Update veryfinal.py
Browse files- veryfinal.py +286 -292
veryfinal.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
"""
|
2 |
-
|
3 |
-
|
4 |
"""
|
5 |
|
6 |
import os
|
@@ -10,28 +10,38 @@ import operator
|
|
10 |
from typing import List, Dict, Any, TypedDict, Annotated, Optional
|
11 |
from dotenv import load_dotenv
|
12 |
|
|
|
13 |
from langchain_core.tools import tool
|
14 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
15 |
from langchain_community.document_loaders import WikipediaLoader
|
16 |
from langgraph.graph import StateGraph, END
|
17 |
from langgraph.checkpoint.memory import MemorySaver
|
18 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
19 |
-
from langchain_groq import ChatGroq
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
import faiss
|
23 |
import numpy as np
|
24 |
from sentence_transformers import SentenceTransformer
|
25 |
-
from supabase import create_client, Client
|
26 |
-
import pandas as pd
|
27 |
import json
|
28 |
-
import pickle
|
29 |
|
30 |
load_dotenv()
|
31 |
|
32 |
-
# Enhanced system prompt
|
33 |
ENHANCED_SYSTEM_PROMPT = (
|
34 |
-
"You are a helpful assistant tasked with answering questions using
|
35 |
"You must provide accurate, comprehensive answers based on available information. "
|
36 |
"When answering questions, follow these guidelines:\n"
|
37 |
"1. Use available tools to gather information when needed\n"
|
@@ -74,21 +84,35 @@ def modulus(a: int, b: int) -> int:
|
|
74 |
|
75 |
@tool
|
76 |
def optimized_web_search(query: str) -> str:
|
77 |
-
"""Perform
|
78 |
try:
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
return f"Web search failed: {e}"
|
88 |
|
89 |
@tool
|
90 |
def optimized_wiki_search(query: str) -> str:
|
91 |
-
"""Perform
|
92 |
try:
|
93 |
time.sleep(random.uniform(0.3, 1))
|
94 |
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
@@ -99,88 +123,120 @@ def optimized_wiki_search(query: str) -> str:
|
|
99 |
except Exception as e:
|
100 |
return f"Wikipedia search failed: {e}"
|
101 |
|
102 |
-
# ----
|
103 |
-
class
|
104 |
-
"""
|
105 |
|
106 |
def __init__(self):
|
107 |
-
|
108 |
-
self.
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
else:
|
113 |
-
self.supabase = None
|
114 |
-
print("Supabase credentials not found, running without vector database")
|
115 |
|
116 |
-
#
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
#
|
121 |
-
self.index = faiss.IndexFlatL2(self.embedding_dim)
|
122 |
-
self.document_store = [] # Local cache for documents
|
123 |
-
|
124 |
-
def insert_question_data(self, data: Dict[str, Any]) -> bool:
|
125 |
-
"""Insert question data into both Supabase and FAISS"""
|
126 |
try:
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
"embedding": embedding.tolist()
|
139 |
-
}
|
140 |
-
self.supabase.table("questions").insert(question_data).execute()
|
141 |
-
|
142 |
-
# Add to local FAISS index
|
143 |
-
self.index.add(embedding.reshape(1, -1).astype('float32'))
|
144 |
-
self.document_store.append({
|
145 |
-
"task_id": data.get("task_id"),
|
146 |
-
"question": question_text,
|
147 |
-
"answer": data.get("Final answer"),
|
148 |
-
"level": data.get("Level")
|
149 |
-
})
|
150 |
-
|
151 |
-
return True
|
152 |
except Exception as e:
|
153 |
-
print(f"
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
def
|
157 |
-
"""
|
158 |
try:
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
)
|
167 |
-
|
168 |
-
results = []
|
169 |
-
for i, idx in enumerate(indices[0]):
|
170 |
-
if 0 <= idx < len(self.document_store):
|
171 |
-
doc = self.document_store[idx]
|
172 |
-
results.append({
|
173 |
-
"task_id": doc["task_id"],
|
174 |
-
"question": doc["question"],
|
175 |
-
"answer": doc["answer"],
|
176 |
-
"similarity_score": 1 / (1 + distances[0][i]),
|
177 |
-
"distance": float(distances[0][i])
|
178 |
-
})
|
179 |
-
|
180 |
-
return results
|
181 |
except Exception as e:
|
182 |
-
print(f"
|
183 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
# ---- Enhanced Agent State ----
|
186 |
class EnhancedAgentState(TypedDict):
|
@@ -190,159 +246,61 @@ class EnhancedAgentState(TypedDict):
|
|
190 |
agent_type: str
|
191 |
final_answer: str
|
192 |
perf: Dict[str, Any]
|
193 |
-
agno_resp: str
|
194 |
tools_used: List[str]
|
195 |
reasoning: str
|
196 |
-
|
197 |
|
198 |
-
# ----
|
199 |
-
class
|
200 |
"""
|
201 |
-
|
202 |
"""
|
203 |
|
204 |
-
def __init__(self
|
205 |
-
self.
