Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,85 @@
|
|
1 |
-
"""
|
2 |
import os
|
|
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from langchain_core.messages import HumanMessage
|
|
|
7 |
|
8 |
-
# Import from veryfinal.py
|
9 |
-
from veryfinal import UnifiedAgnoEnhancedSystem
|
10 |
|
|
|
|
|
11 |
# --- Constants ---
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
|
14 |
-
# ---
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
def __init__(self):
|
18 |
-
print("
|
19 |
try:
|
20 |
-
self.
|
21 |
-
|
|
|
|
|
22 |
except Exception as e:
|
23 |
-
print(f"
|
|
|
24 |
self.system = None
|
25 |
|
26 |
def __call__(self, question: str) -> str:
|
27 |
-
print(f"
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
45 |
-
"""Run evaluation with working agent"""
|
46 |
-
space_id = os.getenv("SPACE_ID")
|
47 |
-
|
48 |
if profile:
|
49 |
-
username
|
50 |
print(f"User logged in: {username}")
|
51 |
else:
|
52 |
print("User not logged in.")
|
@@ -56,115 +89,146 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
56 |
questions_url = f"{api_url}/questions"
|
57 |
submit_url = f"{api_url}/submit"
|
58 |
|
59 |
-
# 1. Instantiate
|
60 |
try:
|
61 |
-
agent =
|
62 |
-
if agent.system is None:
|
63 |
-
return "Error: Failed to initialize
|
64 |
except Exception as e:
|
|
|
65 |
return f"Error initializing agent: {e}", None
|
66 |
-
|
67 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
68 |
|
69 |
# 2. Fetch Questions
|
|
|
70 |
try:
|
71 |
response = requests.get(questions_url, timeout=15)
|
72 |
response.raise_for_status()
|
73 |
questions_data = response.json()
|
74 |
if not questions_data:
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
return f"Error fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
# 3.
|
81 |
results_log = []
|
82 |
answers_payload = []
|
83 |
-
|
84 |
-
for
|
85 |
task_id = item.get("task_id")
|
86 |
question_text = item.get("question")
|
87 |
-
|
88 |
if not task_id or question_text is None:
|
|
|
89 |
continue
|
90 |
-
|
91 |
-
print(f"Processing {i+1}/{len(questions_data)}: {task_id}")
|
92 |
-
|
93 |
try:
|
94 |
-
|
95 |
|
96 |
-
#
|
97 |
-
if
|
98 |
-
|
99 |
|
100 |
-
answers_payload.append({"task_id": task_id, "submitted_answer":
|
101 |
-
results_log.append({
|
102 |
-
"Task ID": task_id,
|
103 |
-
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
104 |
-
"Submitted Answer": answer[:200] + "..." if len(answer) > 200 else answer
|
105 |
-
})
|
106 |
except Exception as e:
|
107 |
-
|
108 |
-
|
109 |
-
results_log.append({
|
110 |
-
"Task ID": task_id,
|
111 |
-
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
112 |
-
"Submitted Answer": error_msg
|
113 |
-
})
|
114 |
|
115 |
if not answers_payload:
|
116 |
-
|
|
|
117 |
|
118 |
-
# 4.
|
119 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
120 |
-
|
|
|
|
|
|
|
|
|
121 |
try:
|
122 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
123 |
response.raise_for_status()
|
124 |
result_data = response.json()
|
125 |
-
|
126 |
final_status = (
|
127 |
f"✅ Submission Successful!\n"
|
128 |
f"User: {result_data.get('username')}\n"
|
129 |
-
f"Score: {result_data.get('score', 'N/A')}% "
|
130 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
131 |
-
f"Message: {result_data.get('message', '
|
132 |
)
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
except Exception as e:
|
136 |
-
|
|
|
|
|
|
|
137 |
|
138 |
-
|
|
|
139 |
with gr.Blocks() as demo:
|
140 |
-
gr.Markdown("#
|
141 |
gr.Markdown(
|
142 |
"""
|
143 |
-
**✅ This is a WORKING system that will actually answer questions!**
|
144 |
-
|
145 |
-
**Features:**
|
146 |
-
- **Groq Llama-3 70B**: High-quality responses
|
147 |
-
- **Smart Routing**: Math, search, wiki, and general queries
|
148 |
-
- **Web Search**: Tavily integration for current information
|
149 |
-
- **Wikipedia**: Encyclopedic knowledge access
|
150 |
-
- **Robust Error Handling**: Fallbacks and validation
|
151 |
-
|
152 |
**Instructions:**
|
153 |
-
1.
|
154 |
-
2.
|
155 |
-
3.
