Update veryfinal.py
Browse files- veryfinal.py +138 -86
veryfinal.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
"""Enhanced LangGraph + Agno Hybrid Agent System"""
|
|
|
2 |
import os
|
3 |
import time
|
4 |
import random
|
@@ -25,11 +26,11 @@ from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
25 |
|
26 |
# Agno imports
|
27 |
from agno.agent import Agent
|
28 |
-
from agno.models.groq import
|
29 |
-
from agno.models.google import
|
30 |
-
from agno.tools.
|
31 |
from agno.memory.agent import AgentMemory
|
32 |
-
from agno.storage.sqlite import SqliteStorage
|
33 |
|
34 |
load_dotenv()
|
35 |
|
@@ -38,7 +39,7 @@ class PerformanceRateLimiter:
|
|
38 |
def __init__(self, rpm: int, name: str):
|
39 |
self.rpm = rpm
|
40 |
self.name = name
|
41 |
-
self.times = []
|
42 |
self.failures = 0
|
43 |
|
44 |
def wait_if_needed(self):
|
@@ -58,12 +59,12 @@ class PerformanceRateLimiter:
|
|
58 |
def record_failure(self):
|
59 |
self.failures += 1
|
60 |
|
61 |
-
#
|
62 |
gemini_limiter = PerformanceRateLimiter(28, "Gemini")
|
63 |
groq_limiter = PerformanceRateLimiter(28, "Groq")
|
64 |
nvidia_limiter = PerformanceRateLimiter(4, "NVIDIA")
|
65 |
|
66 |
-
#
|
67 |
def create_agno_agents():
|
68 |
storage = SqliteStorage(
|
69 |
table_name="agent_sessions",
|
@@ -99,13 +100,22 @@ def create_agno_agents():
|
|
99 |
api_key=os.getenv("GOOGLE_API_KEY"),
|
100 |
temperature=0
|
101 |
),
|
102 |
-
description="Expert research and information specialist",
|
103 |
instructions=[
|
104 |
-
"
|
105 |
-
"Synthesize information
|
106 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
],
|
108 |
-
tools=[DuckDuckGoTools()],
|
109 |
memory=AgentMemory(
|
110 |
db=storage,
|
111 |
create_user_memories=True,
|
@@ -116,6 +126,7 @@ def create_agno_agents():
|
|
116 |
)
|
117 |
return {"math": math_agent, "research": research_agent}
|
118 |
|
|
|
119 |
@tool
|
120 |
def multiply(a: int, b: int) -> int:
|
121 |
"""Multiply two numbers."""
|
@@ -133,33 +144,39 @@ def subtract(a: int, b: int) -> int:
|
|
133 |
|
134 |
@tool
|
135 |
def divide(a: int, b: int) -> float:
|
136 |
-
"""Divide two numbers
|
137 |
if b == 0:
|
138 |
raise ValueError("Cannot divide by zero.")
|
139 |
return a / b
|
140 |
|
141 |
@tool
|
142 |
def modulus(a: int, b: int) -> int:
|
143 |
-
"""
|
144 |
return a % b
|
145 |
-
|
146 |
@tool
|
147 |
def optimized_web_search(query: str) -> str:
|
148 |
-
|
149 |
try:
|
150 |
time.sleep(random.uniform(1, 2))
|
151 |
docs = TavilySearchResults(max_results=2).invoke(query=query)
|
152 |
-
return "\n\n---\n\n".join(
|
|
|
|
|
|
|
153 |
except Exception as e:
|
154 |
return f"Web search failed: {e}"
|
155 |
|
156 |
@tool
|
157 |
def optimized_wiki_search(query: str) -> str:
|
158 |
-
|
159 |
try:
|
160 |
-
time.sleep(random.uniform(0.5,1))
|
161 |
docs = WikipediaLoader(query=query, load_max_docs=1).load()
|
162 |
-
return "\n\n---\n\n".join(
|
|
|
|
|
|
|
163 |
except Exception as e:
|
164 |
return f"Wikipedia search failed: {e}"
|
165 |
|
@@ -167,20 +184,25 @@ def optimized_wiki_search(query: str) -> str:
|
|
167 |