|
206 |
self.tools = [
|
207 |
multiply, add, subtract, divide, modulus,
|
208 |
optimized_web_search, optimized_wiki_search
|
209 |
]
|
210 |
-
|
211 |
-
# Initialize vector database
|
212 |
-
self.vector_db = SupabaseFAISSVectorDB()
|
213 |
-
|
214 |
self.graph = self._build_graph()
|
215 |
-
|
216 |
-
def _llm(self, model_name: str) -> ChatGroq:
|
217 |
-
"""Create a Groq LLM instance."""
|
218 |
-
return ChatGroq(
|
219 |
-
model=model_name,
|
220 |
-
temperature=0,
|
221 |
-
api_key=os.getenv("GROQ_API_KEY")
|
222 |
-
)
|
223 |
-
|
224 |
def _build_graph(self) -> StateGraph:
|
225 |
-
"""Build the LangGraph state machine with
|
226 |
-
|
227 |
-
llama8_llm = self._llm("llama3-8b-8192")
|
228 |
-
llama70_llm = self._llm("llama3-70b-8192")
|
229 |
-
deepseek_llm = self._llm("deepseek-chat")
|
230 |
-
|
231 |
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
232 |
-
"""Route queries to appropriate
|
233 |
q = st["query"].lower()
|
234 |
|
235 |
# Enhanced routing logic
|
236 |
if any(keyword in q for keyword in ["calculate", "compute", "math", "multiply", "add", "subtract", "divide"]):
|
237 |
-
|
|
|
238 |
elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia", "information about"]):
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
elif len(q.split()) > 20: # Complex queries
|
245 |
-
|
|
|
246 |
else:
|
247 |
-
|
248 |
-
|
249 |
-
# Search for similar questions
|
250 |
-
similar_questions = self.vector_db.search_similar_questions(st["query"], k=3)
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
context = "\n\nSimilar questions for reference:\n"
|
262 |
-
for sq in st["similar_questions"][:2]:
|
263 |
-
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
|
264 |
-
|
265 |
-
enhanced_query = f"""
|
266 |
-
Question: {st["query"]}
|
267 |
-
{context}
|
268 |
-
Please provide a direct, accurate answer to this question.
|
269 |
-
"""
|
270 |
-
|
271 |
-
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
272 |
-
res = llama8_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
273 |
-
|
274 |
-
answer = res.content.strip()
|
275 |
-
if "FINAL ANSWER:" in answer:
|
276 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
277 |
-
|
278 |
-
return {**st,
|
279 |
-
"final_answer": answer,
|
280 |
-
"reasoning": "Used Llama-3 8B with similar questions context",
|
281 |
-
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}}
|
282 |
-
except Exception as e:
|
283 |
-
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
284 |
-
|
285 |
-
def llama70_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
286 |
-
"""Process query with Llama-3 70B model."""
|
287 |
-
t0 = time.time()
|
288 |
-
try:
|
289 |
-
# Add similar questions context if available
|
290 |
-
context = ""
|
291 |
-
if st.get("similar_questions"):
|
292 |
-
context = "\n\nSimilar questions for reference:\n"
|
293 |
-
for sq in st["similar_questions"][:2]:
|
294 |
-
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
|
295 |
-
|
296 |
-
enhanced_query = f"""
|
297 |
-
Question: {st["query"]}
|
298 |
-
{context}
|
299 |
-
Please provide a direct, accurate answer to this question.
