Update veryfinal.py
Browse files- veryfinal.py +421 -267
veryfinal.py
CHANGED
@@ -1,339 +1,493 @@
|
|
1 |
"""
|
2 |
-
Enhanced
|
3 |
-
|
4 |
"""
|
5 |
|
6 |
import os
|
7 |
import time
|
8 |
import random
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
from typing import List, Dict, Any, TypedDict, Annotated
|
11 |
import operator
|
|
|
|
|
12 |
|
13 |
-
from
|
14 |
-
from langgraph.prebuilt import tools_condition, ToolNode
|
15 |
-
from langgraph.checkpoint.memory import MemorySaver
|
16 |
-
|
17 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
18 |
-
from langchain_groq import ChatGroq
|
19 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
20 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
21 |
-
from langchain_community.document_loaders import WikipediaLoader
|
22 |
-
from
|
|
|
23 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
24 |
-
from
|
25 |
-
from langchain.tools.retriever import create_retriever_tool
|
26 |
-
from supabase.client import Client, create_client
|
27 |
-
|
28 |
-
load_dotenv()
|
29 |
-
|
30 |
-
# Enhanced system prompt for better question answering
|
31 |
-
ENHANCED_SYSTEM_PROMPT = """You are a helpful assistant tasked with answering questions using a set of tools.
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
- For numbers: provide just the number without commas or units unless specified
|
44 |
-
- For names/strings: provide the exact name or term without articles
|
45 |
-
- For lists: provide comma-separated values
|
46 |
-
- Be concise and specific in your final answer
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
# ----
|
51 |
@tool
|
52 |
def multiply(a: int, b: int) -> int:
|
53 |
-
"""Multiply two
|
54 |
-
Args:
|
55 |
-
a: first int
|
56 |
-
b: second int
|
57 |
-
"""
|
58 |
return a * b
|
59 |
|
60 |
@tool
|
61 |
def add(a: int, b: int) -> int:
|
62 |
-
"""Add two
|
63 |
-
Args:
|
64 |
-
a: first int
|
65 |
-
b: second int
|
66 |
-
"""
|
67 |
return a + b
|
68 |
|
69 |
@tool
|
70 |
def subtract(a: int, b: int) -> int:
|
71 |
-
"""Subtract
|
72 |
-
Args:
|
73 |
-
a: first int
|
74 |
-
b: second int
|
75 |
-
"""
|
76 |
return a - b
|
77 |
|
78 |
@tool
|
79 |
def divide(a: int, b: int) -> float:
|
80 |
-
"""Divide
|
81 |
-
Args:
|
82 |
-
a: first int
|
83 |
-
b: second int
|
84 |
-
"""
|
85 |
if b == 0:
|
86 |
raise ValueError("Cannot divide by zero.")
|
87 |
return a / b
|
88 |
|
89 |
@tool
|
90 |
def modulus(a: int, b: int) -> int:
|
91 |
-
"""
|
92 |
-
Args:
|
93 |
-
a: first int
|
94 |
-
b: second int
|
95 |
-
"""
|
96 |
return a % b
|
97 |
|
98 |
@tool
|
99 |
-
def
|
100 |
-
"""
|
101 |
-
Args:
|
102 |
-
query: The search query.
|
103 |
-
"""
|
104 |
try:
|
105 |
-
time.sleep(random.uniform(0.
|
106 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
107 |
-
if not search_docs:
|
108 |
-
return "No Wikipedia results found"
|
109 |
-
|
110 |
-
formatted_search_docs = "\n\n---\n\n".join([
|
111 |
-
f'<Document source="{doc.metadata.get("source", "Wikipedia")}" title="{doc.metadata.get("title", "")}">\n{doc.page_content[:1500]}\n</Document>'
|
112 |
-
for doc in search_docs
|
113 |
-
])
|
114 |
-
return formatted_search_docs
|
115 |
-
except Exception as e:
|
116 |
-
return f"Wikipedia search failed: {e}"
|
117 |
-
|
118 |
-
@tool
|
119 |
-
def web_search(query: str) -> str:
|
120 |
-
"""Search Tavily for a query and return maximum 3 results.
