Update veryfinal.py
Browse files- veryfinal.py +161 -60
veryfinal.py
CHANGED
@@ -8,7 +8,7 @@ import operator
|
|
8 |
from langchain_core.tools import tool
|
9 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
10 |
from langchain_community.document_loaders import WikipediaLoader
|
11 |
-
from langchain_community.vectorstores import
|
12 |
from langchain.tools.retriever import create_retriever_tool
|
13 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
14 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
@@ -17,6 +17,9 @@ from langchain_community.embeddings import SentenceTransformerEmbeddings
|
|
17 |
from langgraph.graph import StateGraph, START, END
|
18 |
from langgraph.checkpoint.memory import MemorySaver
|
19 |
|
|
|
|
|
|
|
20 |
# ---- Tool Definitions ----
|
21 |
@tool
|
22 |
def multiply(a: int, b: int) -> int:
|
@@ -50,7 +53,8 @@ def optimized_web_search(query: str) -> str:
|
|
50 |
"""Perform an optimized web search using TavilySearchResults and return concatenated document snippets."""
|
51 |
try:
|
52 |
time.sleep(random.uniform(1, 2))
|
53 |
-
|
|
|
54 |
return "\n\n---\n\n".join(
|
55 |
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>"
|
56 |
for d in docs
|
@@ -65,52 +69,70 @@ def optimized_wiki_search(query: str) -> str:
|
|
65 |
time.sleep(random.uniform(0.5, 1))
|
66 |
docs = WikipediaLoader(query=query, load_max_docs=1).load()
|
67 |
return "\n\n---\n\n".join(
|
68 |
-
f"<Doc src='{d.metadata
|
69 |
for d in docs
|
70 |
)
|
71 |
except Exception as e:
|
72 |
return f"Wikipedia search failed: {e}"
|
73 |
|
74 |
-
# ---- LLM Integrations ----
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
-
|
81 |
-
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
|
|
|
|
|
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# DeepSeek (via Ollama or API)
|
86 |
import requests
|
87 |
|
88 |
-
# Baidu ERNIE (assume open source API, use requests as placeholder)
|
89 |
-
def baidu_ernie_generate(prompt, api_key=None):
|
90 |
-
"""Call Baidu ERNIE open source API (pseudo-code, replace with actual endpoint and params)."""
|
91 |
-
# Example endpoint and payload for demonstration purposes only:
|
92 |
-
url = "https://api.baidu.com/ernie/v1/generate"
|
93 |
-
headers = {"Authorization": f"Bearer {api_key}"}
|
94 |
-
data = {"model": "ernie-4.5", "prompt": prompt}
|
95 |
-
try:
|
96 |
-
resp = requests.post(url, headers=headers, json=data, timeout=30)
|
97 |
-
return resp.json().get("result", "")
|
98 |
-
except Exception as e:
|
99 |
-
return f"ERNIE API error: {e}"
|
100 |
-
|
101 |
def deepseek_generate(prompt, api_key=None):
|
102 |
-
"""Call DeepSeek
|
|
|
|
|
|
|
103 |
url = "https://api.deepseek.com/v1/chat/completions"
|
104 |
-
headers = {
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
try:
|
107 |
resp = requests.post(url, headers=headers, json=data, timeout=30)
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
except Exception as e:
|
110 |
return f"DeepSeek API error: {e}"
|
111 |
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
|
|
114 |
class EnhancedAgentState(TypedDict):
|
115 |
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
|
116 |
query: str
|
@@ -120,7 +142,8 @@ class EnhancedAgentState(TypedDict):
|
|
120 |
agno_resp: str
|
121 |
|
122 |
class HybridLangGraphMultiLLMSystem:
|
123 |
-
def __init__(self):
|
|
|
124 |
self.tools = [
|
125 |
multiply, add, subtract, divide, modulus,
|
126 |
optimized_web_search, optimized_wiki_search
|
@@ -128,47 +151,110 @@ class HybridLangGraphMultiLLMSystem:
|
|
128 |
self.graph = self._build_graph()
|
129 |
|
130 |
def _build_graph(self):
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
135 |
q = st["query"].lower()
|
136 |
-
if "groq" in q:
|
137 |
-
|
138 |
-
elif "
|
139 |
-
|
140 |
-
elif "
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
return {**st, "agent_type": t}
|
143 |
|
144 |
def groq_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
|
|
|
|
|
|
145 |
t0 = time.time()
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
149 |
|
150 |
def nvidia_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
|
|
|
|
|
|
151 |
t0 = time.time()
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
155 |
|
156 |
def gemini_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
|
|
|
|
|
|
157 |
t0 = time.time()
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
164 |
t0 = time.time()
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
167 |
|
168 |
def baidu_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
169 |
t0 = time.time()
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
172 |
|
173 |
def pick(st: EnhancedAgentState) -> str:
|
174 |
return st["agent_type"]
|
@@ -202,12 +288,27 @@ class HybridLangGraphMultiLLMSystem:
|
|
202 |
"agno_resp": ""
|
203 |
}
|
204 |
cfg = {"configurable": {"thread_id": f"hyb_{hash(q)}"}}
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
if __name__ == "__main__":
|
212 |
-
query = "What are the names of the US presidents who were assassinated?