|
300 |
-
"""
|
301 |
-
|
302 |
-
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
303 |
-
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
304 |
-
|
305 |
-
answer = res.content.strip()
|
306 |
-
if "FINAL ANSWER:" in answer:
|
307 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
308 |
-
|
309 |
-
return {**st,
|
310 |
-
"final_answer": answer,
|
311 |
-
"reasoning": "Used Llama-3 70B for complex reasoning with context",
|
312 |
-
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}}
|
313 |
-
except Exception as e:
|
314 |
-
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
315 |
|
316 |
-
def
|
317 |
-
"""Process
|
318 |
-
|
319 |
-
try:
|
320 |
-
# Add similar questions context if available
|
321 |
-
context = ""
|
322 |
-
if st.get("similar_questions"):
|
323 |
-
context = "\n\nSimilar questions for reference:\n"
|
324 |
-
for sq in st["similar_questions"][:2]:
|
325 |
-
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
|
326 |
-
|
327 |
-
enhanced_query = f"""
|
328 |
-
Question: {st["query"]}
|
329 |
-
{context}
|
330 |
-
Please provide a direct, accurate answer to this question.
|
331 |
-
"""
|
332 |
-
|
333 |
-
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
334 |
-
res = deepseek_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
335 |
-
|
336 |
-
answer = res.content.strip()
|
337 |
-
if "FINAL ANSWER:" in answer:
|
338 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
339 |
-
|
340 |
-
return {**st,
|
341 |
-
"final_answer": answer,
|
342 |
-
"reasoning": "Used DeepSeek for advanced reasoning and analysis",
|
343 |
-
"perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}}
|
344 |
-
except Exception as e:
|
345 |
-
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
346 |
|
347 |
def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
348 |
"""Process query with search enhancement."""
|
@@ -361,73 +319,111 @@ class HybridLangGraphMultiLLMSystem:
|
|
361 |
search_results = optimized_web_search.invoke({"query": query})
|
362 |
tools_used.append("web_search")
|
363 |
|
364 |
-
# Add similar questions context
|
365 |
-
context = ""
|
366 |
-
if st.get("similar_questions"):
|
367 |
-
context = "\n\nSimilar questions for reference:\n"
|
368 |
-
for sq in st["similar_questions"][:2]:
|
369 |
-
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
|
370 |
-
|
371 |
enhanced_query = f"""
|
372 |
Original Question: {query}
|
373 |
|
374 |
Search Results:
|
375 |
{search_results}
|
376 |
-
{context}
|
377 |
|
378 |
-
Based on the search results
|
379 |
"""
|
380 |
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
"
|
390 |
-
|
391 |
-
|
392 |
-
|
|
|
|
|
|
|
|
|
|
|
393 |
except Exception as e:
|
394 |
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
# Build graph
|
397 |
g = StateGraph(EnhancedAgentState)
|
398 |
g.add_node("router", router)
|
399 |
-
g.add_node("
|
400 |
-
g.add_node("llama70", llama70_node)
|
401 |
-
g.add_node("deepseek", deepseek_node)
|
402 |
g.add_node("search_enhanced", search_enhanced_node)
|
|
|
|
|
|
|
403 |
|
404 |
g.set_entry_point("router")
|
405 |
g.add_conditional_edges("router", lambda s: s["agent_type"], {
|
406 |
-
"
|
407 |
-
"
|
408 |
-
"
|
409 |
-
"
|
|
|
410 |
})
|
411 |
|
412 |
-
for node in ["
|
413 |
g.add_edge(node, END)
|
414 |
|
415 |
return g.compile(checkpointer=MemorySaver())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
def process_query(self, q: str) -> str:
|
418 |
-
"""Process a query through the
|
419 |
state = {
|
420 |
"messages": [HumanMessage(content=q)],
|
421 |
"query": q,
|
422 |
"agent_type": "",
|
423 |
"final_answer": "",
|
424 |
"perf": {},
|
425 |
-
"agno_resp": "",
|
426 |
"tools_used": [],
|
427 |
"reasoning": "",
|
428 |
-
"
|
429 |
}
|
430 |
-
cfg = {"configurable": {"thread_id": f"
|
431 |
|
432 |
try:
|
433 |
out = self.graph.invoke(state, cfg)
|
@@ -441,53 +437,51 @@ class HybridLangGraphMultiLLMSystem:
|
|
441 |
except Exception as e:
|
442 |
return f"Error processing query: {e}"
|
443 |
|
444 |
-
def
|
445 |
-
"""
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
for
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