|
121 |
-
Args:
|
122 |
-
query: The search query.
|
123 |
-
"""
|
124 |
-
try:
|
125 |
-
time.sleep(random.uniform(0.7, 1.2)) # Rate limiting
|
126 |
search_tool = TavilySearchResults(max_results=3)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
f'<Document source="{doc.get("url", "")}">\n{doc.get("content", "")[:1200]}\n</Document>'
|
133 |
-
for doc in search_docs
|
134 |
-
])
|
135 |
-
return formatted_search_docs
|
136 |
except Exception as e:
|
137 |
return f"Web search failed: {e}"
|
138 |
|
139 |
@tool
|
140 |
-
def
|
141 |
-
"""
|
142 |
-
Args:
|
143 |
-
query: The search query.
|
144 |
-
"""
|
145 |
try:
|
146 |
-
time.sleep(random.uniform(0.
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
f'<Document source="{doc.metadata.get("source", "ArXiv")}" title="{doc.metadata.get("title", "")}">\n{doc.page_content[:1000]}\n</Document>'
|
153 |
-
for doc in search_docs
|
154 |
-
])
|
155 |
-
return formatted_search_docs
|
156 |
except Exception as e:
|
157 |
-
return f"
|
158 |
-
|
159 |
-
# Initialize tools list
|
160 |
-
tools = [
|
161 |
-
multiply, add, subtract, divide, modulus,
|
162 |
-
wiki_search, web_search, arxiv_search
|
163 |
-
]
|
164 |
-
|
165 |
-
# Enhanced State for better tracking
|
166 |
-
class EnhancedState(MessagesState):
|
167 |
-
"""Enhanced state with additional tracking"""
|
168 |
-
query: str = ""
|
169 |
-
tools_used: List[str] = []
|
170 |
-
search_results: str = ""
|
171 |
|
172 |
-
|
173 |
-
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
)
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
)
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
#
|
227 |
-
|
228 |
-
sys_msg = SystemMessage(content=enhanced_prompt)
|
229 |
|
230 |
-
|
231 |
|
232 |
-
def
|
233 |
-
"""
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
-
#
|
238 |
-
if
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
if content.strip() == original_query.strip():
|
244 |
-
# Force a better response
|
245 |
-
enhanced_messages = state["messages"] + [
|
246 |
-
HumanMessage(content=f"Please provide a specific answer to this question, do not repeat the question: {original_query}")
|
247 |
-
]
|
248 |
-
response = llm_with_tools.invoke(enhanced_messages)
|
249 |
|
250 |
-
return {"
|
251 |
-
except Exception as e:
|
252 |
-
error_response = AIMessage(content=f"Error processing request: {e}")
|
253 |
-
return {"messages": [error_response]}
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
270 |
else:
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
-
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
-
|
|
|
|
|
|
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
builder.add_conditional_edges(
|
291 |
-
"assistant",
|
292 |
-
tools_condition,
|
293 |
-
{
|
294 |
-
"tools": "tools",
|
295 |
-
"__end__": "formatter"
|
296 |
}
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
-
|
302 |
-
return
|
|
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
308 |
|
|
|
309 |
test_questions = [
|
310 |
"How many studio albums were published by Mercedes Sosa between 2000 and 2009?",
|
311 |
"What is 25 multiplied by 17?",
|
312 |
-
"
|
313 |
]
|
314 |
|
315 |
for question in test_questions:
|
316 |
-
print(f"
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
messages = [HumanMessage(content=question)]
|
321 |
-
config = {"configurable": {"thread_id": f"test_{hash(question)}"}}