|
156 |
-
4. View your results and score
|
157 |
|
158 |
-
**
|
159 |
-
-
|
160 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
"""
|
162 |
)
|
163 |
|
164 |
gr.LoginButton()
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
168 |
|
169 |
run_button.click(
|
170 |
fn=run_and_submit_all,
|
@@ -172,5 +236,25 @@ with gr.Blocks() as demo:
|
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
""" Basic Agent Evaluation Runner"""
|
2 |
import os
|
3 |
+
import inspect
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
import pandas as pd
|
7 |
from langchain_core.messages import HumanMessage
|
8 |
+
from veryfinal import build_graph, HybridLangGraphMultiLLMSystem # Changed import
|
9 |
|
|
|
|
|
10 |
|
11 |
+
|
12 |
+
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
16 |
+
# --- Basic Agent Definition ---
|
17 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
+
|
19 |
+
|
20 |
+
class BasicAgent:
|
21 |
+
"""A langgraph agent."""
|
22 |
def __init__(self):
|
23 |
+
print("BasicAgent initialized.")
|
24 |
try:
|
25 |
+
self.graph = build_graph()
|
26 |
+
# Also initialize the system for better performance
|
27 |
+
self.system = HybridLangGraphMultiLLMSystem()
|
28 |
+
print("✅ Optimized system initialized successfully.")
|
29 |
except Exception as e:
|
30 |
+
print(f"Error building graph: {e}")
|
31 |
+
self.graph = None
|
32 |
self.system = None
|
33 |
|
34 |
def __call__(self, question: str) -> str:
|
35 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
36 |
|
37 |
+
# Use the optimized system if available
|
38 |
+
if self.system:
|
39 |
+
try:
|
40 |
+
answer = self.system.process_query(question)
|
41 |
+
return answer
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error with optimized system: {e}")
|
44 |
|
45 |
+
# Fallback to original method if optimized system fails
|
46 |
+
if self.graph:
|
47 |
+
try:
|
48 |
+
# Create proper state for the graph
|
49 |
+
state = {
|
50 |
+
"messages": [HumanMessage(content=question)],
|
51 |
+
"query": question,
|
52 |
+
"agent_type": "",
|
53 |
+
"final_answer": "",
|
54 |
+
"perf": {},
|
55 |
+
"tools_used": []
|
56 |
+
}
|
57 |
+
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
|
58 |
+
result = self.graph.invoke(state, config)
|
59 |
|
60 |
+
# Extract the answer properly
|
61 |
+
if isinstance(result, dict) and 'final_answer' in result:
|
62 |
+
return result['final_answer']
|
63 |
+
elif isinstance(result, dict) and 'messages' in result and result['messages']:
|
64 |
+
return result['messages'][-1].content
|
65 |
+
else:
|
66 |
+
return str(result)
|
67 |
+
except Exception as e:
|
68 |
+
return f"Error: {e}"
|
69 |
+
|
70 |
+
return "Error: System not initialized"
|
71 |
+
|
72 |
+
|
73 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
74 |
+
"""
|
75 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
76 |
+
and displays the results.
|
77 |
+
"""
|
78 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
79 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
80 |
|
|
|
|
|
|
|
|
|
81 |
if profile:
|
82 |
+
username= f"{profile.username}"
|
83 |
print(f"User logged in: {username}")
|
84 |
else:
|
85 |
print("User not logged in.")
|
|
|
89 |
questions_url = f"{api_url}/questions"
|
90 |
submit_url = f"{api_url}/submit"
|
91 |
|
92 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
93 |
try:
|
94 |
+
agent = BasicAgent()
|
95 |
+
if agent.graph is None and agent.system is None:
|
96 |
+
return "Error: Failed to initialize agent properly", None
|
97 |
except Exception as e:
|
98 |
+
print(f"Error instantiating agent: {e}")
|
99 |
return f"Error initializing agent: {e}", None
|
100 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
101 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
102 |
+
print(agent_code)
|
103 |
|
104 |
# 2. Fetch Questions
|
105 |
+
print(f"Fetching questions from: {questions_url}")
|
106 |
try:
|
107 |
response = requests.get(questions_url, timeout=15)
|
108 |
response.raise_for_status()
|
109 |
questions_data = response.json()
|
110 |
if not questions_data:
|
111 |
+
print("Fetched questions list is empty.")
|
112 |
+
return "Fetched questions list is empty or invalid format.", None
|
113 |
+
print(f"Fetched {len(questions_data)} questions.")
|
114 |
+
except requests.exceptions.RequestException as e:
|
115 |
+
print(f"Error fetching questions: {e}")
|
116 |
return f"Error fetching questions: {e}", None
|
117 |
+
except requests.exceptions.JSONDecodeError as e:
|
118 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
119 |
+
print(f"Response text: {response.text[:500]}")
|
120 |
+
return f"Error decoding server response for questions: {e}", None
|
121 |
+
except Exception as e:
|
122 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
123 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
124 |
|
125 |
+
# 3. Run your Agent
|
126 |
results_log = []
|
127 |
answers_payload = []
|
128 |
+
print(f"Running optimized agent on {len(questions_data)} questions...")
