Update app.py
Browse files
app.py
CHANGED
@@ -1,176 +1,207 @@
|
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
|
5 |
-
from
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
def wiki_search(query: str) -> str:
|
45 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
46 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
47 |
-
[f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>'
|
48 |
-
for doc in search_docs])
|
49 |
-
return {"wiki_results": formatted_search_docs}
|
50 |
-
|
51 |
-
@tool
|
52 |
-
def web_search(query: str) -> str:
|
53 |
-
search_docs = TavilySearchResults(max_results=3).invoke(query)
|
54 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
55 |
-
[f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>'
|
56 |
-
for doc in search_docs])
|
57 |
-
return {"web_results": formatted_search_docs}
|
58 |
-
|
59 |
-
@tool
|
60 |
-
def arvix_search(query: str) -> str:
|
61 |
-
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
62 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
63 |
-
[f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content[:1000]}\n</Document>'
|
64 |
-
for doc in search_docs])
|
65 |
-
return {"arvix_results": formatted_search_docs}
|
66 |
-
|
67 |
-
# System prompt definition
|
68 |
-
SYSTEM_PROMPT = """You are a helpful assistant. For every question, reply with only the answer—no explanation,
|
69 |
-
no units, and no extra words. If the answer is a number, just return the number.
|
70 |
-
If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words.
|
71 |
-
Do not include any prefix, suffix, or explanation."""
|
72 |
-
sys_msg = SystemMessage(content=SYSTEM_PROMPT)
|
73 |
-
|
74 |
-
# Initialize vector store
|
75 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
76 |
-
supabase: Client = create_client(
|
77 |
-
os.environ["SUPABASE_URL"],
|
78 |
-
os.environ["SUPABASE_SERVICE_KEY"]
|
79 |
-
)
|
80 |
-
vector_store = SupabaseVectorStore(
|
81 |
-
client=supabase,
|
82 |
-
embedding=embeddings,
|
83 |
-
table_name="documents",
|
84 |
-
)
|
85 |
-
|
86 |
-
tools = [multiply, add, subtract, divide, modulus,
|
87 |
-
wiki_search, web_search, arvix_search]
|
88 |
-
|
89 |
-
# Build graph function with multi-provider support
|
90 |
-
def build_graph(provider: str = "groq"):
|
91 |
-
# Provider selection
|
92 |
-
if provider == "google":
|
93 |
-
llm = ChatGoogleGenerativeAI(
|
94 |
-
model="gemini-2.0-flash",
|
95 |
-
temperature=0,
|
96 |
-
api_key=os.getenv("GOOGLE_API_KEY")
|
97 |
-
)
|
98 |
-
elif provider == "groq":
|
99 |
-
llm = ChatGroq(
|
100 |
-
model="llama3-70b-8192",
|
101 |
-
temperature=0,
|
102 |
-
api_key=os.getenv("GROQ_API_KEY")
|
103 |
-
)
|
104 |
-
elif provider == "huggingface":
|
105 |
-
llm = ChatHuggingFace(
|
106 |
-
llm=HuggingFaceEndpoint(
|
107 |
-
endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2",
|
108 |
-
temperature=0,
|
109 |
-
api_key=os.getenv("HF_API_KEY")
|
110 |
-
)
|
111 |
-
)
|
112 |
else:
|
113 |
-
|
114 |
-
|
115 |
-
llm_with_tools = llm.bind_tools(tools)
|
116 |
-
|
117 |
-
# Graph nodes
|
118 |
-
def retriever(state: MessagesState):
|
119 |
-
similar_question = vector_store.similarity_search(state["messages"][-1].content, k=1)
|
120 |
-
if similar_question:
|
121 |
-
example_msg = HumanMessage(content=f"Similar reference: {similar_question[0].page_content[:200]}...")