|
213 |
-
|
|
|
|
|
|
8 |
from langchain_core.tools import tool
|
9 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
10 |
from langchain_community.document_loaders import WikipediaLoader
|
11 |
+
from langchain_community.vectorstores import FAISS
|
12 |
from langchain.tools.retriever import create_retriever_tool
|
13 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
14 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
|
|
17 |
from langgraph.graph import StateGraph, START, END
|
18 |
from langgraph.checkpoint.memory import MemorySaver
|
19 |
|
20 |
+
# Load environment variables
|
21 |
+
load_dotenv()
|
22 |
+
|
23 |
# ---- Tool Definitions ----
|
24 |
@tool
|
25 |
def multiply(a: int, b: int) -> int:
|
|
|
53 |
"""Perform an optimized web search using TavilySearchResults and return concatenated document snippets."""
|
54 |
try:
|
55 |
time.sleep(random.uniform(1, 2))
|
56 |
+
search_tool = TavilySearchResults(max_results=2)
|
57 |
+
docs = search_tool.invoke({"query": query})
|
58 |
return "\n\n---\n\n".join(
|
59 |
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>"
|
60 |
for d in docs
|
|
|
69 |
time.sleep(random.uniform(0.5, 1))
|
70 |
docs = WikipediaLoader(query=query, load_max_docs=1).load()
|
71 |
return "\n\n---\n\n".join(
|
72 |
+
f"<Doc src='{d.metadata.get('source', 'Wikipedia')}'>{d.page_content[:800]}</Doc>"
|
73 |
for d in docs
|
74 |
)
|
75 |
except Exception as e:
|
76 |
return f"Wikipedia search failed: {e}"
|
77 |
|
78 |
+
# ---- LLM Integrations with Error Handling ----
|
79 |
+
try:
|
80 |
+
from langchain_groq import ChatGroq
|
81 |
+
GROQ_AVAILABLE = True
|
82 |
+
except ImportError:
|
83 |
+
GROQ_AVAILABLE = False
|
84 |
|
85 |
+
try:
|
86 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
87 |
+
NVIDIA_AVAILABLE = True
|
88 |
+
except ImportError:
|
89 |
+
NVIDIA_AVAILABLE = False
|
90 |
|
91 |
+
try:
|
92 |
+
import google.generativeai as genai
|
93 |
+
GEMINI_AVAILABLE = True
|
94 |
+
except ImportError:
|
95 |
+
GEMINI_AVAILABLE = False
|
96 |
|
|
|
97 |
import requests
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def deepseek_generate(prompt, api_key=None):
|
100 |
+
"""Call DeepSeek API."""
|
101 |
+
if not api_key:
|
102 |
+
return "DeepSeek API key not provided"
|
103 |
+
|
104 |
url = "https://api.deepseek.com/v1/chat/completions"
|
105 |
+
headers = {
|
106 |
+
"Authorization": f"Bearer {api_key}",
|
107 |
+
"Content-Type": "application/json"
|
108 |
+
}
|
109 |
+
data = {
|
110 |
+
"model": "deepseek-chat",
|
111 |
+
"messages": [{"role": "user", "content": prompt}],
|
112 |
+
"stream": False
|
113 |
+
}
|
114 |
try:
|
115 |
resp = requests.post(url, headers=headers, json=data, timeout=30)
|
116 |
+
resp.raise_for_status()
|
117 |
+
choices = resp.json().get("choices", [])
|
118 |
+
if choices and "message" in choices[0]:
|
119 |
+
return choices[0]["message"].get("content", "")
|
120 |
+
return "No response from DeepSeek"
|
121 |
except Exception as e:
|
122 |
return f"DeepSeek API error: {e}"
|
123 |
|
124 |
+
def baidu_ernie_generate(prompt, api_key=None):
|
125 |
+
"""Call Baidu ERNIE API (placeholder implementation)."""
