Update veryfinal.py
Browse files- veryfinal.py +110 -254
veryfinal.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
"""
|
2 |
-
Enhanced Multi-LLM Agent System
|
3 |
-
|
4 |
"""
|
5 |
|
6 |
import os
|
7 |
import time
|
8 |
import random
|
9 |
import operator
|
10 |
-
from typing import List, Dict, Any, TypedDict, Annotated
|
11 |
from dotenv import load_dotenv
|
12 |
|
13 |
from langchain_core.tools import tool
|
@@ -18,106 +18,57 @@ from langgraph.checkpoint.memory import MemorySaver
|
|
18 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
19 |
from langchain_groq import ChatGroq
|
20 |
|
21 |
-
# Load environment variables
|
22 |
load_dotenv()
|
23 |
|
24 |
-
# Enhanced system prompt for question-answering
|
25 |
ENHANCED_SYSTEM_PROMPT = (
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
)
|
34 |
|
35 |
-
# ---- Tool Definitions
|
36 |
@tool
|
37 |
-
def multiply(a: int
|
38 |
-
"""Multiply two
|
39 |
-
|
40 |
-
Args:
|
41 |
-
a: first int | float
|
42 |
-
b: second int | float
|
43 |
-
"""
|
44 |
return a * b
|
45 |
|
46 |
@tool
|
47 |
-
def add(a: int
|
48 |
-
"""
|
49 |
-
Adds two integers and returns the sum.
|
50 |
-
|
51 |
-
Args:
|
52 |
-
a (int): First integer
|
53 |
-
b (int): Second integer
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
int: Sum of a and b
|
57 |
-
"""
|
58 |
return a + b
|
59 |
|
60 |
@tool
|
61 |
-
def subtract(a: int
|
62 |
-
"""
|
63 |
-
Subtracts the second integer from the first and returns the difference.
|
64 |
-
|
65 |
-
Args:
|
66 |
-
a (int): First integer (minuend)
|
67 |
-
b (int): Second integer (subtrahend)
|
68 |
-
|
69 |
-
Returns:
|
70 |
-
int: Difference of a and b
|
71 |
-
"""
|
72 |
return a - b
|
73 |
|
74 |
@tool
|
75 |
-
def divide(a: int
|
76 |
-
"""
|
77 |
-
|
78 |
-
|
79 |
-
Args:
|
80 |
-
a (int): Dividend
|
81 |
-
b (int): Divisor
|
82 |
-
|
83 |
-
Returns:
|
84 |
-
float: Quotient of a divided by b
|
85 |
-
|
86 |
-
Raises:
|
87 |
-
ValueError: If b is zero
|
88 |
-
"""
|
89 |
-
if b == 0 or b==0.0:
|
90 |
raise ValueError("Cannot divide by zero.")
|
91 |
return a / b
|
92 |
|
93 |
@tool
|
94 |
-
def modulus(a: int
|
95 |
-
"""
|
96 |
-
Returns the remainder when dividing the first integer by the second.
|
97 |
-
|
98 |
-
Args:
|
99 |
-
a (int): Dividend
|
100 |
-
b (int): Divisor
|
101 |
-
|
102 |
-
Returns:
|
103 |
-
int: Remainder of a divided by b
|
104 |
-
"""
|
105 |
return a % b
|
106 |
|
107 |
@tool
|
108 |
def optimized_web_search(query: str) -> str:
|
109 |
-
"""
|
110 |
-
Performs an optimized web search using TavilySearchResults.
|
111 |
-
|
112 |
-
Args:
|
113 |
-
query (str): Search query string
|
114 |
-
|
115 |
-
Returns:
|
116 |
-
str: Concatenated search results with URLs and content snippets
|
117 |
-
"""
|
118 |
try:
|
119 |
time.sleep(random.uniform(0.7, 1.5))
|
120 |
-
|
|
|
121 |
return "\n\n---\n\n".join(
|
122 |
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:800]}</Doc>"
|
123 |
for d in docs
|
@@ -127,15 +78,7 @@ def optimized_web_search(query: str) -> str:
|
|
127 |
|
128 |
@tool
|
129 |
def optimized_wiki_search(query: str) -> str:
|
130 |
-
"""
|
131 |
-
Performs an optimized Wikipedia search and returns content snippets.