|
322 |
-
result = graph.invoke({"messages": messages}, config)
|
323 |
-
|
324 |
-
if result and "messages" in result:
|
325 |
-
final_message = result["messages"][-1]
|
326 |
-
if hasattr(final_message, 'content'):
|
327 |
-
print(f"Answer: {final_message.content}")
|
328 |
-
else:
|
329 |
-
print(f"Answer: {final_message}")
|
330 |
-
else:
|
331 |
-
print("Answer: No response generated")
|
332 |
-
except Exception as e:
|
333 |
-
print(f"Error: {e}")
|
334 |
-
|
335 |
-
print()
|
336 |
-
|
337 |
-
if __name__ == "__main__":
|
338 |
-
# Run tests
|
339 |
-
test_agent()
|
|
|
1 |
"""
|
2 |
+
Enhanced Multi-LLM Agent System with Supabase FAISS Integration
|
3 |
+
Complete system for document insertion, retrieval, and question answering
|
4 |
"""
|
5 |
|
6 |
import os
|
7 |
import time
|
8 |
import random
|
|
|
|
|
9 |
import operator
|
10 |
+
from typing import List, Dict, Any, TypedDict, Annotated, Optional
|
11 |
+
from dotenv import load_dotenv
|
12 |
|
13 |
+
from langchain_core.tools import tool
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
15 |
+
from langchain_community.document_loaders import WikipediaLoader
|
16 |
+
from langgraph.graph import StateGraph, END
|
17 |
+
from langgraph.checkpoint.memory import MemorySaver
|
18 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
19 |
+
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Supabase and FAISS imports
|
22 |
+
import faiss
|
23 |
+
import numpy as np
|
24 |
+
from sentence_transformers import SentenceTransformer
|
25 |
+
from supabase import create_client, Client
|
26 |
+
import pandas as pd
|
27 |
+
import json
|
28 |
+
import pickle
|
29 |
|
30 |
+
load_dotenv()
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Enhanced system prompt for question-answering
|
33 |
+
ENHANCED_SYSTEM_PROMPT = (
|
34 |
+
"You are a helpful assistant tasked with answering questions using a set of tools. "
|
35 |
+
"You must provide accurate, comprehensive answers based on available information. "
|
36 |
+
"When answering questions, follow these guidelines:\n"
|
37 |
+
"1. Use available tools to gather information when needed\n"
|
38 |
+
"2. Provide precise, factual answers\n"
|
39 |
+
"3. For numbers: don't use commas or units unless specified\n"
|
40 |
+
"4. For strings: don't use articles or abbreviations, write digits in plain text\n"
|
41 |
+
"5. For lists: apply above rules based on element type\n"
|
42 |
+
"6. Always end with 'FINAL ANSWER: [YOUR ANSWER]'\n"
|
43 |
+
"7. Be concise but thorough in your reasoning\n"
|
44 |
+
"8. If you cannot find the answer, state that clearly"
|
45 |
+
)
|
46 |
|
47 |
+
# ---- Tool Definitions ----
|
48 |
@tool
|
49 |
def multiply(a: int, b: int) -> int:
|
50 |
+
"""Multiply two integers and return the product."""
|
|
|
|
|
|
|
|
|
51 |
return a * b
|
52 |
|
53 |
@tool
|
54 |
def add(a: int, b: int) -> int:
|
55 |
+
"""Add two integers and return the sum."""
|
|
|
|
|
|
|
|
|
56 |
return a + b
|
57 |
|
58 |
@tool
|
59 |
def subtract(a: int, b: int) -> int:
|
60 |
+
"""Subtract the second integer from the first and return the difference."""
|
|
|
|
|
|
|
|
|
61 |
return a - b
|
62 |
|
63 |
@tool
|
64 |
def divide(a: int, b: int) -> float:
|
65 |
+
"""Divide the first integer by the second and return the quotient."""
|
|
|
|
|
|
|
|
|
66 |
if b == 0:
|
67 |
raise ValueError("Cannot divide by zero.")
