Update veryfinal.py
Browse files- veryfinal.py +36 -84
veryfinal.py
CHANGED
@@ -82,22 +82,10 @@ try:
|
|
82 |
except ImportError:
|
83 |
GROQ_AVAILABLE = False
|
84 |
|
85 |
-
try:
|
86 |
-
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
87 |
-
NVIDIA_AVAILABLE = True
|
88 |
-
except ImportError:
|
89 |
-
NVIDIA_AVAILABLE = False
|
90 |
-
|
91 |
-
try:
|
92 |
-
import google.generativeai as genai
|
93 |
-
GEMINI_AVAILABLE = True
|
94 |
-
except ImportError:
|
95 |
-
GEMINI_AVAILABLE = False
|
96 |
-
|
97 |
import requests
|
98 |
|
99 |
def deepseek_generate(prompt, api_key=None):
|
100 |
-
"""Call DeepSeek API."""
|
101 |
if not api_key:
|
102 |
return "DeepSeek API key not provided"
|
103 |
|
@@ -122,15 +110,28 @@ def deepseek_generate(prompt, api_key=None):
|
|
122 |
return f"DeepSeek API error: {e}"
|
123 |
|
124 |
def baidu_ernie_generate(prompt, api_key=None):
|
125 |
-
"""Call Baidu ERNIE API
|
126 |
if not api_key:
|
127 |
return "Baidu ERNIE API key not provided"
|
128 |
|
129 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
try:
|
131 |
-
|
|
|
|
|
|
|
132 |
except Exception as e:
|
133 |
-
return f"ERNIE API error: {e}"
|
134 |
|
135 |
# ---- Graph State ----
|
136 |
class EnhancedAgentState(TypedDict):
|
@@ -151,38 +152,24 @@ class HybridLangGraphMultiLLMSystem:
|
|
151 |
self.graph = self._build_graph()
|
152 |
|
153 |
def _build_graph(self):
|
154 |
-
# Initialize
|
155 |
groq_llm = None
|
156 |
-
nvidia_llm = None
|
157 |
|
158 |
if GROQ_AVAILABLE and os.getenv("GROQ_API_KEY"):
|
159 |
try:
|
|
|
160 |
groq_llm = ChatGroq(
|
161 |
-
model="
|
162 |
temperature=0,
|
163 |
api_key=os.getenv("GROQ_API_KEY")
|
164 |
)
|
165 |
except Exception as e:
|
166 |
print(f"Failed to initialize Groq: {e}")
|
167 |
-
|
168 |
-
if NVIDIA_AVAILABLE and os.getenv("NVIDIA_API_KEY"):
|
169 |
-
try:
|
170 |
-
nvidia_llm = ChatNVIDIA(
|
171 |
-
model="meta/llama3-70b-instruct",
|
172 |
-
temperature=0,
|
173 |
-
api_key=os.getenv("NVIDIA_API_KEY")
|
174 |
-
)
|
175 |
-
except Exception as e:
|
176 |
-
print(f"Failed to initialize NVIDIA: {e}")
|
177 |
|
178 |
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
179 |
q = st["query"].lower()
|
180 |
if "groq" in q and groq_llm:
|
181 |
t = "groq"
|
182 |
-
elif "nvidia" in q and nvidia_llm:
|
183 |
-
t = "nvidia"
|
184 |
-
elif ("gemini" in q or "google" in q) and GEMINI_AVAILABLE:
|
185 |
-
t = "gemini"
|
186 |
elif "deepseek" in q:
|
187 |
t = "deepseek"
|
188 |
elif "ernie" in q or "baidu" in q:
|
@@ -191,12 +178,10 @@ class HybridLangGraphMultiLLMSystem:
|
|
191 |
# Default to first available provider
|
192 |
if groq_llm:
|
193 |
t = "groq"
|
194 |
-
elif
|
195 |
-
t = "nvidia"
|
196 |
-
elif GEMINI_AVAILABLE:
|
197 |
-
t = "gemini"
|
198 |
-
else:
|
199 |
t = "deepseek"
|
|
|
|
|
200 |
return {**st, "agent_type": t}
|
201 |
|
202 |
def groq_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
@@ -205,45 +190,17 @@ class HybridLangGraphMultiLLMSystem:
|
|
205 |
|
206 |
t0 = time.time()
|
207 |
try:
|
208 |
-
sys = SystemMessage(content="You are a helpful AI assistant. Provide accurate and detailed answers.")
