josondev commited on
Commit
95555bb
·
verified ·
1 Parent(s): fef561c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +195 -164
app.py CHANGED
@@ -1,176 +1,207 @@
 
1
  import os
 
2
  import gradio as gr
3
- from dotenv import load_dotenv
4
- from langgraph.graph import START, StateGraph, MessagesState
5
- from langgraph.prebuilt import tools_condition, ToolNode
6
- from langchain_google_genai import ChatGoogleGenerativeAI
7
- from langchain_groq import ChatGroq
8
- from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
9
- from langchain_community.embeddings import HuggingFaceEmbeddings
10
- from langchain_community.tools.tavily_search import TavilySearchResults
11
- from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
12
- from langchain_community.vectorstores import SupabaseVectorStore
13
- from langchain_core.messages import SystemMessage, HumanMessage
14
- from langchain_core.tools import tool
15
- from supabase import create_client, Client
16
-
17
- # Load environment variables
18
- load_dotenv()
19
-
20
- # Tool definitions remain unchanged
21
- @tool
22
- def multiply(a: int, b: int) -> int:
23
- return a * b
24
-
25
- @tool
26
- def add(a: int, b: int) -> int:
27
- return a + b
28
-
29
- @tool
30
- def subtract(a: int, b: int) -> int:
31
- return a - b
32
-
33
- @tool
34
- def divide(a: int, b: int) -> int:
35
- if b == 0:
36
- raise ValueError("Cannot divide by zero.")
37
- return a / b
38
-
39
- @tool
40
- def modulus(a: int, b: int) -> int:
41
- return a % b
42
-
43
- @tool
44
- def wiki_search(query: str) -> str:
45
- search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
46
- formatted_search_docs = "\n\n---\n\n".join(
47
- [f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>'
48
- for doc in search_docs])
49
- return {"wiki_results": formatted_search_docs}
50
-
51
- @tool
52
- def web_search(query: str) -> str:
53
- search_docs = TavilySearchResults(max_results=3).invoke(query)
54
- formatted_search_docs = "\n\n---\n\n".join(
55
- [f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>'
56
- for doc in search_docs])
57
- return {"web_results": formatted_search_docs}
58
-
59
- @tool
60
- def arvix_search(query: str) -> str:
61
- search_docs = ArxivLoader(query=query, load_max_docs=3).load()
62
- formatted_search_docs = "\n\n---\n\n".join(
63
- [f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content[:1000]}\n</Document>'
64
- for doc in search_docs])
65
- return {"arvix_results": formatted_search_docs}
66
-
67
- # System prompt definition
68
- SYSTEM_PROMPT = """You are a helpful assistant. For every question, reply with only the answer—no explanation,
69
- no units, and no extra words. If the answer is a number, just return the number.
70
- If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words.
71
- Do not include any prefix, suffix, or explanation."""
72
- sys_msg = SystemMessage(content=SYSTEM_PROMPT)
73
-
74
- # Initialize vector store
75
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
76
- supabase: Client = create_client(
77
- os.environ["SUPABASE_URL"],
78
- os.environ["SUPABASE_SERVICE_KEY"]
79
- )
80
- vector_store = SupabaseVectorStore(
81
- client=supabase,
82
- embedding=embeddings,
83
- table_name="documents",
84
- )
85
-
86
- tools = [multiply, add, subtract, divide, modulus,
87
- wiki_search, web_search, arvix_search]
88
-
89
- # Build graph function with multi-provider support
90
- def build_graph(provider: str = "groq"):
91
- # Provider selection
92
- if provider == "google":
93
- llm = ChatGoogleGenerativeAI(
94
- model="gemini-2.0-flash",
95
- temperature=0,
96
- api_key=os.getenv("GOOGLE_API_KEY")
97
- )
98
- elif provider == "groq":
99
- llm = ChatGroq(
100
- model="llama3-70b-8192",
101
- temperature=0,
102
- api_key=os.getenv("GROQ_API_KEY")
103
- )
104
- elif provider == "huggingface":
105
- llm = ChatHuggingFace(
106
- llm=HuggingFaceEndpoint(
107
- endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2",
108
- temperature=0,
109
- api_key=os.getenv("HF_API_KEY")
110
- )
111
- )
112
  else:
113
- raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
114
-
115
- llm_with_tools = llm.bind_tools(tools)
116
-
117
- # Graph nodes
118
- def retriever(state: MessagesState):
119
- similar_question = vector_store.similarity_search(state["messages"][-1].content, k=1)
120
- if similar_question:
121
- example_msg = HumanMessage(content=f"Similar reference: {similar_question[0].page_content[:200]}...")
122
- return {"messages": state["messages"] + [example_msg]}
123
- return {"messages": state["messages"]}
124
-
125
- def assistant(state: MessagesState):
126
- return {"messages": [llm_with_tools.invoke(state["messages"])]}
127
-
128
- # Build graph
129
- builder = StateGraph(MessagesState)
130
- builder.add_node("retriever", retriever)
131
- builder.add_node("assistant", assistant)
132
- builder.add_node("tools", ToolNode(tools))
133
-
134
- builder.add_edge(START, "retriever")
135
- builder.add_edge("retriever", "assistant")
136
- builder.add_conditional_edges(
137
- "assistant",
138
- tools_condition,
139
- )
140
- builder.add_edge("tools", "assistant")
141
-
142
- return builder.compile()
143
 