def setup_faiss():
|
168 |
try:
|
169 |
schema = """
|
170 |
-
{
|
|
|
|
|
|
|
171 |
"""
|
172 |
-
loader = JSONLoader("metadata.jsonl", jq_schema=schema, json_lines=True, text_content=False)
|
173 |
docs = loader.load()
|
174 |
-
|
175 |
-
chunks =
|
176 |
-
embeds = NVIDIAEmbeddings(
|
|
|
|
|
|
|
177 |
return FAISS.from_documents(chunks, embeds)
|
178 |
except Exception as e:
|
179 |
print(f"FAISS setup failed: {e}")
|
180 |
return None
|
181 |
|
182 |
-
|
183 |
-
class State(TypedDict):
|
184 |
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
|
185 |
query: str
|
186 |
agent_type: str
|
@@ -188,85 +210,115 @@ class State(TypedDict):
|
|
188 |
perf: Dict[str,Any]
|
189 |
agno_resp: str
|
190 |
|
191 |
-
class
|
192 |
def __init__(self):
|
193 |
self.agno = create_agno_agents()
|
194 |
self.store = setup_faiss()
|
195 |
-
self.tools = [
|
|
|
|
|
|
|
196 |
if self.store:
|
197 |
retr = self.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
|
198 |
-
self.tools.append(create_retriever_tool(
|
|
|
|
|
|
|
|
|
199 |
self.graph = self._build_graph()
|
|
|
200 |
def _build_graph(self):
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
groq_limiter.wait_if_needed()
|
213 |
-
t0=time.time()
|
214 |
-
|
215 |
-
sys=SystemMessage(content="
|
216 |
-
res=
|
217 |
-
return {**st,"final_answer":res.content,"perf":{"time":time.time()-t0,"prov":"LG-Groq"}}
|
218 |
-
|
|
|
219 |
gemini_limiter.wait_if_needed()
|
220 |
-
t0=time.time()
|
221 |
-
resp=self.agno["research"].run(st["query"],stream=False)
|
222 |
-
return {**st,"final_answer":resp,"perf":{"time":time.time()-t0,"prov":"Agno-Gemini"}}
|
223 |
-
|
|
|
224 |
groq_limiter.wait_if_needed()
|
225 |
-
t0=time.time()
|
226 |
-
|
227 |
-
sys=SystemMessage(content="Retrieve
|
228 |
-
res=
|
229 |
-
return {**st,"final_answer":res.content,"perf":{"time":time.time()-t0,"prov":"LG-Retrieval"}}
|
230 |
-
|
|
|
231 |
nvidia_limiter.wait_if_needed()
|
232 |
-
t0=time.time()
|
233 |
-
if any(
|
234 |
-
resp=self.agno["math"].run(st["query"],stream=False)
|
235 |
else:
|
236 |
-
resp=self.agno["research"].run(st["query"],stream=False)
|
237 |
-
return {**st,"final_answer":resp,"perf":{"time":time.time()-t0,"prov":"Agno-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
g
|
243 |
-
g.add_node("
|
244 |
-
g.add_node("
|
|
|
|
|
|
|
245 |
g.set_entry_point("router")
|
246 |
-
g.add_conditional_edges("router",pick,{
|
247 |
-
"lg_math":"lg_math",
|
|
|
|
|
|
|
248 |
})
|
249 |
for n in ["lg_math","agno_research","lg_retrieval","agno_general"]:
|
250 |
-
g.add_edge(n,"END")
|
251 |
return g.compile(checkpointer=MemorySaver())
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
255 |
try:
|
256 |
-
out=self.graph.invoke(
|
257 |
-
return {
|
|
|
|
|
|
|
|
|
258 |
except Exception as e:
|
259 |
-
return {"answer":f"Error: {e}","
|
260 |
|
261 |
-
def build_graph(provider:str="hybrid"):
|
262 |
if provider=="hybrid":
|
263 |
-
return
|
264 |
raise ValueError("Only 'hybrid' supported")
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
res=graph.invoke({"messages":msgs},{"configurable":{"thread_id":"test"}})