|
132 |
-
|
133 |
-
Args:
|
134 |
-
query (str): Wikipedia search query
|
135 |
-
|
136 |
-
Returns:
|
137 |
-
str: Wikipedia content with source attribution
|
138 |
-
"""
|
139 |
try:
|
140 |
time.sleep(random.uniform(0.3, 1))
|
141 |
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
@@ -146,59 +89,22 @@ def optimized_wiki_search(query: str) -> str:
|
|
146 |
except Exception as e:
|
147 |
return f"Wikipedia search failed: {e}"
|
148 |
|
149 |
-
# ---- LLM Provider Integrations ----
|
150 |
-
try:
|
151 |
-
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
152 |
-
NVIDIA_AVAILABLE = True
|
153 |
-
except ImportError:
|
154 |
-
NVIDIA_AVAILABLE = False
|
155 |
-
|
156 |
-
try:
|
157 |
-
import google.generativeai as genai
|
158 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
159 |
-
GOOGLE_AVAILABLE = True
|
160 |
-
except ImportError:
|
161 |
-
GOOGLE_AVAILABLE = False
|
162 |
-
|
163 |
# ---- Enhanced Agent State ----
|
164 |
class EnhancedAgentState(TypedDict):
|
165 |
-
"""
|
166 |
-
State structure for the enhanced multi-LLM agent system.
|
167 |
-
|
168 |
-
Attributes:
|
169 |
-
messages: List of conversation messages
|
170 |
-
query: Current query string
|
171 |
-
agent_type: Selected agent/LLM type
|
172 |
-
final_answer: Generated response
|
173 |
-
perf: Performance metrics
|
174 |
-
agno_resp: Agno-style response metadata
|
175 |
-
tools_used: List of tools used in processing
|
176 |
-
reasoning: Step-by-step reasoning process
|
177 |
-
"""
|
178 |
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
|
179 |
query: str
|
180 |
agent_type: str
|
181 |
final_answer: str
|
182 |
perf: Dict[str, Any]
|
183 |
agno_resp: str
|
184 |
-
tools_used: List[str]
|
185 |
-
reasoning: str
|
186 |
|
187 |
# ---- Enhanced Multi-LLM System ----
|
188 |
-
class
|
189 |
-
"""
|
190 |
-
Advanced question-answering system that routes queries to appropriate LLM providers
|
191 |
-
and uses tools to gather information for comprehensive answers.
|
192 |
-
|
193 |
-
Features:
|
194 |
-
- Multi-LLM routing (Groq, Google, NVIDIA)
|
195 |
-
- Tool integration for web search and calculations
|
196 |
-
- Structured reasoning and answer formatting
|
197 |
-
- Performance monitoring
|
198 |
-
"""
|
199 |
|
200 |
def __init__(self):
|
201 |
-
"""Initialize the enhanced
|
202 |
self.tools = [
|
203 |
multiply, add, subtract, divide, modulus,
|
204 |
optimized_web_search, optimized_wiki_search
|
@@ -206,15 +112,7 @@ class EnhancedQuestionAnsweringSystem:
|
|
206 |
self.graph = self._build_graph()
|
207 |
|
208 |
def _llm(self, model_name: str) -> ChatGroq:
|
209 |
-
"""
|
210 |
-
Create a Groq LLM instance.
|
211 |
-
|
212 |
-
Args:
|
213 |
-
model_name (str): Model identifier
|
214 |
-
|
215 |
-
Returns:
|
216 |
-
ChatGroq: Configured Groq LLM instance
|
217 |
-
"""
|
218 |
return ChatGroq(
|
219 |
model=model_name,
|
220 |
temperature=0,
|
@@ -222,55 +120,53 @@ class EnhancedQuestionAnsweringSystem:
|
|
222 |
)
|
223 |
|
224 |
def _build_graph(self) -> StateGraph:
|
225 |
-
"""
|
226 |
-
Build the LangGraph state machine with enhanced question-answering capabilities.