if line_num % 10 == 0:
|
457 |
-
print(f"Processed {line_num} records, {success_count} successful")
|
458 |
-
|
459 |
-
except json.JSONDecodeError as e:
|
460 |
-
print(f"JSON decode error on line {line_num}: {e}")
|
461 |
-
except Exception as e:
|
462 |
-
print(f"Error processing line {line_num}: {e}")
|
463 |
-
|
464 |
-
except FileNotFoundError:
|
465 |
-
print(f"File not found: {jsonl_file_path}")
|
466 |
-
|
467 |
-
print(f"Loaded {success_count} questions into vector database")
|
468 |
-
return success_count
|
469 |
|
470 |
-
|
471 |
-
|
472 |
-
|
|
|
473 |
|
|
|
474 |
if __name__ == "__main__":
|
475 |
-
# Initialize
|
476 |
-
system =
|
477 |
|
478 |
-
#
|
479 |
-
|
480 |
-
|
|
|
|
|
|
|
|
|
481 |
|
482 |
# Test queries
|
483 |
test_questions = [
|
484 |
-
"How many studio albums were published by Mercedes Sosa between 2000 and 2009?",
|
485 |
"What is 25 multiplied by 17?",
|
486 |
-
"Find information about
|
|
|
|
|
|
|
487 |
]
|
488 |
|
489 |
-
|
490 |
-
|
|
|
|
|
|
|
|
|
|
|
491 |
answer = system.process_query(question)
|
492 |
print(f"Answer: {answer}")
|
493 |
-
print("-" * 50)
|
|
|
1 |
"""
|
2 |
+
Open-Source Multi-LLM Agent System
|
3 |
+
Uses only free and open-source models - no paid APIs required
|
4 |
"""
|
5 |
|
6 |
import os
|
|
|
10 |
from typing import List, Dict, Any, TypedDict, Annotated, Optional
|
11 |
from dotenv import load_dotenv
|
12 |
|
13 |
+
# Core LangChain imports
|
14 |
from langchain_core.tools import tool
|
15 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
16 |
from langchain_community.document_loaders import WikipediaLoader
|
17 |
from langgraph.graph import StateGraph, END
|
18 |
from langgraph.checkpoint.memory import MemorySaver
|
19 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
|
|
20 |
|
21 |
+
# Open-source model integrations
|
22 |
+
from langchain_groq import ChatGroq # Free tier available
|
23 |
+
from langchain_community.llms import Ollama
|
24 |
+
from langchain_community.chat_models import ChatOllama
|
25 |
+
|
26 |
+
# Hugging Face integration for open-source models
|
27 |
+
try:
|
28 |
+
from langchain_huggingface import HuggingFacePipeline
|
29 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
30 |
+
HF_AVAILABLE = True
|
31 |
+
except ImportError:
|
32 |
+
HF_AVAILABLE = False
|
33 |
+
|
34 |
+
# Vector database imports
|
35 |
import faiss
|
36 |
import numpy as np
|
37 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
38 |
import json
|
|
|
39 |
|
40 |
load_dotenv()
|
41 |
|
42 |
+
# Enhanced system prompt
|
43 |
ENHANCED_SYSTEM_PROMPT = (
|
44 |
+
"You are a helpful assistant tasked with answering questions using available tools. "
|
45 |
"You must provide accurate, comprehensive answers based on available information. "
|
46 |
"When answering questions, follow these guidelines:\n"
|
47 |
"1. Use available tools to gather information when needed\n"
|
|
|
84 |
|
85 |
@tool
|
86 |
def optimized_web_search(query: str) -> str:
|
87 |
+
"""Perform web search using free DuckDuckGo (fallback if Tavily not available)."""
|
88 |
try:
|
89 |
+
# Try Tavily first (free tier)
|
90 |
+
if os.getenv("TAVILY_API_KEY"):
|
91 |
+
time.sleep(random.uniform(0.7, 1.5))
|
92 |
+
search_tool = TavilySearchResults(max_results=3)
|
93 |
+
docs = search_tool.invoke({"query": query})
|
94 |
+
return "\n\n---\n\n".join(
|
95 |
+
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:800]}</Doc>"
|
96 |
+
for d in docs
|
97 |
+
)
|
98 |
+
else:
|
99 |
+
# Fallback to DuckDuckGo (completely free)
|
100 |
+
try:
|
101 |
+
from duckduckgo_search import DDGS
|
102 |
+
with DDGS() as ddgs:
|
103 |
+
results = list(ddgs.text(query, max_results=3))
|
104 |
+
return "\n\n---\n\n".join(
|
105 |
+
f"<Doc url='{r.get('href','')}'>{r.get('body','')[:800]}</Doc>"
|
106 |
+
for r in results
|
107 |
+
)
|
108 |
+
except ImportError:
|
109 |
+
return "Web search not available - install duckduckgo-search for free web search"
|
110 |
except Exception as e:
|
111 |
return f"Web search failed: {e}"
|
112 |
|
113 |
@tool
|
114 |
def optimized_wiki_search(query: str) -> str:
|
115 |
+
"""Perform Wikipedia search - completely free."""