144
- # Gradio interface
145
- def run_agent(question, provider):
 
 
 
146
  try:
147
- graph = build_graph(provider)
148
- messages = [HumanMessage(content=question)]
149
- result = graph.invoke({"messages": messages})
150
- final_answer = result["messages"][-1].content
151
- return final_answer
152
  except Exception as e:
153
- return f"Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
 
155
- # Create Gradio interface
 
156
  with gr.Blocks() as demo:
157
- gr.Markdown("## LangGraph Multi-Provider Agent")
158
-
159
- provider = gr.Dropdown(
160
- choices=["groq", "google", "huggingface"],
161
- value="groq",
162
- label="LLM Provider"
 
 
 
 
 
 
163
  )
164
-
165
- question = gr.Textbox(label="Your Question")
166
- submit_btn = gr.Button("Run Agent")
167
- output = gr.Textbox(label="Agent Response", interactive=False)
168
-
169
- submit_btn.click(
170
- fn=run_agent,
171
- inputs=[question, provider],
172
- outputs=output
 
 
 
173
  )
174
 
175
  if __name__ == "__main__":
176
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Basic Agent Evaluation Runner"""
2
  import os
3
+ import inspect
4
  import gradio as gr
5
+ import requests
6
+ import pandas as pd
7
+ from langchain_core.messages import HumanMessage
8
+ from agent import build_graph
9
+
10
+
11
+
12
+ # (Keep Constants as is)
13
+ # --- Constants ---
14
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
15
+
16
+ # --- Basic Agent Definition ---
17
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
18
+
19
+
20
+ class BasicAgent:
21
+ """A langgraph agent."""
22
+ def __init__(self):
23
+ print("BasicAgent initialized.")
24
+ self.graph = build_graph()
25
+
26
+ def __call__(self, question: str) -> str:
27
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
28
+ # Wrap the question in a HumanMessage from langchain_core
29
+ messages = [HumanMessage(content=question)]
30
+ messages = self.graph.invoke({"messages": messages})
31
+ answer = messages['messages'][-1].content
32
+ return answer[14:]
33
+
34
+
35
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
36
+ """
37
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
38
+ and displays the results.
39
+ """
40
+ # --- Determine HF Space Runtime URL and Repo URL ---
41
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
42
+
43
+ if profile:
44
+ username= f"{profile.username}"
45
+ print(f"User logged in: {username}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  else:
47
+ print("User not logged in.")
48
+ return "Please Login to Hugging Face with the button.", None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ api_url = DEFAULT_API_URL
51
+ questions_url = f"{api_url}/questions"
52
+ submit_url = f"{api_url}/submit"
53
+
54
+ # 1. Instantiate Agent ( modify this part to create your agent)
55
  try:
56
+ agent = BasicAgent()
 
 
 