|
68 |
return a / b
|
69 |
|
70 |
@tool
|
71 |
def modulus(a: int, b: int) -> int:
|
72 |
+
"""Return the remainder when dividing the first integer by the second."""
|
|
|
|
|
|
|
|
|
73 |
return a % b
|
74 |
|
75 |
@tool
|
76 |
+
def optimized_web_search(query: str) -> str:
|
77 |
+
"""Perform an optimized web search using TavilySearchResults."""
|
|
|
|
|
|
|
78 |
try:
|
79 |
+
time.sleep(random.uniform(0.7, 1.5))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
search_tool = TavilySearchResults(max_results=3)
|
81 |
+
docs = search_tool.invoke({"query": query})
|
82 |
+
return "\n\n---\n\n".join(
|
83 |
+
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:800]}</Doc>"
|
84 |
+
for d in docs
|
85 |
+
)
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
return f"Web search failed: {e}"
|
88 |
|
89 |
@tool
|
90 |
+
def optimized_wiki_search(query: str) -> str:
|
91 |
+
"""Perform an optimized Wikipedia search and return content snippets."""
|
|
|
|
|
|
|
92 |
try:
|
93 |
+
time.sleep(random.uniform(0.3, 1))
|
94 |
+
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
95 |
+
return "\n\n---\n\n".join(
|
96 |
+
f"<Doc src='{d.metadata.get('source','Wikipedia')}'>{d.page_content[:1000]}</Doc>"
|
97 |
+
for d in docs
|
98 |
+
)
|
|
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
+
return f"Wikipedia search failed: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
# ---- Supabase FAISS Vector Database Integration ----
|
103 |
+
class SupabaseFAISSVectorDB:
|
104 |
+
"""Enhanced vector database combining FAISS with Supabase for persistent storage"""
|
105 |
|
106 |
+
def __init__(self):
|
107 |
+
# Initialize Supabase client
|
108 |
+
self.supabase_url = os.getenv("SUPABASE_URL")
|
109 |
+
self.supabase_key = os.getenv("SUPABASE_SERVICE_KEY")
|
110 |
+
if self.supabase_url and self.supabase_key:
|
111 |
+
self.supabase: Client = create_client(self.supabase_url, self.supabase_key)
|
112 |
+
else:
|
113 |
+
self.supabase = None
|
114 |
+
print("Supabase credentials not found, running without vector database")
|
115 |
+
|
116 |
+
# Initialize embedding model
|
117 |
+
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
118 |
+
self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
|
119 |
+
|
120 |
+
# Initialize FAISS index
|
121 |
+
self.index = faiss.IndexFlatL2(self.embedding_dim)
|
122 |
+
self.document_store = [] # Local cache for documents
|
123 |
|
124 |
+
def insert_question_data(self, data: Dict[str, Any]) -> bool:
|
125 |
+
"""Insert question data into both Supabase and FAISS"""
|
126 |
+
try:
|
127 |
+
question_text = data.get("Question", "")
|
128 |
+
embedding = self.embedding_model.encode([question_text])[0]
|
129 |
+
|
130 |
+
# Insert into Supabase if available
|
131 |
+
if self.supabase:
|
132 |
+
question_data = {
|
133 |
+
"task_id": data.get("task_id"),
|
134 |
+
"question": question_text,
|
135 |
+
"final_answer": data.get("Final answer"),
|
136 |
+
"level": data.get("Level"),
|
137 |
+
"file_name": data.get("file_name", ""),
|
138 |
+
"embedding": embedding.tolist()
|
139 |
+
}
|
140 |
+
self.supabase.table("questions").insert(question_data).execute()
|
141 |
+
|
142 |
+
# Add to local FAISS index
|
143 |
+
self.index.add(embedding.reshape(1, -1).astype('float32'))