|
116 |
try:
|
117 |
time.sleep(random.uniform(0.3, 1))
|
118 |
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
|
|
123 |
except Exception as e:
|
124 |
return f"Wikipedia search failed: {e}"
|
125 |
|
126 |
+
# ---- Open-Source Model Manager ----
|
127 |
+
class OpenSourceModelManager:
|
128 |
+
"""Manages only open-source and free models"""
|
129 |
|
130 |
def __init__(self):
|
131 |
+
self.available_models = {}
|
132 |
+
self._initialize_models()
|
133 |
+
|
134 |
+
def _initialize_models(self):
|
135 |
+
"""Initialize only open-source models"""
|
|
|
|
|
|
|
136 |
|
137 |
+
# 1. Groq (Free tier with open-source models)
|
138 |
+
if os.getenv("GROQ_API_KEY"):
|
139 |
+
try:
|
140 |
+
self.available_models['groq_llama3_70b'] = ChatGroq(
|
141 |
+
model="llama3-70b-8192",
|
142 |
+
temperature=0,
|
143 |
+
api_key=os.getenv("GROQ_API_KEY")
|
144 |
+
)
|
145 |
+
self.available_models['groq_llama3_8b'] = ChatGroq(
|
146 |
+
model="llama3-8b-8192",
|
147 |
+
temperature=0,
|
148 |
+
api_key=os.getenv("GROQ_API_KEY")
|
149 |
+
)
|
150 |
+
self.available_models['groq_mixtral'] = ChatGroq(
|
151 |
+
model="mixtral-8x7b-32768",
|
152 |
+
temperature=0,
|
153 |
+
api_key=os.getenv("GROQ_API_KEY")
|
154 |
+
)
|
155 |
+
self.available_models['groq_gemma'] = ChatGroq(
|
156 |
+
model="gemma-7b-it",
|
157 |
+
temperature=0,
|
158 |
+
api_key=os.getenv("GROQ_API_KEY")
|
159 |
+
)
|
160 |
+
print("Groq models initialized (free tier)")
|
161 |
+
except Exception as e:
|
162 |
+
print(f"Groq models not available: {e}")
|
163 |
|
164 |
+
# 2. Ollama (Completely free local models)
|
|
|
|
|
|
|
|
|
|
|
165 |
try:
|
166 |
+
# Test if Ollama is running
|
167 |
+
test_model = ChatOllama(model="llama3", base_url="http://localhost:11434")
|
168 |
+
# If no error, add Ollama models
|
169 |
+
self.available_models['ollama_llama3'] = ChatOllama(model="llama3")
|
170 |
+
self.available_models['ollama_llama3_70b'] = ChatOllama(model="llama3:70b")
|
171 |
+
self.available_models['ollama_mistral'] = ChatOllama(model="mistral")
|
172 |
+
self.available_models['ollama_phi3'] = ChatOllama(model="phi3")
|
173 |
+
self.available_models['ollama_codellama'] = ChatOllama(model="codellama")
|
174 |
+
self.available_models['ollama_gemma'] = ChatOllama(model="gemma")
|
175 |
+
self.available_models['ollama_qwen'] = ChatOllama(model="qwen")
|
176 |
+
print("Ollama models initialized (local)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
except Exception as e:
|
178 |
+
print(f"Ollama not available: {e}")
|
179 |
+
|
180 |
+
# 3. Hugging Face Transformers (Completely free)
|
181 |
+
if HF_AVAILABLE:
|
182 |
+
try:
|
183 |
+
# Small models that can run on CPU
|
184 |
+
self.available_models['hf_gpt2'] = self._create_hf_model("gpt2")
|
185 |
+
self.available_models['hf_distilgpt2'] = self._create_hf_model("distilgpt2")
|
186 |
+
print("Hugging Face models initialized (local)")
|
187 |
+
except Exception as e:
|
188 |
+
print(f"Hugging Face models not available: {e}")
|
189 |
+
|
190 |
+
print(f"Total available open-source models: {len(self.available_models)}")
|
191 |
|
192 |