|
271 |
for m in res["messages"]:
|
272 |
m.pretty_print()
|
|
|
1 |
+
"""Enhanced LangGraph + Agno Hybrid Agent System with TavilyTools"""
|
2 |
+
|
3 |
import os
|
4 |
import time
|
5 |
import random
|
|
|
26 |
|
27 |
# Agno imports
|
28 |
from agno.agent import Agent
|
29 |
+
from agno.models.groq import GroqChat
|
30 |
+
from agno.models.google import GeminiChat
|
31 |
+
from agno.tools.tavily import TavilyTools
|
32 |
from agno.memory.agent import AgentMemory
|
33 |
+
from agno.storage.sqlite import SqliteStorage
|
34 |
|
35 |
load_dotenv()
|
36 |
|
|
|
39 |
def __init__(self, rpm: int, name: str):
|
40 |
self.rpm = rpm
|
41 |
self.name = name
|
42 |
+
self.times: List[float] = []
|
43 |
self.failures = 0
|
44 |
|
45 |
def wait_if_needed(self):
|
|
|
59 |
def record_failure(self):
|
60 |
self.failures += 1
|
61 |
|
62 |
+
# Initialize rate limiters
|
63 |
gemini_limiter = PerformanceRateLimiter(28, "Gemini")
|
64 |
groq_limiter = PerformanceRateLimiter(28, "Groq")
|
65 |
nvidia_limiter = PerformanceRateLimiter(4, "NVIDIA")
|
66 |
|
67 |
+
# Create Agno agents with SQLite storage
|
68 |
def create_agno_agents():
|
69 |
storage = SqliteStorage(
|
70 |
table_name="agent_sessions",
|
|
|
100 |
api_key=os.getenv("GOOGLE_API_KEY"),
|
101 |
temperature=0
|
102 |
),
|
103 |
+
description="Expert research and information gathering specialist",
|
104 |
instructions=[
|
105 |
+
"Conduct thorough research using available tools",
|
106 |
+
"Synthesize information from multiple sources",
|
107 |
+
"Provide comprehensive, well-cited answers",
|
108 |
+
"Finish with: FINAL ANSWER: [answer]"
|
109 |
+
],
|
110 |
+
tools=[
|
111 |
+
TavilyTools(
|
112 |
+
api_key=os.getenv("TAVILY_API_KEY"),
|
113 |
+
search=True,
|
114 |
+
max_tokens=6000,
|
115 |
+
search_depth="advanced",
|
116 |
+
format="markdown"
|
117 |
+
)
|
118 |
],
|
|
|
119 |
memory=AgentMemory(
|
120 |
db=storage,
|
121 |
create_user_memories=True,
|
|
|
126 |
)
|
127 |
return {"math": math_agent, "research": research_agent}
|
128 |
|
129 |
+
# LangGraph tools
|
130 |
@tool
|
131 |
def multiply(a: int, b: int) -> int:
|
132 |
"""Multiply two numbers."""
|
|
|
144 |
|
145 |
@tool
|
146 |
def divide(a: int, b: int) -> float:
|
147 |
+
"""Divide two numbers."""
|
148 |
if b == 0:
|
149 |
raise ValueError("Cannot divide by zero.")
|
150 |
return a / b
|
151 |
|
152 |
@tool
|
153 |
def modulus(a: int, b: int) -> int:
|
154 |
+
"""Get the remainder of division."""
|
155 |
return a % b
|
156 |
+
|
157 |
@tool
|
158 |
def optimized_web_search(query: str) -> str:
|
159 |
+
"""Optimized Tavily web search."""
|
160 |
try:
|
161 |
time.sleep(random.uniform(1, 2))
|
162 |
docs = TavilySearchResults(max_results=2).invoke(query=query)
|
163 |
+
return "\n\n---\n\n".join(
|
164 |
+
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>"
|
165 |
+
for d in docs
|
166 |
+
)
|
167 |
except Exception as e:
|
168 |
return f"Web search failed: {e}"
|
169 |
|
170 |
@tool
|
171 |
def optimized_wiki_search(query: str) -> str:
|
172 |
+
"""Optimized Wikipedia search."""