 
57
  except Exception as e:
58
+ print(f"Error instantiating agent: {e}")
59
+ return f"Error initializing agent: {e}", None
60
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
61
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
62
+ print(agent_code)
63
+
64
+ # 2. Fetch Questions
65
+ print(f"Fetching questions from: {questions_url}")
66
+ try:
67
+ response = requests.get(questions_url, timeout=15)
68
+ response.raise_for_status()
69
+ questions_data = response.json()
70
+ if not questions_data:
71
+ print("Fetched questions list is empty.")
72
+ return "Fetched questions list is empty or invalid format.", None
73
+ print(f"Fetched {len(questions_data)} questions.")
74
+ except requests.exceptions.RequestException as e:
75
+ print(f"Error fetching questions: {e}")
76
+ return f"Error fetching questions: {e}", None
77
+ except requests.exceptions.JSONDecodeError as e:
78
+ print(f"Error decoding JSON response from questions endpoint: {e}")
79
+ print(f"Response text: {response.text[:500]}")
80
+ return f"Error decoding server response for questions: {e}", None
81
+ except Exception as e:
82
+ print(f"An unexpected error occurred fetching questions: {e}")
83
+ return f"An unexpected error occurred fetching questions: {e}", None
84
+
85
+ # 3. Run your Agent
86
+ results_log = []
87
+ answers_payload = []
88
+ print(f"Running agent on {len(questions_data)} questions...")
89
+ for item in questions_data:
90
+ task_id = item.get("task_id")
91
+ question_text = item.get("question")
92
+ if not task_id or question_text is None:
93
+ print(f"Skipping item with missing task_id or question: {item}")
94
+ continue
95
+ try:
96
+ submitted_answer = agent(question_text)
97
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
98
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
99
+ except Exception as e:
100
+ print(f"Error running agent on task {task_id}: {e}")
101
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
102
+
103
+ if not answers_payload:
104
+ print("Agent did not produce any answers to submit.")
105
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
106
+
107
+ # 4. Prepare Submission
108
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
109
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
110
+ print(status_update)
111
+
112
+ # 5. Submit
113
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
114
+ try:
115
+ response = requests.post(submit_url, json=submission_data, timeout=60)
116
+ response.raise_for_status()
117
+ result_data = response.json()
118
+ final_status = (
119
+ f"Submission Successful!\n"
120
+ f"User: {result_data.get('username')}\n"
121
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
122
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
123
+ f"Message: {result_data.get('message', 'No message received.')}"
124
+ )
125
+ print("Submission successful.")
126
+ results_df = pd.DataFrame(results_log)
127
+ return final_status, results_df
128
+ except requests.exceptions.HTTPError as e:
129
+ error_detail = f"Server responded with status {e.response.status_code}."
130
+ try:
131
+ error_json = e.response.json()
132
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
133
+ except requests.exceptions.JSONDecodeError:
134
+ error_detail += f" Response: {e.response.text[:500]}"
135
+ status_message = f"Submission Failed: {error_detail}"
136
+ print(status_message)
137
+ results_df = pd.DataFrame(results_log)
138
+ return status_message, results_df
139
+ except requests.exceptions.Timeout:
140
+ status_message = "Submission Failed: The request timed out."
141
+ print(status_message)
142
+ results_df = pd.DataFrame(results_log)
143
+ return status_message, results_df
144
+ except requests.exceptions.RequestException as e:
145
+ status_message = f"Submission Failed: Network error - {e}"
146
+ print(status_message)
147
+ results_df = pd.DataFrame(results_log)
148
+ return status_message, results_df
149
+ except Exception as e:
150
+ status_message = f"An unexpected error occurred during submission: {e}"
151
+ print(status_message)
152
+ results_df = pd.DataFrame(results_log)
153
+ return status_message, results_df
154
 
155
+
156
+ # --- Build Gradio Interface using Blocks ---
157
  with gr.Blocks() as demo:
158
+ gr.Markdown("# Basic Agent Evaluation Runner")
159
+ gr.Markdown(
160
+ """
161
+ **Instructions:**
162
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
163
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
164
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
165
+ ---
166
+ **Disclaimers:**
167
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
168
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
169
+ """
170
  )
171
+
172
+ gr.LoginButton()
173
+
174
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
175
+
176
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
177
+ # Removed max_rows=10 from DataFrame constructor
178
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
179
+
180
+ run_button.click(
181
+ fn=run_and_submit_all,
182
+ outputs=[status_output, results_table]
183
  )
184
 
185
  if __name__ == "__main__":
186
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
187
+ # Check for SPACE_HOST and SPACE_ID at startup for information
188
+ space_host_startup = os.getenv("SPACE_HOST")
189
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
190
+
191
+ if space_host_startup:
192
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
193
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
194
+ else:
195
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
196
+
197
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
198
+ print(f"✅ SPACE_ID found: {space_id_startup}")
199
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
200
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
201
+ else:
202
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
203
+
204
+ print("-"*(60 + len(" App Starting ")) + "\n")
205
+
206
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
207
+ demo.launch(debug=True, share=False)