+
def _create_hf_model(self, model_name: str):
|
193 |
+
"""Create Hugging Face pipeline model"""
|
194 |
try:
|
195 |
+
pipe = pipeline(
|
196 |
+
"text-generation",
|
197 |
+
model=model_name,
|
198 |
+
max_length=512,
|
199 |
+
do_sample=True,
|
200 |
+
temperature=0.7,
|
201 |
+
pad_token_id=50256
|
202 |
)
|
203 |
+
return HuggingFacePipeline(pipeline=pipe)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
except Exception as e:
|
205 |
+
print(f"Failed to create HF model {model_name}: {e}")
|
206 |
+
return None
|
207 |
+
|
208 |
+
def get_model(self, model_name: str):
|
209 |
+
"""Get a specific model by name"""
|
210 |
+
return self.available_models.get(model_name)
|
211 |
+
|
212 |
+
def list_available_models(self) -> List[str]:
|
213 |
+
"""List all available model names"""
|
214 |
+
return list(self.available_models.keys())
|
215 |
+
|
216 |
+
def get_best_model_for_task(self, task_type: str):
|
217 |
+
"""Get the best available model for a specific task type"""
|
218 |
+
if task_type == "reasoning":
|
219 |
+
# Prefer larger models for reasoning
|
220 |
+
for model_name in ['groq_llama3_70b', 'ollama_llama3_70b', 'groq_mixtral', 'ollama_llama3']:
|
221 |
+
if model_name in self.available_models:
|
222 |
+
return self.available_models[model_name]
|
223 |
+
|
224 |
+
elif task_type == "coding":
|
225 |
+
# Prefer code-specialized models
|
226 |
+
for model_name in ['ollama_codellama', 'groq_llama3_70b', 'ollama_llama3']:
|
227 |
+
if model_name in self.available_models:
|
228 |
+
return self.available_models[model_name]
|
229 |
+
|
230 |
+
elif task_type == "fast":
|
231 |
+
# Prefer fast, smaller models
|
232 |
+
for model_name in ['groq_llama3_8b', 'groq_gemma', 'ollama_phi3', 'hf_distilgpt2']:
|
233 |
+
if model_name in self.available_models:
|
234 |
+
return self.available_models[model_name]
|
235 |
+
|
236 |
+
# Default fallback to first available
|
237 |
+
if self.available_models:
|
238 |
+
return list(self.available_models.values())[0]
|
239 |
+
return None
|
240 |
|
241 |
# ---- Enhanced Agent State ----
|
242 |
class EnhancedAgentState(TypedDict):
|
|
|
246 |
agent_type: str
|
247 |
final_answer: str
|
248 |
perf: Dict[str, Any]
|
|
|
249 |
tools_used: List[str]
|
250 |
reasoning: str
|
251 |
+
model_used: str
|
252 |
|
253 |
+
# ---- Open-Source Multi-LLM System ----
|
254 |
+
class OpenSourceMultiLLMSystem:
|
255 |
"""
|
256 |
+
Multi-LLM system using only open-source and free models
|
257 |
"""
|
258 |
|
259 |
+
def __init__(self):
|
260 |
+
self.model_manager = OpenSourceModelManager()
|
261 |
self.tools = [
|
262 |
multiply, add, subtract, divide, modulus,
|
263 |
optimized_web_search, optimized_wiki_search
|
264 |
]
|
|
|
|
|
|
|
|
|
265 |
self.graph = self._build_graph()
|
266 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
def _build_graph(self) -> StateGraph:
|
268 |
+
"""Build the LangGraph state machine with open-source models."""
|
269 |
+
|
|
|
|
|
|
|
|
|
270 |
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
271 |
+
"""Route queries to appropriate model based on complexity and content analysis."""