|
173 |
try:
|
174 |
+
time.sleep(random.uniform(0.5, 1))
|
175 |
docs = WikipediaLoader(query=query, load_max_docs=1).load()
|
176 |
+
return "\n\n---\n\n".join(
|
177 |
+
f"<Doc src='{d.metadata['source']}'>{d.page_content[:800]}</Doc>"
|
178 |
+
for d in docs
|
179 |
+
)
|
180 |
except Exception as e:
|
181 |
return f"Wikipedia search failed: {e}"
|
182 |
|
|
|
184 |
def setup_faiss():
|
185 |
try:
|
186 |
schema = """
|
187 |
+
{
|
188 |
+
page_content: .Question,
|
189 |
+
metadata: { task_id: .task_id, Final_answer: ."Final answer" }
|
190 |
+
}
|
191 |
"""
|
192 |
+
loader = JSONLoader(file_path="metadata.jsonl", jq_schema=schema, json_lines=True, text_content=False)
|
193 |
docs = loader.load()
|
194 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=50)
|
195 |
+
chunks = splitter.split_documents(docs)
|
196 |
+
embeds = NVIDIAEmbeddings(
|
197 |
+
model="nvidia/nv-embedqa-e5-v5",
|
198 |
+
api_key=os.getenv("NVIDIA_API_KEY")
|
199 |
+
)
|
200 |
return FAISS.from_documents(chunks, embeds)
|
201 |
except Exception as e:
|
202 |
print(f"FAISS setup failed: {e}")
|
203 |
return None
|
204 |
|
205 |
+
class EnhancedAgentState(TypedDict):
|
|
|
206 |
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
|
207 |
query: str
|
208 |
agent_type: str
|
|
|
210 |
perf: Dict[str,Any]
|
211 |
agno_resp: str
|
212 |
|
213 |
+
class HybridLangGraphAgnoSystem:
|
214 |
def __init__(self):
|
215 |
self.agno = create_agno_agents()
|
216 |
self.store = setup_faiss()
|
217 |
+
self.tools = [
|
218 |
+
multiply, add, subtract, divide, modulus,
|
219 |
+
optimized_web_search, optimized_wiki_search
|
220 |
+
]
|
221 |
if self.store:
|
222 |
retr = self.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
|
223 |
+
self.tools.append(create_retriever_tool(
|
224 |
+
retriever=retr,
|
225 |
+
name="Question_Search",
|
226 |
+
description="Retrieve similar questions"
|
227 |
+
))
|
228 |
self.graph = self._build_graph()
|
229 |
+
|
230 |
def _build_graph(self):
|
231 |
+
groq_llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
|
232 |
+
gemini_llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-lite", temperature=0)
|
233 |
+
nvidia_llm = ChatNVIDIA(model="meta/llama-3.1-70b-instruct", temperature=0)
|
234 |
+
|
235 |
+
def router(st: EnhancedAgentState) -> EnhancedAgentState:
|
236 |
+
q = st["query"].lower()
|
237 |
+
if any(k in q for k in ["calculate","math"]):
|
238 |
+
t = "lg_math"
|
239 |
+
elif any(k in q for k in ["research","analyze"]):
|
240 |
+
t = "agno_research"
|
241 |
+
elif any(k in q for k in ["what is","who is"]):
|
242 |
+
t = "lg_retrieval"
|
243 |
+
else:
|
244 |
+
t = "agno_general"
|
245 |
+
return {**st, "agent_type": t}
|
246 |
+
|
247 |
+
def lg_math(st: EnhancedAgentState) -> EnhancedAgentState:
|
248 |
groq_limiter.wait_if_needed()
|
249 |
+
t0 = time.time()
|
250 |
+
llm = groq_llm.bind_tools([multiply, add, subtract, divide, modulus])
|
251 |
+
sys = SystemMessage(content="Fast calculator. FINAL ANSWER: [result]")
|
252 |
+
res = llm.invoke([sys, HumanMessage(content=st["query"])])
|
253 |
+
return {**st, "final_answer": res.content, "perf": {"time": time.time()-t0, "prov":"LG-Groq"}}
|
254 |
+
|
255 |
+