|
122 |
-
return {"messages": state["messages"] + [example_msg]}
|
123 |
-
return {"messages": state["messages"]}
|
124 |
-
|
125 |
-
def assistant(state: MessagesState):
|
126 |
-
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
127 |
-
|
128 |
-
# Build graph
|
129 |
-
builder = StateGraph(MessagesState)
|
130 |
-
builder.add_node("retriever", retriever)
|
131 |
-
builder.add_node("assistant", assistant)
|
132 |
-
builder.add_node("tools", ToolNode(tools))
|
133 |
-
|
134 |
-
builder.add_edge(START, "retriever")
|
135 |
-
builder.add_edge("retriever", "assistant")
|
136 |
-
builder.add_conditional_edges(
|
137 |
-
"assistant",
|
138 |
-
tools_condition,
|
139 |
-
)
|
140 |
-
builder.add_edge("tools", "assistant")
|
141 |
-
|
142 |
-
return builder.compile()
|
143 |
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
146 |
try:
|
147 |
-
|
148 |
-
messages = [HumanMessage(content=question)]
|
149 |
-
result = graph.invoke({"messages": messages})
|
150 |
-
final_answer = result["messages"][-1].content
|
151 |
-
return final_answer
|
152 |
except Exception as e:
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
|
|
|
156 |
with gr.Blocks() as demo:
|
157 |
-
gr.Markdown("
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
)
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
173 |
)
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Basic Agent Evaluation Runner"""
|
2 |
import os
|
3 |
+
import inspect
|
4 |
import gradio as gr
|
5 |
+
import requests
|
6 |
+
import pandas as pd
|
7 |
+
from langchain_core.messages import HumanMessage
|
8 |
+
from agent import build_graph
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# (Keep Constants as is)
|
13 |
+
# --- Constants ---
|
14 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
+
|
16 |
+
# --- Basic Agent Definition ---
|
17 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
+
|
19 |
+
|
20 |
+
class BasicAgent:
|
21 |
+
"""A langgraph agent."""
|
22 |
+
def __init__(self):
|
23 |
+
print("BasicAgent initialized.")
|
24 |
+
self.graph = build_graph()
|
25 |
+
|
26 |
+
def __call__(self, question: str) -> str:
|
27 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
28 |
+
# Wrap the question in a HumanMessage from langchain_core
|
29 |
+
messages = [HumanMessage(content=question)]
|
30 |
+
messages = self.graph.invoke({"messages": messages})
|
31 |
+
answer = messages['messages'][-1].content
|
32 |
+
return answer[14:]
|
33 |
+
|
34 |
+
|
35 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
36 |
+
"""
|
37 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
38 |
+
and displays the results.
|
39 |
+
"""
|
40 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
41 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
42 |
+
|
43 |
+
if profile:
|
44 |
+
username= f"{profile.username}"
|
45 |
+
print(f"User logged in: {username}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
else:
|
47 |
+
print("User not logged in.")
|
48 |
+
return "Please Login to Hugging Face with the button.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
api_url = DEFAULT_API_URL
|
51 |
+
questions_url = f"{api_url}/questions"
|
52 |
+
submit_url = f"{api_url}/submit"
|
53 |
+
|
54 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
55 |
try:
|
56 |
+
agent = BasicAgent()
|
|
|
|
|
|
|
|
|
57 |
except Exception as e:
|
58 |
+
print(f"Error instantiating agent: {e}")
|
59 |
+
return f"Error initializing agent: {e}", None
|
60 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
61 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
62 |
+
print(agent_code)
|
63 |
+
|
64 |
+
# 2. Fetch Questions
|
65 |
+
print(f"Fetching questions from: {questions_url}")
|
66 |
+
try:
|
67 |
+
response = requests.get(questions_url, timeout=15)
|
68 |
+
response.raise_for_status()
|
69 |
+
questions_data = response.json()
|
70 |
+
if not questions_data:
|
71 |
+
print("Fetched questions list is empty.")
|
72 |
+
return "Fetched questions list is empty or invalid format.", None
|
73 |
+
print(f"Fetched {len(questions_data)} questions.")