|
272 |
q = st["query"].lower()
|
273 |
|
274 |
# Enhanced routing logic
|
275 |
if any(keyword in q for keyword in ["calculate", "compute", "math", "multiply", "add", "subtract", "divide"]):
|
276 |
+
model_type = "reasoning"
|
277 |
+
agent_type = "math"
|
278 |
elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia", "information about"]):
|
279 |
+
model_type = "fast"
|
280 |
+
agent_type = "search_enhanced"
|
281 |
+
elif any(keyword in q for keyword in ["code", "programming", "function", "algorithm"]):
|
282 |
+
model_type = "coding"
|
283 |
+
agent_type = "coding"
|
284 |
elif len(q.split()) > 20: # Complex queries
|
285 |
+
model_type = "reasoning"
|
286 |
+
agent_type = "complex"
|
287 |
else:
|
288 |
+
model_type = "fast"
|
289 |
+
agent_type = "simple"
|
|
|
|
|
290 |
|
291 |
+
# Get the best model for this task
|
292 |
+
selected_model = self.model_manager.get_best_model_for_task(model_type)
|
293 |
+
model_name = "unknown"
|
294 |
+
for name, model in self.model_manager.available_models.items():
|
295 |
+
if model == selected_model:
|
296 |
+
model_name = name
|
297 |
+
break
|
298 |
+
|
299 |
+
return {**st, "agent_type": agent_type, "tools_used": [], "reasoning": "", "model_used": model_name}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
+
def math_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
302 |
+
"""Process mathematical queries."""
|
303 |
+
return self._process_with_model(st, "reasoning", "Mathematical calculation using open-source model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
306 |
"""Process query with search enhancement."""
|
|
|
319 |
search_results = optimized_web_search.invoke({"query": query})
|
320 |
tools_used.append("web_search")
|
321 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
enhanced_query = f"""
|
323 |
Original Question: {query}
|
324 |
|
325 |
Search Results:
|
326 |
{search_results}
|
|
|
327 |
|
328 |
+
Based on the search results above, provide a direct answer to the original question.
|
329 |
"""
|
330 |
|
331 |
+
# Use fast model for search-enhanced queries
|
332 |
+
model = self.model_manager.get_best_model_for_task("fast")
|
333 |
+
if model:
|
334 |
+
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
335 |
+
res = model.invoke([sys, HumanMessage(content=enhanced_query)])
|
336 |
+
|
337 |
+
answer = res.content.strip() if hasattr(res, 'content') else str(res).strip()
|
338 |
+
if "FINAL ANSWER:" in answer:
|
339 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
340 |
+
|
341 |
+
return {**st,
|
342 |
+
"final_answer": answer,
|
343 |
+
"tools_used": tools_used,
|
344 |
+
"reasoning": "Used search enhancement with open-source model",
|
345 |
+
"perf": {"time": time.time() - t0, "prov": "Search-Enhanced"}}
|
346 |
+
else:
|
347 |
+
return {**st, "final_answer": "No models available", "perf": {"error": "No models"}}
|
348 |
except Exception as e:
|
349 |
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
350 |
|
351 |
+
def coding_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
352 |
+
"""Process coding-related queries."""
|
353 |
+
return self._process_with_model(st, "coding", "Code generation using open-source model")
|
354 |
+
|
355 |
+
def complex_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
356 |
+
"""Process complex queries."""
|
357 |
+
return self._process_with_model(st, "reasoning", "Complex reasoning using open-source model")
|
358 |
+
|
359 |
+
def simple_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
360 |
+
"""Process simple queries."""
|
361 |
+
return self._process_with_model(st, "fast", "Simple query using fast open-source model")
|
362 |
+
|
363 |
# Build graph
|
364 |
g = StateGraph(EnhancedAgentState)
|
365 |
g.add_node("router", router)
|
366 |
+
g.add_node("math", math_node)
|
|
|
|
|
367 |
g.add_node("search_enhanced", search_enhanced_node)
|
368 |
+
g.add_node("coding", coding_node)
|
369 |
+
g.add_node("complex", complex_node)
|
370 |
+
g.add_node("simple", simple_node)
|
371 |
|
372 |
g.set_entry_point("router")
|
373 |
g.add_conditional_edges("router", lambda s: s["agent_type"], {
|
374 |
+
"math": "math",
|
375 |
+
"search_enhanced": "search_enhanced",
|
376 |
+
"coding": "coding",
|
377 |
+
"complex": "complex",
|
378 |
+
"simple": "simple"
|
379 |
})
|
380 |
|
381 |
+
for node in ["math", "search_enhanced", "coding", "complex", "simple"]:
|
382 |
g.add_edge(node, END)
|
383 |
|
384 |
return g.compile(checkpointer=MemorySaver())
|
385 |
+
|
386 |
+
def _process_with_model(self, st: EnhancedAgentState, model_type: str, reasoning: str) -> EnhancedAgentState:
|
387 |
+
"""Process query with specified model type"""
|
388 |
+
t0 = time.time()
|
389 |
+
try:
|
390 |
+
model = self.model_manager.get_best_model_for_task(model_type)
|
391 |
+
if not model:
|
392 |
+
return {**st, "final_answer": "No suitable model available", "perf": {"error": "No model"}}
|
393 |
+
|
394 |
+
enhanced_query = f"""
|
395 |
+
Question: {st["query"]}
|
396 |
+
|
397 |
+
Please provide a direct, accurate answer to this question.