|
144 |
+
self.document_store.append({
|
145 |
+
"task_id": data.get("task_id"),
|
146 |
+
"question": question_text,
|
147 |
+
"answer": data.get("Final answer"),
|
148 |
+
"level": data.get("Level")
|
149 |
+
})
|
150 |
+
|
151 |
+
return True
|
152 |
+
except Exception as e:
|
153 |
+
print(f"Error inserting data: {e}")
|
154 |
+
return False
|
155 |
+
|
156 |
+
def search_similar_questions(self, query: str, k: int = 3) -> List[Dict[str, Any]]:
|
157 |
+
"""Search for similar questions using vector similarity"""
|
158 |
+
try:
|
159 |
+
if self.index.ntotal == 0:
|
160 |
+
return []
|
161 |
+
|
162 |
+
query_embedding = self.embedding_model.encode([query])[0]
|
163 |
+
k = min(k, self.index.ntotal)
|
164 |
+
distances, indices = self.index.search(
|
165 |
+
query_embedding.reshape(1, -1).astype('float32'), k
|
166 |
)
|
167 |
+
|
168 |
+
results = []
|
169 |
+
for i, idx in enumerate(indices[0]):
|
170 |
+
if 0 <= idx < len(self.document_store):
|
171 |
+
doc = self.document_store[idx]
|
172 |
+
results.append({
|
173 |
+
"task_id": doc["task_id"],
|
174 |
+
"question": doc["question"],
|
175 |
+
"answer": doc["answer"],
|
176 |
+
"similarity_score": 1 / (1 + distances[0][i]),
|
177 |
+
"distance": float(distances[0][i])
|
178 |
+
})
|
179 |
+
|
180 |
+
return results
|
181 |
+
except Exception as e:
|
182 |
+
print(f"Error searching similar questions: {e}")
|
183 |
+
return []
|
184 |
|
185 |
+
# ---- Enhanced Agent State ----
|
186 |
+
class EnhancedAgentState(TypedDict):
|
187 |
+
"""State structure for the enhanced multi-LLM agent system."""
|
188 |
+
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
|
189 |
+
query: str
|
190 |
+
agent_type: str
|
191 |
+
final_answer: str
|
192 |
+
perf: Dict[str, Any]
|
193 |
+
agno_resp: str
|
194 |
+
tools_used: List[str]
|
195 |
+
reasoning: str
|
196 |
+
similar_questions: List[Dict[str, Any]]
|
197 |
+
|
198 |
+
# ---- Enhanced Multi-LLM System ----
|
199 |
+
class HybridLangGraphMultiLLMSystem:
|
200 |
+
"""
|
201 |
+
Advanced question-answering system with multi-LLM support and vector database integration
|
202 |
+
"""
|
203 |
+
|
204 |
+
def __init__(self, provider="groq"):
|
205 |
+
self.provider = provider
|
206 |
+
self.tools = [
|
207 |
+
multiply, add, subtract, divide, modulus,
|
208 |
+
optimized_web_search, optimized_wiki_search
|
209 |
+
]
|
210 |
|
211 |
+
# Initialize vector database
|
212 |
+
self.vector_db = SupabaseFAISSVectorDB()
|
|
|
213 |
|
214 |
+
self.graph = self._build_graph()
|
215 |
|
216 |
+
def _llm(self, model_name: str) -> ChatGroq:
|
217 |
+
"""Create a Groq LLM instance."""
|
218 |
+
return ChatGroq(
|
219 |
+
model=model_name,
|
220 |
+
temperature=0,
|
221 |
+
api_key=os.getenv("GROQ_API_KEY")
|
222 |
+
)
|
223 |
+
|
224 |
+
def _build_graph(self) -> StateGraph:
|
225 |
+
"""Build the LangGraph state machine with enhanced capabilities."""
|
226 |
+
# Initialize LLMs
|
227 |
+
llama8_llm = self._llm("llama3-8b-8192")
|
228 |
+
llama70_llm = self._llm("llama3-70b-8192")
|
229 |
+
deepseek_llm = self._llm("deepseek-chat")
|
230 |
+
|
231 |
+
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
232 |
+
"""Route queries to appropriate LLM based on complexity and content analysis."""