|
126 |
+
if not api_key:
|
127 |
+
return "Baidu ERNIE API key not provided"
|
128 |
+
|
129 |
+
# Note: This is a placeholder. Replace with actual Baidu ERNIE API endpoint
|
130 |
+
try:
|
131 |
+
return f"Baidu ERNIE response for: {prompt[:50]}..."
|
132 |
+
except Exception as e:
|
133 |
+
return f"ERNIE API error: {e}"
|
134 |
|
135 |
+
# ---- Graph State ----
|
136 |
class EnhancedAgentState(TypedDict):
|
137 |
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
|
138 |
query: str
|
|
|
142 |
agno_resp: str
|
143 |
|
144 |
class HybridLangGraphMultiLLMSystem:
|
145 |
+
def __init__(self, provider="groq"):
|
146 |
+
self.provider = provider
|
147 |
self.tools = [
|
148 |
multiply, add, subtract, divide, modulus,
|
149 |
optimized_web_search, optimized_wiki_search
|
|
|
151 |
self.graph = self._build_graph()
|
152 |
|
153 |
def _build_graph(self):
|
154 |
+
# Initialize LLMs with error handling
|
155 |
+
groq_llm = None
|
156 |
+
nvidia_llm = None
|
157 |
+
|
158 |
+
if GROQ_AVAILABLE and os.getenv("GROQ_API_KEY"):
|
159 |
+
try:
|
160 |
+
groq_llm = ChatGroq(
|
161 |
+
model="llama3-70b-8192",
|
162 |
+
temperature=0,
|
163 |
+
api_key=os.getenv("GROQ_API_KEY")
|
164 |
+
)
|
165 |
+
except Exception as e:
|
166 |
+
print(f"Failed to initialize Groq: {e}")
|
167 |
+
|
168 |
+
if NVIDIA_AVAILABLE and os.getenv("NVIDIA_API_KEY"):
|
169 |
+
try:
|
170 |
+
nvidia_llm = ChatNVIDIA(
|
171 |
+
model="meta/llama3-70b-instruct",
|
172 |
+
temperature=0,
|
173 |
+
api_key=os.getenv("NVIDIA_API_KEY")
|
174 |
+
)
|
175 |
+
except Exception as e:
|
176 |
+
print(f"Failed to initialize NVIDIA: {e}")
|
177 |
|
178 |
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
179 |
q = st["query"].lower()
|
180 |
+
if "groq" in q and groq_llm:
|
181 |
+
t = "groq"
|
182 |
+
elif "nvidia" in q and nvidia_llm:
|
183 |
+
t = "nvidia"
|
184 |
+
elif ("gemini" in q or "google" in q) and GEMINI_AVAILABLE:
|
185 |
+
t = "gemini"
|
186 |
+
elif "deepseek" in q:
|
187 |
+
t = "deepseek"
|
188 |
+
elif "ernie" in q or "baidu" in q:
|
189 |
+
t = "baidu"
|
190 |
+
else:
|
191 |
+
# Default to first available provider
|
192 |
+
if groq_llm:
|
193 |
+
t = "groq"
|
194 |
+
elif nvidia_llm:
|
195 |
+
t = "nvidia"
|
196 |
+
elif GEMINI_AVAILABLE:
|
197 |
+
t = "gemini"
|
198 |
+
else:
|
199 |
+
t = "deepseek"
|
200 |
return {**st, "agent_type": t}
|
201 |
|
202 |
def groq_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
203 |
+
if not groq_llm:
|
204 |
+
return {**st, "final_answer": "Groq not available", "perf": {"error": "No Groq LLM"}}
|
205 |
+
|
206 |
t0 = time.time()
|
207 |
+
try:
|
208 |
+
sys = SystemMessage(content="You are a helpful AI assistant. Provide accurate and detailed answers.")