|
398 |
+
"""
|
399 |
+
|
400 |
+
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
401 |
+
res = model.invoke([sys, HumanMessage(content=enhanced_query)])
|
402 |
+
|
403 |
+
answer = res.content.strip() if hasattr(res, 'content') else str(res).strip()
|
404 |
+
if "FINAL ANSWER:" in answer:
|
405 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
406 |
+
|
407 |
+
return {**st,
|
408 |
+
"final_answer": answer,
|
409 |
+
"reasoning": reasoning,
|
410 |
+
"perf": {"time": time.time() - t0, "prov": f"OpenSource-{model_type}"}}
|
411 |
+
except Exception as e:
|
412 |
+
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
413 |
|
414 |
def process_query(self, q: str) -> str:
|
415 |
+
"""Process a query through the open-source multi-LLM system."""
|
416 |
state = {
|
417 |
"messages": [HumanMessage(content=q)],
|
418 |
"query": q,
|
419 |
"agent_type": "",
|
420 |
"final_answer": "",
|
421 |
"perf": {},
|
|
|
422 |
"tools_used": [],
|
423 |
"reasoning": "",
|
424 |
+
"model_used": ""
|
425 |
}
|
426 |
+
cfg = {"configurable": {"thread_id": f"opensource_qa_{hash(q)}"}}
|
427 |
|
428 |
try:
|
429 |
out = self.graph.invoke(state, cfg)
|
|
|
437 |
except Exception as e:
|
438 |
return f"Error processing query: {e}"
|
439 |
|
440 |
+
def get_system_info(self) -> Dict[str, Any]:
|
441 |
+
"""Get information about available open-source models"""
|
442 |
+
return {
|
443 |
+
"available_models": self.model_manager.list_available_models(),
|
444 |
+
"total_models": len(self.model_manager.available_models),
|
445 |
+
"model_types": {
|
446 |
+
"groq_free_tier": [m for m in self.model_manager.list_available_models() if m.startswith("groq_")],
|
447 |
+
"ollama_local": [m for m in self.model_manager.list_available_models() if m.startswith("ollama_")],
|
448 |
+
"huggingface_local": [m for m in self.model_manager.list_available_models() if m.startswith("hf_")]
|
449 |
+
}
|
450 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
|
452 |
+
# ---- Build Graph Function (for compatibility) ----
|
453 |
+
def build_graph(provider: str = "opensource"):
|
454 |
+
"""Build graph using only open-source models"""
|
455 |
+
return OpenSourceMultiLLMSystem().graph
|
456 |
|
457 |
+
# ---- Main execution ----
|
458 |
if __name__ == "__main__":
|
459 |
+
# Initialize the open-source system
|
460 |
+
system = OpenSourceMultiLLMSystem()
|
461 |
|
462 |
+
# Print system information
|
463 |
+
info = system.get_system_info()
|
464 |
+
print("Open-Source System Information:")
|
465 |
+
print(f"Total Models Available: {info['total_models']}")
|
466 |
+
for category, models in info['model_types'].items():
|
467 |
+
if models:
|
468 |
+
print(f" {category}: {models}")
|
469 |
|
470 |
# Test queries
|
471 |
test_questions = [
|
|
|
472 |
"What is 25 multiplied by 17?",
|
473 |
+
"Find information about Mercedes Sosa albums between 2000-2009",
|
474 |
+
"Write a simple Python function to calculate factorial",
|
475 |
+
"Explain quantum computing in simple terms",
|
476 |
+
"What is the capital of France?"
|
477 |
]
|
478 |
|
479 |
+
print("\n" + "="*60)
|
480 |
+
print("Testing Open-Source Multi-LLM System")
|
481 |
+
print("="*60)
|
482 |
+
|
483 |
+
for i, question in enumerate(test_questions, 1):
|
484 |
+
print(f"\nQuestion {i}: {question}")
|
485 |
+
print("-" * 50)
|
486 |
answer = system.process_query(question)
|
487 |
print(f"Answer: {answer}")
|
|