|
209 |
res = groq_llm.invoke([sys, HumanMessage(content=st["query"])])
|
210 |
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "Groq"}}
|
211 |
except Exception as e:
|
212 |
return {**st, "final_answer": f"Groq error: {e}", "perf": {"error": str(e)}}
|
213 |
|
214 |
-
def nvidia_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
215 |
-
if not nvidia_llm:
|
216 |
-
return {**st, "final_answer": "NVIDIA not available", "perf": {"error": "No NVIDIA LLM"}}
|
217 |
-
|
218 |
-
t0 = time.time()
|
219 |
-
try:
|
220 |
-
sys = SystemMessage(content="You are a helpful AI assistant. Provide accurate and detailed answers.")
|
221 |
-
res = nvidia_llm.invoke([sys, HumanMessage(content=st["query"])])
|
222 |
-
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "NVIDIA"}}
|
223 |
-
except Exception as e:
|
224 |
-
return {**st, "final_answer": f"NVIDIA error: {e}", "perf": {"error": str(e)}}
|
225 |
-
|
226 |
-
def gemini_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
227 |
-
if not GEMINI_AVAILABLE:
|
228 |
-
return {**st, "final_answer": "Gemini not available", "perf": {"error": "Gemini not installed"}}
|
229 |
-
|
230 |
-
t0 = time.time()
|
231 |
-
try:
|
232 |
-
api_key = os.getenv("GEMINI_API_KEY")
|
233 |
-
if not api_key:
|
234 |
-
return {**st, "final_answer": "Gemini API key not provided", "perf": {"error": "No API key"}}
|
235 |
-
|
236 |
-
genai.configure(api_key=api_key)
|
237 |
-
model = genai.GenerativeModel("gemini-1.5-pro-latest")
|
238 |
-
res = model.generate_content(st["query"])
|
239 |
-
return {**st, "final_answer": res.text, "perf": {"time": time.time() - t0, "prov": "Gemini"}}
|
240 |
-
except Exception as e:
|
241 |
-
return {**st, "final_answer": f"Gemini error: {e}", "perf": {"error": str(e)}}
|
242 |
-
|
243 |
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
244 |
t0 = time.time()
|
245 |
try:
|
246 |
-
|
|
|
247 |
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "DeepSeek"}}
|
248 |
except Exception as e:
|
249 |
return {**st, "final_answer": f"DeepSeek error: {e}", "perf": {"error": str(e)}}
|
@@ -251,10 +208,11 @@ class HybridLangGraphMultiLLMSystem:
|
|
251 |
def baidu_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
252 |
t0 = time.time()
|
253 |
try:
|
254 |
-
|
255 |
-
|
|
|
256 |
except Exception as e:
|
257 |
-
return {**st, "final_answer": f"ERNIE error: {e}", "perf": {"error": str(e)}}
|
258 |
|
259 |
def pick(st: EnhancedAgentState) -> str:
|
260 |
return st["agent_type"]
|
@@ -262,19 +220,15 @@ class HybridLangGraphMultiLLMSystem:
|
|
262 |
g = StateGraph(EnhancedAgentState)
|
263 |
g.add_node("router", router)
|
264 |
g.add_node("groq", groq_node)
|
265 |
-
g.add_node("nvidia", nvidia_node)
|
266 |
-
g.add_node("gemini", gemini_node)
|
267 |
g.add_node("deepseek", deepseek_node)
|
268 |
g.add_node("baidu", baidu_node)
|
269 |
g.set_entry_point("router")
|
270 |
g.add_conditional_edges("router", pick, {
|
271 |
"groq": "groq",
|
272 |
-
"
|
273 |
-
"gemini": "gemini",
|
274 |
-
"deepseek": "deepseek",
|
275 |
"baidu": "baidu"
|
276 |
})
|
277 |
-
for n in ["groq", "
|
278 |
g.add_edge(n, END)
|
279 |
return g.compile(checkpointer=MemorySaver())
|
280 |
|
@@ -294,9 +248,7 @@ class HybridLangGraphMultiLLMSystem:
|
|
294 |
|
295 |