|
233 |
+
q = st["query"].lower()
|
234 |
|
235 |
+
# Enhanced routing logic
|
236 |
+
if any(keyword in q for keyword in ["calculate", "compute", "math", "multiply", "add", "subtract", "divide"]):
|
237 |
+
t = "llama70" # Use more powerful model for calculations
|
238 |
+
elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia", "information about"]):
|
239 |
+
t = "search_enhanced" # Use search-enhanced processing
|
240 |
+
elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]):
|
241 |
+
t = "deepseek"
|
242 |
+
elif "llama-8" in q:
|
243 |
+
t = "llama8"
|
244 |
+
elif len(q.split()) > 20: # Complex queries
|
245 |
+
t = "llama70"
|
246 |
+
else:
|
247 |
+
t = "llama8" # Default for simple queries
|
248 |
|
249 |
+
# Search for similar questions
|
250 |
+
similar_questions = self.vector_db.search_similar_questions(st["query"], k=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
return {**st, "agent_type": t, "tools_used": [], "reasoning": "", "similar_questions": similar_questions}
|
|
|
|
|
|
|
253 |
|
254 |
+
def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
255 |
+
"""Process query with Llama-3 8B model."""
|
256 |
+
t0 = time.time()
|
257 |
+
try:
|
258 |
+
# Add similar questions context if available
|
259 |
+
context = ""
|
260 |
+
if st.get("similar_questions"):
|
261 |
+
context = "\n\nSimilar questions for reference:\n"
|
262 |
+
for sq in st["similar_questions"][:2]:
|
263 |
+
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
|
264 |
+
|
265 |
+
enhanced_query = f"""
|
266 |
+
Question: {st["query"]}
|
267 |
+
{context}
|
268 |
+
Please provide a direct, accurate answer to this question.
|
269 |
+
"""
|
270 |
+
|
271 |
+
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
272 |
+
res = llama8_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
273 |
+
|
274 |
+
answer = res.content.strip()
|
275 |
+
if "FINAL ANSWER:" in answer:
|
276 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
277 |
+
|
278 |
+
return {**st,
|
279 |
+
"final_answer": answer,
|
280 |
+
"reasoning": "Used Llama-3 8B with similar questions context",
|
281 |
+
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}}
|
282 |
+
except Exception as e:
|
283 |
+
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
284 |
+
|
285 |
+
def llama70_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
286 |
+
"""Process query with Llama-3 70B model."""
|
287 |
+
t0 = time.time()
|
288 |
+
try:
|
289 |
+
# Add similar questions context if available
|
290 |
+
context = ""
|
291 |
+
if st.get("similar_questions"):
|
292 |
+
context = "\n\nSimilar questions for reference:\n"
|
293 |
+
for sq in st["similar_questions"][:2]:
|
294 |
+
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
|
295 |
+
|
296 |
+
enhanced_query = f"""
|
297 |
+
Question: {st["query"]}
|
298 |
+
{context}
|
299 |
+
Please provide a direct, accurate answer to this question.
|
300 |
+
"""
|
301 |
+
|
302 |
+
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
303 |
+
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
304 |
+
|
305 |
+
answer = res.content.strip()
|
306 |
+
if "FINAL ANSWER:" in answer:
|
307 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
308 |
+
|
309 |
+
return {**st,
|
310 |
+
"final_answer": answer,
|
311 |
+
"reasoning": "Used Llama-3 70B for complex reasoning with context",
|
312 |
+
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}}
|
313 |
+
except Exception as e:
|
314 |
+
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
315 |
+
|
316 |
+
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
317 |
+
"""Process query with DeepSeek model."""