|
227 |
-
|
228 |
-
Returns:
|
229 |
-
StateGraph: Compiled graph with routing logic
|
230 |
-
"""
|
231 |
# Initialize LLMs
|
232 |
llama8_llm = self._llm("llama3-8b-8192")
|
233 |
llama70_llm = self._llm("llama3-70b-8192")
|
234 |
deepseek_llm = self._llm("deepseek-chat")
|
235 |
|
236 |
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
237 |
-
"""
|
238 |
-
Route queries to appropriate LLM based on complexity and content.
|
239 |
-
|
240 |
-
Args:
|
241 |
-
st (EnhancedAgentState): Current state
|
242 |
-
|
243 |
-
Returns:
|
244 |
-
EnhancedAgentState: Updated state with agent selection
|
245 |
-
"""
|
246 |
q = st["query"].lower()
|
247 |
|
248 |
-
#
|
249 |
-
if any(keyword in q for keyword in ["calculate", "compute", "math", "
|
250 |
t = "llama70" # Use more powerful model for calculations
|
251 |
-
elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia"]):
|
252 |
t = "search_enhanced" # Use search-enhanced processing
|
253 |
elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]):
|
254 |
t = "deepseek"
|
|
|
|
|
255 |
elif len(q.split()) > 20: # Complex queries
|
256 |
t = "llama70"
|
257 |
else:
|
258 |
t = "llama8" # Default for simple queries
|
259 |
|
260 |
-
return {**st, "agent_type": t
|
261 |
|
262 |
def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
263 |
"""Process query with Llama-3 8B model."""
|
264 |
t0 = time.time()
|
265 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
267 |
-
res = llama8_llm.invoke([sys, HumanMessage(content=
|
268 |
|
269 |
-
|
|
|
|
|
|
|
270 |
|
271 |
return {**st,
|
272 |
-
"final_answer":
|
273 |
-
"reasoning": reasoning,
|
274 |
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}}
|
275 |
except Exception as e:
|
276 |
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
@@ -279,14 +175,23 @@ class EnhancedQuestionAnsweringSystem:
|
|
279 |
"""Process query with Llama-3 70B model."""
|
280 |
t0 = time.time()
|
281 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
283 |
-
res = llama70_llm.invoke([sys, HumanMessage(content=
|
284 |
|
285 |
-
|
|
|
|
|
|
|
286 |
|
287 |
return {**st,
|
288 |
-
"final_answer":
|
289 |
-
"reasoning": reasoning,
|
290 |
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}}
|
291 |
except Exception as e:
|
292 |
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
@@ -295,14 +200,23 @@ class EnhancedQuestionAnsweringSystem:
|
|
295 |
"""Process query with DeepSeek model."""
|
296 |
t0 = time.time()
|
297 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
299 |
-
res = deepseek_llm.invoke([sys, HumanMessage(content=
|
300 |
|
301 |
-
|
|
|
|
|
|
|
302 |
|
303 |
return {**st,
|
304 |
-
"final_answer":
|
305 |
-
"reasoning": reasoning,
|
306 |
"perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}}
|
307 |
except Exception as e:
|
308 |
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
@@ -310,43 +224,38 @@ class EnhancedQuestionAnsweringSystem:
|
|
310 |
def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
311 |
"""Process query with search enhancement."""
|
312 |
t0 = time.time()
|
313 |
-
tools_used = []
|
314 |
-
reasoning_steps = []
|
315 |
|
316 |
try:
|
317 |
-
# Determine
|
318 |
query = st["query"]
|
319 |
search_results = ""
|
320 |
|
321 |
if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]):
|
322 |
search_results = optimized_wiki_search.invoke({"query": query})
|
323 |
-
tools_used.append("wikipedia_search")
|
324 |
-
reasoning_steps.append("Searched Wikipedia for relevant information")
|
325 |
else:
|
326 |
search_results = optimized_web_search.invoke({"query": query})
|
327 |
-
tools_used.append("web_search")
|
328 |
-
reasoning_steps.append("Performed web search for current information")
|
329 |
|
330 |
-
#
|
331 |
enhanced_query = f"""
|
332 |
-
Original
|
333 |
|
334 |
Search Results:
|
335 |
{search_results}
|
336 |
|
337 |
-
Based on the search results above,
|
|
|
338 |
"""
|
339 |
|
340 |
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
341 |
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
342 |
|
343 |
-
|
344 |
-
|
|
|
|
|
345 |
|
346 |
return {**st,
|
347 |
-
"final_answer":
|
348 |
-
"tools_used": tools_used,
|
349 |
-
"reasoning": reasoning,
|
350 |
"perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}}
|
351 |
except Exception as e:
|
352 |
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
@@ -373,24 +282,14 @@ class EnhancedQuestionAnsweringSystem:
|
|
373 |
return g.compile(checkpointer=MemorySaver())
|
374 |
|
375 |
def process_query(self, q: str) -> str:
|
376 |
-
"""
|
377 |
-
Process a query through the enhanced question-answering system.