|
74 |
+
except requests.exceptions.RequestException as e:
|
75 |
+
print(f"Error fetching questions: {e}")
|
76 |
+
return f"Error fetching questions: {e}", None
|
77 |
+
except requests.exceptions.JSONDecodeError as e:
|
78 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
79 |
+
print(f"Response text: {response.text[:500]}")
|
80 |
+
return f"Error decoding server response for questions: {e}", None
|
81 |
+
except Exception as e:
|
82 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
83 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
84 |
+
|
85 |
+
# 3. Run your Agent
|
86 |
+
results_log = []
|
87 |
+
answers_payload = []
|
88 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
89 |
+
for item in questions_data:
|
90 |
+
task_id = item.get("task_id")
|
91 |
+
question_text = item.get("question")
|
92 |
+
if not task_id or question_text is None:
|
93 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
94 |
+
continue
|
95 |
+
try:
|
96 |
+
submitted_answer = agent(question_text)
|
97 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
98 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Error running agent on task {task_id}: {e}")
|
101 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
102 |
+
|
103 |
+
if not answers_payload:
|
104 |
+
print("Agent did not produce any answers to submit.")
|
105 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
106 |
+
|
107 |
+
# 4. Prepare Submission
|
108 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
109 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
110 |
+
print(status_update)
|
111 |
+
|
112 |
+
# 5. Submit
|
113 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
114 |
+
try:
|
115 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
116 |
+
response.raise_for_status()
|
117 |
+
result_data = response.json()
|
118 |
+
final_status = (
|
119 |
+
f"Submission Successful!\n"
|
120 |
+
f"User: {result_data.get('username')}\n"
|
121 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
122 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
123 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
124 |
+
)
|
125 |
+
print("Submission successful.")
|
126 |
+
results_df = pd.DataFrame(results_log)
|
127 |
+
return final_status, results_df
|
128 |
+
except requests.exceptions.HTTPError as e:
|
129 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
130 |
+
try:
|
131 |
+
error_json = e.response.json()
|
132 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
133 |
+
except requests.exceptions.JSONDecodeError:
|
134 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
135 |
+
status_message = f"Submission Failed: {error_detail}"
|
136 |
+
print(status_message)
|
137 |
+
results_df = pd.DataFrame(results_log)
|
138 |
+
return status_message, results_df
|
139 |
+
except requests.exceptions.Timeout:
|
140 |
+
status_message = "Submission Failed: The request timed out."
|
141 |
+
print(status_message)
|
142 |
+
results_df = pd.DataFrame(results_log)
|
143 |
+
return status_message, results_df
|
144 |
+
except requests.exceptions.RequestException as e:
|
145 |
+
status_message = f"Submission Failed: Network error - {e}"
|
146 |
+
print(status_message)
|
147 |
+
results_df = pd.DataFrame(results_log)
|
148 |
+
return status_message, results_df
|
149 |
+
except Exception as e:
|
150 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
151 |
+
print(status_message)
|
152 |
+
results_df = pd.DataFrame(results_log)
|
153 |
+
return status_message, results_df
|
154 |
|
155 |
+
|
156 |
+
# --- Build Gradio Interface using Blocks ---
|
157 |
with gr.Blocks() as demo:
|
158 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
159 |
+
gr.Markdown(
|
160 |
+
"""
|
161 |
+
**Instructions:**
|
162 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
163 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
164 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
165 |
+
---
|
166 |
+
**Disclaimers:**
|
167 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
168 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
169 |
+
"""
|
170 |
)
|
171 |
+
|
172 |
+
gr.LoginButton()
|
173 |
+
|
174 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
175 |
+
|
176 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
177 |
+
# Removed max_rows=10 from DataFrame constructor
|
178 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
179 |
+
|
180 |
+
run_button.click(
|
181 |
+
fn=run_and_submit_all,
|
182 |
+
outputs=[status_output, results_table]
|
183 |
)
|
184 |
|
185 |
if __name__ == "__main__":
|
186 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
187 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
188 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
189 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
190 |
+
|
191 |
+
if space_host_startup:
|
192 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
193 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
194 |
+
else:
|
195 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
196 |
+
|
197 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
198 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
199 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
200 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
201 |
+
else:
|
202 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
203 |
+
|
204 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
205 |
+
|
206 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
207 |
+
demo.launch(debug=True, share=False)
|