|
318 |
+
t0 = time.time()
|
319 |
+
try:
|
320 |
+
# Add similar questions context if available
|
321 |
+
context = ""
|
322 |
+
if st.get("similar_questions"):
|
323 |
+
context = "\n\nSimilar questions for reference:\n"
|
324 |
+
for sq in st["similar_questions"][:2]:
|
325 |
+
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
|
326 |
+
|
327 |
+
enhanced_query = f"""
|
328 |
+
Question: {st["query"]}
|
329 |
+
{context}
|
330 |
+
Please provide a direct, accurate answer to this question.
|
331 |
+
"""
|
332 |
+
|
333 |
+
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
334 |
+
res = deepseek_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
335 |
+
|
336 |
+
answer = res.content.strip()
|
337 |
+
if "FINAL ANSWER:" in answer:
|
338 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
339 |
+
|
340 |
+
return {**st,
|
341 |
+
"final_answer": answer,
|
342 |
+
"reasoning": "Used DeepSeek for advanced reasoning and analysis",
|
343 |
+
"perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}}
|
344 |
+
except Exception as e:
|
345 |
+
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
346 |
+
|
347 |
+
def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
348 |
+
"""Process query with search enhancement."""
|
349 |
+
t0 = time.time()
|
350 |
+
tools_used = []
|
351 |
|
352 |
+
try:
|
353 |
+
# Determine search strategy
|
354 |
+
query = st["query"]
|
355 |
+
search_results = ""
|
356 |
+
|
357 |
+
if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]):
|
358 |
+
search_results = optimized_wiki_search.invoke({"query": query})
|
359 |
+
tools_used.append("wikipedia_search")
|
360 |
else:
|
361 |
+
search_results = optimized_web_search.invoke({"query": query})
|
362 |
+
tools_used.append("web_search")
|
363 |
+
|
364 |
+
# Add similar questions context
|
365 |
+
context = ""
|
366 |
+
if st.get("similar_questions"):
|
367 |
+
context = "\n\nSimilar questions for reference:\n"
|
368 |
+
for sq in st["similar_questions"][:2]:
|
369 |
+
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
|
370 |
+
|
371 |
+
enhanced_query = f"""
|
372 |
+
Original Question: {query}
|
373 |
+
|
374 |
+
Search Results:
|
375 |
+
{search_results}
|
376 |
+
{context}
|
377 |
|
378 |
+
Based on the search results and similar questions above, provide a direct answer to the original question.
|
379 |
+
"""
|
380 |
+
|
381 |
+
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
382 |
+
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
383 |
+
|
384 |
+
answer = res.content.strip()
|
385 |
+
if "FINAL ANSWER:" in answer:
|
386 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
387 |
+
|
388 |
+
return {**st,
|
389 |
+
"final_answer": answer,
|
390 |
+
"tools_used": tools_used,
|
391 |
+
"reasoning": "Used search enhancement with similar questions context",
|
392 |
+
"perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}}
|
393 |
+
except Exception as e:
|
394 |
+
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
395 |
+
|
396 |
+
# Build graph
|
397 |
+
g = StateGraph(EnhancedAgentState)
|
398 |
+
g.add_node("router", router)
|
399 |
+
g.add_node("llama8", llama8_node)
|
400 |
+
g.add_node("llama70", llama70_node)
|
401 |
+
g.add_node("deepseek", deepseek_node)
|
402 |
+
g.add_node("search_enhanced", search_enhanced_node)
|
403 |
+
|
404 |
+
g.set_entry_point("router")
|
405 |
+
g.add_conditional_edges("router", lambda s: s["agent_type"], {
|
406 |
+
"llama8": "llama8",
|
407 |
+
"llama70": "llama70",
|
408 |
+
"deepseek": "deepseek",
|
409 |
+
"search_enhanced": "search_enhanced"
|
410 |
+
})
|
411 |
|
412 |
+
for node in ["llama8", "llama70", "deepseek", "search_enhanced"]:
|
413 |
+
g.add_edge(node, END)
|
414 |
+
|
415 |
+
return g.compile(checkpointer=MemorySaver())
|
416 |
|
417 |
+
def process_query(self, q: str) -> str:
|
418 |
+
"""Process a query through the enhanced multi-LLM system."""
