| 100 |
+
llm = ChatGroq(
|
| 101 |
+
model="llama3-70b-8192",
|
| 102 |
+
temperature=0,
|
| 103 |
+
api_key=os.getenv("GROQ_API_KEY")
|
| 104 |
+
)
|
| 105 |
+
elif provider == "huggingface":
|
| 106 |
+
llm = ChatHuggingFace(
|
| 107 |
+
llm=HuggingFaceEndpoint(
|
| 108 |
+
endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2",
|
| 109 |
+
temperature=0,
|
| 110 |
+
api_key=os.getenv("HF_API_KEY")
|
| 111 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
else:
|
| 114 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
| 115 |
+
|
| 116 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 117 |
+
|
| 118 |
+
# Graph nodes
|
| 119 |
+
def retriever(state: MessagesState):
|
| 120 |
+
similar_question = vector_store.similarity_search(state["messages"][-1].content, k=1)
|
| 121 |
+
if similar_question:
|
| 122 |
+
example_msg = HumanMessage(content=f"Similar reference: {similar_question[0].page_content[:200]}...")
|
| 123 |
+
return {"messages": state["messages"] + [example_msg]}
|
| 124 |
+
return {"messages": state["messages"]}
|
| 125 |
+
|
| 126 |
+
def assistant(state: MessagesState):
|
| 127 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
| 128 |
+
|
| 129 |
+
# Build graph
|
| 130 |
+
builder = StateGraph(MessagesState)
|
| 131 |
+
builder.add_node("retriever", retriever)
|
| 132 |
+
builder.add_node("assistant", assistant)
|
| 133 |
+
builder.add_node("tools", ToolNode(tools))
|
| 134 |
+
|
| 135 |
+
builder.add_edge(START, "retriever")
|
| 136 |
+
builder.add_edge("retriever", "assistant")
|
| 137 |
+
builder.add_conditional_edges(
|
| 138 |
+
"assistant",
|
| 139 |
+
tools_condition,
|
| 140 |
+
)
|
| 141 |
+
builder.add_edge("tools", "assistant")
|
| 142 |
+
|
| 143 |
+
return builder.compile()
|
| 144 |
|
| 145 |
+
# Gradio interface
|
| 146 |
+
def run_agent(question, provider):
|
| 147 |
try:
|
| 148 |
+
graph = build_graph(provider)
|
| 149 |
+
messages = [HumanMessage(content=question)]
|
| 150 |
+
result = graph.invoke({"messages": messages})
|
| 151 |
+
final_answer = result["messages"][-1].content
|
| 152 |
+
return final_answer
|
| 153 |
except Exception as e:
|
| 154 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
+
# Create Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
with gr.Blocks() as demo:
|
| 158 |
+
gr.Markdown("## LangGraph Multi-Provider Agent")
|
| 159 |
+
|
| 160 |
+
provider = gr.Dropdown(
|
| 161 |
+
choices=["groq", "google", "huggingface"],
|
| 162 |
+
value="groq",
|
| 163 |
+
label="LLM Provider"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
)
|
| 165 |
+
|
| 166 |
+
question = gr.Textbox(label="Your Question")
|
| 167 |
+
submit_btn = gr.Button("Run Agent")
|
| 168 |
+
output = gr.Textbox(label="Agent Response", interactive=False)
|
| 169 |
+
|
| 170 |
+
submit_btn.click(
|
| 171 |
+
fn=run_agent,
|
| 172 |
+
inputs=[question, provider],
|
| 173 |
+
outputs=output
|
|
|
|
| 174 |
)
|
| 175 |
|
| 176 |
if __name__ == "__main__":
|
| 177 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|