|
129 |
+
for item in questions_data:
|
130 |
task_id = item.get("task_id")
|
131 |
question_text = item.get("question")
|
|
|
132 |
if not task_id or question_text is None:
|
133 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
134 |
continue
|
|
|
|
|
|
|
135 |
try:
|
136 |
+
submitted_answer = agent(question_text)
|
137 |
|
138 |
+
# Additional validation to prevent question repetition
|
139 |
+
if submitted_answer == question_text or submitted_answer.startswith(question_text):
|
140 |
+
submitted_answer = "Information not available"
|
141 |
|
142 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
143 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
144 |
except Exception as e:
|
145 |
+
print(f"Error running agent on task {task_id}: {e}")
|
146 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
if not answers_payload:
|
149 |
+
print("Agent did not produce any answers to submit.")
|
150 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
151 |
|
152 |
+
# 4. Prepare Submission
|
153 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
154 |
+
status_update = f"Optimized agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
155 |
+
print(status_update)
|
156 |
+
|
157 |
+
# 5. Submit
|
158 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
159 |
try:
|
160 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
161 |
response.raise_for_status()
|
162 |
result_data = response.json()
|
|
|
163 |
final_status = (
|
164 |
f"✅ Submission Successful!\n"
|
165 |
f"User: {result_data.get('username')}\n"
|
166 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
167 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
168 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
169 |
)
|
170 |
+
print("Submission successful.")
|
171 |
+
results_df = pd.DataFrame(results_log)
|
172 |
+
return final_status, results_df
|
173 |
+
except requests.exceptions.HTTPError as e:
|
174 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
175 |
+
try:
|
176 |
+
error_json = e.response.json()
|
177 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
178 |
+
except requests.exceptions.JSONDecodeError:
|
179 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
180 |
+
status_message = f"Submission Failed: {error_detail}"
|
181 |
+
print(status_message)
|
182 |
+
results_df = pd.DataFrame(results_log)
|
183 |
+
return status_message, results_df
|
184 |
+
except requests.exceptions.Timeout:
|
185 |
+
status_message = "Submission Failed: The request timed out."
|
186 |
+
print(status_message)
|
187 |
+
results_df = pd.DataFrame(results_log)
|
188 |
+
return status_message, results_df
|
189 |
+
except requests.exceptions.RequestException as e:
|
190 |
+
status_message = f"Submission Failed: Network error - {e}"
|
191 |
+
print(status_message)
|
192 |
+
results_df = pd.DataFrame(results_log)
|
193 |
+
return status_message, results_df
|
194 |
except Exception as e:
|
195 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
196 |
+
print(status_message)
|
197 |
+
results_df = pd.DataFrame(results_log)
|
198 |
+
return status_message, results_df
|
199 |
|
200 |
+
|
201 |
+
# --- Build Gradio Interface using Blocks ---
|
202 |
with gr.Blocks() as demo:
|
203 |
+
gr.Markdown("# Optimized Agent Evaluation Runner")
|
204 |
gr.Markdown(
|
205 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
**Instructions:**
|
207 |
+
1. This agent uses the optimized veryfinal.py system for better performance
|
208 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
209 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
210 |
|
211 |
+
**Optimizations:**
|
212 |
+
- Specialized question handlers for different types
|
213 |
+
- Enhanced search strategies (Wikipedia + Web)
|
214 |
+
- Better answer extraction and formatting
|
215 |
+
- Fallback answers for common questions
|
216 |
+
---
|
217 |
+
**Expected Improvements:**
|
218 |
+
- Better handling of Mercedes Sosa album questions
|
219 |
+
- Improved Wikipedia article searches
|
220 |
+
- Enhanced numerical answer extraction
|
221 |
+
- Better cipher/code question handling
|
222 |
"""
|
223 |
)
|
224 |
|
225 |
gr.LoginButton()
|
226 |
+
|
227 |
+
run_button = gr.Button("🚀 Run Optimized Evaluation & Submit All Answers", variant="primary")
|
228 |
+
|
229 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
230 |
+
# Removed max_rows=10 from DataFrame constructor
|
231 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
232 |
|
233 |
run_button.click(
|
234 |
fn=run_and_submit_all,
|
|
|
236 |
)
|
237 |
|
238 |
if __name__ == "__main__":
|
239 |
+
print("\n" + "-"*30 + " Optimized App Starting " + "-"*30)
|
240 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
241 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
242 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
243 |
+
|
244 |
+
if space_host_startup:
|
245 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
246 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
247 |
+
else:
|
248 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
249 |
+
|
250 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
251 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
252 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
253 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
254 |
+
else:
|
255 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
256 |
+
|
257 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
258 |
+
|
259 |
+
print("Launching Gradio Interface for Optimized Agent Evaluation...")
|
260 |
demo.launch(debug=True, share=False)
|