# Clean up the answer
|
296 |
if isinstance(raw_answer, str):
|
297 |
-
|
298 |
-
answer_part = parts[1].strip() if len(parts) > 1 and len(parts[1].strip()) > 10 else raw_answer.strip()
|
299 |
-
return answer_part
|
300 |
return str(raw_answer)
|
301 |
except Exception as e:
|
302 |
return f"Error processing query: {e}"
|
@@ -308,7 +260,7 @@ def build_graph(provider="groq"):
|
|
308 |
return system.graph
|
309 |
|
310 |
if __name__ == "__main__":
|
311 |
-
query = "What are the
|
312 |
system = HybridLangGraphMultiLLMSystem()
|
313 |
result = system.process_query(query)
|
314 |
-
print("LangGraph
|
|
|
82 |
except ImportError:
|
83 |
GROQ_AVAILABLE = False
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
import requests
|
86 |
|
87 |
def deepseek_generate(prompt, api_key=None):
|
88 |
+
"""Call DeepSeek API directly."""
|
89 |
if not api_key:
|
90 |
return "DeepSeek API key not provided"
|
91 |
|
|
|
110 |
return f"DeepSeek API error: {e}"
|
111 |
|
112 |
def baidu_ernie_generate(prompt, api_key=None):
|
113 |
+
"""Call Baidu ERNIE API."""
|
114 |
if not api_key:
|
115 |
return "Baidu ERNIE API key not provided"
|
116 |
|
117 |
+
# Baidu ERNIE API endpoint (replace with actual endpoint)
|
118 |
+
url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions"
|
119 |
+
headers = {
|
120 |
+
"Content-Type": "application/json",
|
121 |
+
"Authorization": f"Bearer {api_key}"
|
122 |
+
}
|
123 |
+
data = {
|
124 |
+
"messages": [{"role": "user", "content": prompt}],
|
125 |
+
"temperature": 0.1,
|
126 |
+
"top_p": 0.8
|
127 |
+
}
|
128 |
try:
|
129 |
+
resp = requests.post(url, headers=headers, json=data, timeout=30)
|
130 |
+
resp.raise_for_status()
|
131 |
+
result = resp.json().get("result", "")
|
132 |
+
return result if result else "No response from Baidu ERNIE"
|
133 |
except Exception as e:
|
134 |
+
return f"Baidu ERNIE API error: {e}"
|
135 |
|
136 |
# ---- Graph State ----
|
137 |
class EnhancedAgentState(TypedDict):
|
|
|
152 |
self.graph = self._build_graph()
|
153 |
|
154 |
def _build_graph(self):
|
155 |
+
# Initialize Groq LLM with error handling
|
156 |
groq_llm = None
|
|
|
157 |
|
158 |
if GROQ_AVAILABLE and os.getenv("GROQ_API_KEY"):
|
159 |
try:
|
160 |
+
# Use Groq for multiple model access
|
161 |
groq_llm = ChatGroq(
|
162 |
+
model="llama-3.1-70b-versatile", # Updated to a current model
|
163 |
temperature=0,
|
164 |
api_key=os.getenv("GROQ_API_KEY")
|
165 |
)
|
166 |
except Exception as e:
|
167 |
print(f"Failed to initialize Groq: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
170 |
q = st["query"].lower()
|
171 |
if "groq" in q and groq_llm:
|
172 |
t = "groq"
|
|
|
|
|
|
|
|
|
173 |
elif "deepseek" in q:
|
174 |
t = "deepseek"
|
175 |
elif "ernie" in q or "baidu" in q:
|
|
|
178 |
# Default to first available provider
|
179 |
if groq_llm:
|
180 |
t = "groq"
|
181 |
+
elif os.getenv("DEEPSEEK_API_KEY"):
|
|
|
|
|
|
|
|
|
182 |
t = "deepseek"
|
183 |
+
else:
|
184 |
+
t = "baidu"
|
185 |
return {**st, "agent_type": t}
|
186 |
|
187 |
def groq_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
|
|
190 |
|
191 |
t0 = time.time()
|
192 |
try:
|
193 |
+
sys = SystemMessage(content="You are a helpful AI assistant. Provide accurate and detailed answers. Be concise but thorough.")