|
209 |
+
res = groq_llm.invoke([sys, HumanMessage(content=st["query"])])
|
210 |
+
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "Groq"}}
|
211 |
+
except Exception as e:
|
212 |
+
return {**st, "final_answer": f"Groq error: {e}", "perf": {"error": str(e)}}
|
213 |
|
214 |
def nvidia_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
215 |
+
if not nvidia_llm:
|
216 |
+
return {**st, "final_answer": "NVIDIA not available", "perf": {"error": "No NVIDIA LLM"}}
|
217 |
+
|
218 |
t0 = time.time()
|
219 |
+
try:
|
220 |
+
sys = SystemMessage(content="You are a helpful AI assistant. Provide accurate and detailed answers.")
|
221 |
+
res = nvidia_llm.invoke([sys, HumanMessage(content=st["query"])])
|
222 |
+
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "NVIDIA"}}
|
223 |
+
except Exception as e:
|
224 |
+
return {**st, "final_answer": f"NVIDIA error: {e}", "perf": {"error": str(e)}}
|
225 |
|
226 |
def gemini_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
227 |
+
if not GEMINI_AVAILABLE:
|
228 |
+
return {**st, "final_answer": "Gemini not available", "perf": {"error": "Gemini not installed"}}
|
229 |
+
|
230 |
t0 = time.time()
|
231 |
+
try:
|
232 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
233 |
+
if not api_key:
|
234 |
+
return {**st, "final_answer": "Gemini API key not provided", "perf": {"error": "No API key"}}
|
235 |
+
|
236 |
+
genai.configure(api_key=api_key)
|
237 |
+
model = genai.GenerativeModel("gemini-1.5-pro-latest")
|
238 |
+
res = model.generate_content(st["query"])
|
239 |
+
return {**st, "final_answer": res.text, "perf": {"time": time.time() - t0, "prov": "Gemini"}}
|
240 |
+
except Exception as e:
|
241 |
+
return {**st, "final_answer": f"Gemini error: {e}", "perf": {"error": str(e)}}
|
242 |
|
243 |
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
244 |
t0 = time.time()
|
245 |
+
try:
|
246 |
+
resp = deepseek_generate(st["query"], api_key=os.getenv("DEEPSEEK_API_KEY"))
|
247 |
+
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "DeepSeek"}}
|
248 |
+
except Exception as e:
|
249 |
+
return {**st, "final_answer": f"DeepSeek error: {e}", "perf": {"error": str(e)}}
|
250 |
|
251 |
def baidu_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
252 |
t0 = time.time()
|
253 |
+
try:
|
254 |
+
resp = baidu_ernie_generate(st["query"], api_key=os.getenv("BAIDU_API_KEY"))
|
255 |
+
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "ERNIE"}}
|
256 |
+
except Exception as e:
|
257 |
+
return {**st, "final_answer": f"ERNIE error: {e}", "perf": {"error": str(e)}}
|
258 |
|
259 |
def pick(st: EnhancedAgentState) -> str:
|
260 |
return st["agent_type"]
|
|
|
288 |
"agno_resp": ""
|
289 |
}
|
290 |
cfg = {"configurable": {"thread_id": f"hyb_{hash(q)}"}}
|
291 |
+
try:
|
292 |
+
out = self.graph.invoke(state, cfg)
|
293 |
+
raw_answer = out.get("final_answer", "No answer generated")
|
294 |
+
|
295 |
+
# Clean up the answer
|
296 |
+
if isinstance(raw_answer, str):
|
297 |
+
parts = raw_answer.split('\n\n')
|
298 |
+
answer_part = parts[1].strip() if len(parts) > 1 and len(parts[1].strip()) > 10 else raw_answer.strip()
|
299 |
+
return answer_part
|
300 |
+
return str(raw_answer)
|
301 |
+
except Exception as e:
|
302 |
+
return f"Error processing query: {e}"
|
303 |
+
|
304 |
+
# Function expected by app.py
|
305 |
+
def build_graph(provider="groq"):
|
306 |
+
"""Build and return the graph for the agent system."""
|
307 |
+
system = HybridLangGraphMultiLLMSystem(provider=provider)
|
308 |
+
return system.graph
|
309 |
|
310 |
if __name__ == "__main__":
|
311 |
+
query = "What are the names of the US presidents who were assassinated?"
|
312 |
+
system = HybridLangGraphMultiLLMSystem()
|
313 |
+
result = system.process_query(query)
|
314 |
+
print("LangGraph Hybrid Result:", result)
|