|
378 |
-
|
379 |
-
Args:
|
380 |
-
q (str): Input query
|
381 |
-
|
382 |
-
Returns:
|
383 |
-
str: Generated response with proper formatting
|
384 |
-
"""
|
385 |
state = {
|
386 |
"messages": [HumanMessage(content=q)],
|
387 |
"query": q,
|
388 |
"agent_type": "",
|
389 |
"final_answer": "",
|
390 |
"perf": {},
|
391 |
-
"agno_resp": ""
|
392 |
-
"tools_used": [],
|
393 |
-
"reasoning": ""
|
394 |
}
|
395 |
cfg = {"configurable": {"thread_id": f"qa_{hash(q)}"}}
|
396 |
|
@@ -398,73 +297,30 @@ class EnhancedQuestionAnsweringSystem:
|
|
398 |
out = self.graph.invoke(state, cfg)
|
399 |
answer = out.get("final_answer", "").strip()
|
400 |
|
401 |
-
# Ensure
|
402 |
-
if
|
403 |
-
|
404 |
-
if "FINAL ANSWER:" in answer:
|
405 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
406 |
-
answer = f"FINAL ANSWER: {answer}"
|
407 |
-
else:
|
408 |
-
# Add FINAL ANSWER prefix if missing
|
409 |
-
answer = f"FINAL ANSWER: {answer}"
|
410 |
|
411 |
-
return answer
|
412 |
except Exception as e:
|
413 |
-
return f"
|
414 |
|
415 |
def build_graph(provider: str | None = None) -> StateGraph:
|
416 |
-
"""
|
417 |
-
|
418 |
-
|
419 |
-
Args:
|
420 |
-
provider (str | None): Provider preference (optional)
|
421 |
-
|
422 |
-
Returns:
|
423 |
-
StateGraph: Compiled graph instance
|
424 |
-
"""
|
425 |
-
return EnhancedQuestionAnsweringSystem().graph
|
426 |
-
|
427 |
-
# ---- Main Question-Answering Interface ----
|
428 |
-
class QuestionAnsweringAgent:
|
429 |
-
"""
|
430 |
-
Main interface for the question-answering agent system.
|
431 |
-
"""
|
432 |
-
|
433 |
-
def __init__(self):
|
434 |
-
"""Initialize the question-answering agent."""
|
435 |
-
self.system = EnhancedQuestionAnsweringSystem()
|
436 |
-
|
437 |
-
def answer_question(self, question: str) -> str:
|
438 |
-
"""
|
439 |
-
Answer a question using the enhanced multi-LLM system.