|
419 |
+
state = {
|
420 |
+
"messages": [HumanMessage(content=q)],
|
421 |
+
"query": q,
|
422 |
+
"agent_type": "",
|
423 |
+
"final_answer": "",
|
424 |
+
"perf": {},
|
425 |
+
"agno_resp": "",
|
426 |
+
"tools_used": [],
|
427 |
+
"reasoning": "",
|
428 |
+
"similar_questions": []
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
}
|
430 |
+
cfg = {"configurable": {"thread_id": f"enhanced_qa_{hash(q)}"}}
|
431 |
+
|
432 |
+
try:
|
433 |
+
out = self.graph.invoke(state, cfg)
|
434 |
+
answer = out.get("final_answer", "").strip()
|
435 |
+
|
436 |
+
# Ensure we don't return the question as the answer
|
437 |
+
if answer == q or answer.startswith(q):
|
438 |
+
return "Information not available"
|
439 |
+
|
440 |
+
return answer if answer else "No answer generated"
|
441 |
+
except Exception as e:
|
442 |
+
return f"Error processing query: {e}"
|
443 |
+
|
444 |
+
def load_metadata_from_jsonl(self, jsonl_file_path: str) -> int:
|
445 |
+
"""Load question metadata from JSONL file into vector database"""
|
446 |
+
success_count = 0
|
447 |
+
|
448 |
+
try:
|
449 |
+
with open(jsonl_file_path, 'r', encoding='utf-8') as file:
|
450 |
+
for line_num, line in enumerate(file, 1):
|
451 |
+
try:
|
452 |
+
data = json.loads(line.strip())
|
453 |
+
if self.vector_db.insert_question_data(data):
|
454 |
+
success_count += 1
|
455 |
+
|
456 |
+
if line_num % 10 == 0:
|
457 |
+
print(f"Processed {line_num} records, {success_count} successful")
|
458 |
+
|
459 |
+
except json.JSONDecodeError as e:
|
460 |
+
print(f"JSON decode error on line {line_num}: {e}")
|
461 |
+
except Exception as e:
|
462 |
+
print(f"Error processing line {line_num}: {e}")
|
463 |
+
|
464 |
+
except FileNotFoundError:
|
465 |
+
print(f"File not found: {jsonl_file_path}")
|
466 |
+
|
467 |
+
print(f"Loaded {success_count} questions into vector database")
|
468 |
+
return success_count
|
469 |
|
470 |
+
def build_graph(provider: str | None = None) -> StateGraph:
|
471 |
+
"""Build and return the graph for the enhanced agent system."""
|
472 |
+
return HybridLangGraphMultiLLMSystem(provider or "groq").graph
|
473 |
|
474 |
+
if __name__ == "__main__":
|
475 |
+
# Initialize and test the system
|
476 |
+
system = HybridLangGraphMultiLLMSystem()
|
477 |
+
|
478 |
+
# Load metadata if available
|
479 |
+
if os.path.exists("metadata.jsonl"):
|
480 |
+
system.load_metadata_from_jsonl("metadata.jsonl")
|
481 |
|
482 |
+
# Test queries
|
483 |
test_questions = [
|
484 |
"How many studio albums were published by Mercedes Sosa between 2000 and 2009?",
|
485 |
"What is 25 multiplied by 17?",
|
486 |
+
"Find information about artificial intelligence on Wikipedia"
|
487 |
]
|
488 |
|
489 |
for question in test_questions:
|
490 |
+
print(f"Question: {question}")
|
491 |
+
answer = system.process_query(question)
|
492 |
+
print(f"Answer: {answer}")
|
493 |
+
print("-" * 50)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|