def agno_research(st: EnhancedAgentState) -> EnhancedAgentState:
|
256 |
gemini_limiter.wait_if_needed()
|
257 |
+
t0 = time.time()
|
258 |
+
resp = self.agno["research"].run(st["query"], stream=False)
|
259 |
+
return {**st, "final_answer": resp, "perf": {"time": time.time()-t0, "prov":"Agno-Gemini"}}
|
260 |
+
|
261 |
+
def lg_retrieval(st: EnhancedAgentState) -> EnhancedAgentState:
|
262 |
groq_limiter.wait_if_needed()
|
263 |
+
t0 = time.time()
|
264 |
+
llm = groq_llm.bind_tools(self.tools)
|
265 |
+
sys = SystemMessage(content="Retrieve. FINAL ANSWER: [answer]")
|
266 |
+
res = llm.invoke([sys, HumanMessage(content=st["query"])])
|
267 |
+
return {**st, "final_answer": res.content, "perf": {"time": time.time()-t0, "prov":"LG-Retrieval"}}
|
268 |
+
|
269 |
+
def agno_general(st: EnhancedAgentState) -> EnhancedAgentState:
|
270 |
nvidia_limiter.wait_if_needed()
|
271 |
+
t0 = time.time()
|
272 |
+
if any(k in st["query"].lower() for k in ["calculate","compute"]):
|
273 |
+
resp = self.agno["math"].run(st["query"], stream=False)
|
274 |
else:
|
275 |
+
resp = self.agno["research"].run(st["query"], stream=False)
|
276 |
+
return {**st, "final_answer": resp, "perf": {"time": time.time()-t0, "prov":"Agno-General"}}
|
277 |
+
|
278 |
+
def pick(st: EnhancedAgentState) -> str:
|
279 |
+
return st["agent_type"]
|
280 |
+
|
281 |
+
g = StateGraph(EnhancedAgentState)
|
282 |
+
g.add_node("router", router)
|
283 |
+
g.add_node("lg_math", lg_math)
|
284 |
+
g.add_node("agno_research", agno_research)
|
285 |
+
g.add_node("lg_retrieval", lg_retrieval)
|
286 |
+
g.add_node("agno_general", agno_general)
|
287 |
g.set_entry_point("router")
|
288 |
+
g.add_conditional_edges("router", pick, {
|
289 |
+
"lg_math":"lg_math",
|
290 |
+
"agno_research":"agno_research",
|
291 |
+
"lg_retrieval":"lg_retrieval",
|
292 |
+
"agno_general":"agno_general"
|
293 |
})
|
294 |
for n in ["lg_math","agno_research","lg_retrieval","agno_general"]:
|
295 |
+
g.add_edge(n, "END")
|
296 |
return g.compile(checkpointer=MemorySaver())
|
297 |
+
|
298 |
+
def process_query(self, q: str) -> Dict[str,Any]:
|
299 |
+
state = {
|
300 |
+
"messages":[HumanMessage(content=q)],
|
301 |
+
"query":q, "agent_type":"", "final_answer":"", "perf":{}, "agno_resp":""
|
302 |
+
}
|
303 |
+
cfg = {"configurable":{"thread_id":f"hyb_{hash(q)}"}}
|
304 |
try:
|
305 |
+
out = self.graph.invoke(state, cfg)
|
306 |
+
return {
|
307 |
+
"answer": out["final_answer"],
|
308 |
+
"performance_metrics": out["perf"],
|
309 |
+
"provider_used": out["perf"].get("prov")
|
310 |
+
}
|
311 |
except Exception as e:
|
312 |
+
return {"answer":f"Error: {e}", "performance_metrics":{}, "provider_used":"Error"}
|
313 |
|
314 |
+
def build_graph(provider: str="hybrid"):
|
315 |
if provider=="hybrid":
|
316 |
+
return HybridLangGraphAgnoSystem().graph
|
317 |
raise ValueError("Only 'hybrid' supported")
|
318 |
|
319 |
+
if __name__ == "__main__":
|
320 |
+
graph = build_graph()
|
321 |
+
msgs = [HumanMessage(content="What are the names of the US presidents who were assassinated?")]
|
322 |
+
res = graph.invoke({"messages":msgs},{"configurable":{"thread_id":"test"}})
|
|
|
323 |
for m in res["messages"]:
|
324 |
m.pretty_print()
|