|
440 |
-
|
441 |
-
Args:
|
442 |
-
question (str): The question to answer
|
443 |
-
|
444 |
-
Returns:
|
445 |
-
str: Formatted answer with FINAL ANSWER prefix
|
446 |
-
"""
|
447 |
-
return self.system.process_query(question)
|
448 |
|
449 |
if __name__ == "__main__":
|
450 |
-
#
|
451 |
-
|
452 |
|
453 |
-
# Test with sample questions
|
454 |
test_questions = [
|
455 |
-
"How many studio albums were published by Mercedes Sosa between 2000 and 2009?",
|
456 |
"What is 25 multiplied by 17?",
|
457 |
-
"
|
458 |
-
"
|
459 |
]
|
460 |
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
print(f"\nQuestion {i}: {question}")
|
467 |
-
print("-" * 60)
|
468 |
-
answer = qa_agent.answer_question(question)
|
469 |
-
print(answer)
|
470 |
-
print()
|
|
|
1 |
"""
|
2 |
+
Enhanced Multi-LLM Agent System - CORRECTED VERSION
|
3 |
+
Fixes the issue where questions are returned as answers
|
4 |
"""
|
5 |
|
6 |
import os
|
7 |
import time
|
8 |
import random
|
9 |
import operator
|
10 |
+
from typing import List, Dict, Any, TypedDict, Annotated
|
11 |
from dotenv import load_dotenv
|
12 |
|
13 |
from langchain_core.tools import tool
|
|
|
18 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
19 |
from langchain_groq import ChatGroq
|
20 |
|
|
|
21 |
load_dotenv()
|
22 |
|
23 |
+
# Enhanced system prompt for proper question-answering
|
24 |
ENHANCED_SYSTEM_PROMPT = (
|
25 |
+
"You are a helpful assistant tasked with answering questions using available tools. "
|
26 |
+
"Follow these guidelines:\n"
|
27 |
+
"1. Read the question carefully and understand what is being asked\n"
|
28 |
+
"2. Use available tools when you need external information\n"
|
29 |
+
"3. Provide accurate, specific answers based on the information you find\n"
|
30 |
+
"4. For numbers: don't use commas or units unless specified\n"
|
31 |
+
"5. For strings: don't use articles or abbreviations, write digits in plain text\n"
|
32 |
+
"6. Always end with 'FINAL ANSWER: [YOUR ANSWER]' where [YOUR ANSWER] is concise\n"
|
33 |
+
"7. Never repeat the question as your answer\n"
|
34 |
+
"8. If you cannot find the answer, state 'Information not available'\n"
|
35 |
)
|
36 |
|
37 |
+
# ---- Tool Definitions ----
|
38 |
@tool
|
39 |
+
def multiply(a: int, b: int) -> int:
|
40 |
+
"""Multiply two integers and return the product."""
|
|
|
|
|
|
|
|
|
|
|
41 |
return a * b
|
42 |
|
43 |
@tool
|
44 |
+
def add(a: int, b: int) -> int:
|
45 |
+
"""Add two integers and return the sum."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
return a + b
|
47 |
|
48 |
@tool
|
49 |
+
def subtract(a: int, b: int) -> int:
|
50 |
+
"""Subtract the second integer from the first and return the difference."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
return a - b
|
52 |
|
53 |
@tool
|
54 |
+
def divide(a: int, b: int) -> float:
|
55 |
+
"""Divide the first integer by the second and return the quotient."""
|
56 |
+
if b == 0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
raise ValueError("Cannot divide by zero.")
|
58 |
return a / b
|
59 |
|
60 |
@tool
|
61 |
+
def modulus(a: int, b: int) -> int:
|
62 |
+
"""Return the remainder when dividing the first integer by the second."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
return a % b
|
64 |
|
65 |
@tool
|
66 |
def optimized_web_search(query: str) -> str:
|
67 |
+
"""Perform web search using TavilySearchResults."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
try:
|
69 |
time.sleep(random.uniform(0.7, 1.5))
|
70 |
+
search_tool = TavilySearchResults(max_results=3)
|
71 |
+
docs = search_tool.invoke({"query": query})
|
72 |
return "\n\n---\n\n".join(
|
73 |
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:800]}</Doc>"
|
74 |
for d in docs
|
|
|
78 |
|
79 |
@tool
|
80 |
def optimized_wiki_search(query: str) -> str:
|
81 |
+
"""Perform Wikipedia search and return content."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
try:
|
83 |
time.sleep(random.uniform(0.3, 1))
|
84 |
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
|
|
89 |
except Exception as e:
|
90 |
return f"Wikipedia search failed: {e}"
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# ---- Enhanced Agent State ----
|
93 |
class EnhancedAgentState(TypedDict):
|
94 |
+
"""State structure for the enhanced agent system."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
|
96 |
query: str
|
97 |
agent_type: str
|
98 |
final_answer: str
|
99 |
perf: Dict[str, Any]
|
100 |
agno_resp: str
|
|
|
|
|
101 |
|
102 |
# ---- Enhanced Multi-LLM System ----
|
103 |
+
class HybridLangGraphMultiLLMSystem:
|
104 |
+
"""Enhanced question-answering system with proper response handling."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
def __init__(self):
|
107 |
+
"""Initialize the enhanced multi-LLM system."""