|
194 |
res = groq_llm.invoke([sys, HumanMessage(content=st["query"])])
|
195 |
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "Groq"}}
|
196 |
except Exception as e:
|
197 |
return {**st, "final_answer": f"Groq error: {e}", "perf": {"error": str(e)}}
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
200 |
t0 = time.time()
|
201 |
try:
|
202 |
+
prompt = f"You are a helpful AI assistant. Provide accurate and detailed answers. Be concise but thorough.\n\nUser question: {st['query']}"
|
203 |
+
resp = deepseek_generate(prompt, api_key=os.getenv("DEEPSEEK_API_KEY"))
|
204 |
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "DeepSeek"}}
|
205 |
except Exception as e:
|
206 |
return {**st, "final_answer": f"DeepSeek error: {e}", "perf": {"error": str(e)}}
|
|
|
208 |
def baidu_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
209 |
t0 = time.time()
|
210 |
try:
|
211 |
+
prompt = f"You are a helpful AI assistant. Provide accurate and detailed answers. Be concise but thorough.\n\nUser question: {st['query']}"
|
212 |
+
resp = baidu_ernie_generate(prompt, api_key=os.getenv("BAIDU_API_KEY"))
|
213 |
+
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "Baidu ERNIE"}}
|
214 |
except Exception as e:
|
215 |
+
return {**st, "final_answer": f"Baidu ERNIE error: {e}", "perf": {"error": str(e)}}
|
216 |
|
217 |
def pick(st: EnhancedAgentState) -> str:
|
218 |
return st["agent_type"]
|
|
|
220 |
g = StateGraph(EnhancedAgentState)
|
221 |
g.add_node("router", router)
|
222 |
g.add_node("groq", groq_node)
|
|
|
|
|
223 |
g.add_node("deepseek", deepseek_node)
|
224 |
g.add_node("baidu", baidu_node)
|
225 |
g.set_entry_point("router")
|
226 |
g.add_conditional_edges("router", pick, {
|
227 |
"groq": "groq",
|
228 |
+
"deepseek": "deepseek",
|
|
|
|
|
229 |
"baidu": "baidu"
|
230 |
})
|
231 |
+
for n in ["groq", "deepseek", "baidu"]:
|
232 |
g.add_edge(n, END)
|
233 |
return g.compile(checkpointer=MemorySaver())
|
234 |
|
|
|
248 |
|
249 |
# Clean up the answer
|
250 |
if isinstance(raw_answer, str):
|
251 |
+
return raw_answer.strip()
|
|
|
|
|
252 |
return str(raw_answer)
|
253 |
except Exception as e:
|
254 |
return f"Error processing query: {e}"
|
|
|
260 |
return system.graph
|
261 |
|
262 |
if __name__ == "__main__":
|
263 |
+
query = "What are the main benefits of using multiple LLM providers?"
|
264 |
system = HybridLangGraphMultiLLMSystem()
|
265 |
result = system.process_query(query)
|
266 |
+
print("LangGraph Multi-LLM Result:", result)
|