|
108 |
self.tools = [
|
109 |
multiply, add, subtract, divide, modulus,
|
110 |
optimized_web_search, optimized_wiki_search
|
|
|
112 |
self.graph = self._build_graph()
|
113 |
|
114 |
def _llm(self, model_name: str) -> ChatGroq:
|
115 |
+
"""Create a Groq LLM instance."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
return ChatGroq(
|
117 |
model=model_name,
|
118 |
temperature=0,
|
|
|
120 |
)
|
121 |
|
122 |
def _build_graph(self) -> StateGraph:
|
123 |
+
"""Build the LangGraph state machine with proper response handling."""
|
|
|
|
|
|
|
|
|
|
|
124 |
# Initialize LLMs
|
125 |
llama8_llm = self._llm("llama3-8b-8192")
|
126 |
llama70_llm = self._llm("llama3-70b-8192")
|
127 |
deepseek_llm = self._llm("deepseek-chat")
|
128 |
|
129 |
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
130 |
+
"""Route queries to appropriate LLM based on content analysis."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
q = st["query"].lower()
|
132 |
|
133 |
+
# Enhanced routing logic
|
134 |
+
if any(keyword in q for keyword in ["calculate", "compute", "math", "multiply", "add", "subtract", "divide"]):
|
135 |
t = "llama70" # Use more powerful model for calculations
|
136 |
+
elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia", "information about"]):
|
137 |
t = "search_enhanced" # Use search-enhanced processing
|
138 |
elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]):
|
139 |
t = "deepseek"
|
140 |
+
elif "llama-8" in q:
|
141 |
+
t = "llama8"
|
142 |
elif len(q.split()) > 20: # Complex queries
|
143 |
t = "llama70"
|
144 |
else:
|
145 |
t = "llama8" # Default for simple queries
|
146 |
|
147 |
+
return {**st, "agent_type": t}
|
148 |
|
149 |
def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
150 |
"""Process query with Llama-3 8B model."""
|
151 |
t0 = time.time()
|
152 |
try:
|
153 |
+
# Create enhanced prompt with context
|
154 |
+
enhanced_query = f"""
|
155 |
+
Question: {st["query"]}
|
156 |
+
|
157 |
+
Please provide a direct, accurate answer to this question. Do not repeat the question.
|
158 |
+
"""
|
159 |
+
|
160 |
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
161 |
+
res = llama8_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
162 |
|
163 |
+
# Extract and clean the answer
|
164 |
+
answer = res.content.strip()
|
165 |
+
if "FINAL ANSWER:" in answer:
|
166 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
167 |
|
168 |
return {**st,
|
169 |
+
"final_answer": answer,
|
|
|
170 |
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}}
|
171 |
except Exception as e:
|
172 |
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
|
|
175 |
"""Process query with Llama-3 70B model."""
|
176 |
t0 = time.time()
|
177 |
try:
|
178 |
+
# Create enhanced prompt with context
|
179 |
+
enhanced_query = f"""
|
180 |
+
Question: {st["query"]}
|
181 |
+
|
182 |
+
Please provide a direct, accurate answer to this question. Do not repeat the question.
|
183 |
+
"""
|
184 |
+
|
185 |
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
186 |
+
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
187 |
|
188 |
+
# Extract and clean the answer
|
189 |
+
answer = res.content.strip()
|
190 |
+
if "FINAL ANSWER:" in answer:
|
191 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
192 |
|
193 |
return {**st,
|
194 |
+
"final_answer": answer,
|
|
|
195 |
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}}
|
196 |
except Exception as e:
|
197 |
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
|
|
200 |
"""Process query with DeepSeek model."""
|
201 |
t0 = time.time()
|
202 |
try:
|
203 |
+
# Create enhanced prompt with context
|
204 |
+
enhanced_query = f"""
|
205 |
+
Question: {st["query"]}
|
206 |
+
|
207 |
+
Please provide a direct, accurate answer to this question. Do not repeat the question.
|
208 |
+
"""
|
209 |
+
|
210 |
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
211 |
+
res = deepseek_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
212 |
|
213 |
+
# Extract and clean the answer
|
214 |
+
answer = res.content.strip()
|
215 |
+
if "FINAL ANSWER:" in answer:
|
216 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
217 |
|
218 |
return {**st,
|
219 |
+
"final_answer": answer,
|
|
|
220 |
"perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}}
|
221 |
except Exception as e:
|
222 |
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
|
|
224 |
def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
225 |
"""Process query with search enhancement."""
|
226 |
t0 = time.time()
|
|
|
|
|
227 |
|
228 |
try:
|
229 |
+
# Determine search strategy
|
230 |
query = st["query"]
|
231 |
search_results = ""
|
232 |
|
233 |
if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]):
|
234 |
search_results = optimized_wiki_search.invoke({"query": query})
|
|
|
|
|
235 |
else:
|
236 |
search_results = optimized_web_search.invoke({"query": query})
|
|
|
|
|
237 |
|
238 |
+
# Create comprehensive prompt with search results
|
239 |
enhanced_query = f"""
|
240 |
+
Original Question: {query}
|
241 |
|
242 |
Search Results:
|
243 |
{search_results}
|
244 |
|
245 |
+
Based on the search results above, provide a direct answer to the original question.
|
246 |
+
Extract the specific information requested. Do not repeat the question.
|
247 |
"""
|
248 |
|
249 |
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
250 |
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
251 |
|
252 |
+
# Extract and clean the answer
|
253 |
+
answer = res.content.strip()
|
254 |
+
if "FINAL ANSWER:" in answer:
|
255 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
256 |
|
257 |
return {**st,
|
258 |
+
"final_answer": answer,
|
|
|
|
|
259 |
"perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}}
|
260 |
except Exception as e:
|
261 |
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
|
|
282 |
return g.compile(checkpointer=MemorySaver())
|
283 |
|
284 |
def process_query(self, q: str) -> str:
|
285 |
+
"""Process a query and return the final answer."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
state = {
|
287 |
"messages": [HumanMessage(content=q)],
|
288 |
"query": q,
|
289 |
"agent_type": "",
|
290 |
"final_answer": "",
|
291 |
"perf": {},
|
292 |
+
"agno_resp": ""
|
|
|
|
|
293 |
}
|
294 |
cfg = {"configurable": {"thread_id": f"qa_{hash(q)}"}}
|
295 |
|
|
|
297 |
out = self.graph.invoke(state, cfg)
|
298 |
answer = out.get("final_answer", "").strip()
|
299 |
|
300 |
+
# Ensure we don't return the question as the answer
|
301 |
+
if answer == q or answer.startswith(q):
|
302 |
+
return "Information not available"
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
+
return answer if answer else "No answer generated"
|
305 |
except Exception as e:
|
306 |
+
return f"Error processing query: {e}"
|
307 |
|
308 |
def build_graph(provider: str | None = None) -> StateGraph:
|
309 |
+
"""Build and return the graph for the enhanced agent system."""
|
310 |
+
return HybridLangGraphMultiLLMSystem().graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
if __name__ == "__main__":
|
313 |
+
# Test the system
|
314 |
+
qa_system = HybridLangGraphMultiLLMSystem()
|
315 |
|
|
|
316 |
test_questions = [
|
|
|
317 |
"What is 25 multiplied by 17?",
|
318 |
+
"Who was the first president of the United States?",
|
319 |
+
"Find information about artificial intelligence on Wikipedia"
|
320 |
]
|
321 |
|
322 |
+
for question in test_questions:
|
323 |
+
print(f"Question: {question}")
|
324 |
+
answer = qa_system.process_query(question)
|
325 |
+
print(f"Answer: {answer}")
|
326 |
+
print("-" * 50)
|
|
|
|
|
|
|
|
|
|