Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,61 @@
|
|
1 |
-
""" Enhanced Multi-LLM Agent Evaluation Runner with
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
# --- Enhanced Agent Definition ---
|
13 |
class EnhancedMultiLLMAgent:
|
14 |
-
"""A multi-provider
|
15 |
def __init__(self):
|
16 |
-
print("Enhanced Multi-LLM Agent with
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
try:
|
18 |
-
|
|
|
19 |
self.graph = self.system.graph
|
20 |
|
21 |
-
#
|
22 |
-
if
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
print("Enhanced Multi-LLM
|
28 |
except Exception as e:
|
29 |
-
print(f"Error building
|
30 |
self.graph = None
|
31 |
self.system = None
|
32 |
|
33 |
def __call__(self, question: str) -> str:
|
34 |
print(f"Agent received question: {question[:100]}...")
|
35 |
|
36 |
-
if self.
|
37 |
return "Error: Agent not properly initialized"
|
38 |
|
39 |
try:
|
@@ -43,8 +65,15 @@ class EnhancedMultiLLMAgent:
|
|
43 |
# Additional validation
|
44 |
if not answer or answer == question or len(answer.strip()) == 0:
|
45 |
return "Information not available"
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
except Exception as e:
|
50 |
error_msg = f"Error: {str(e)}"
|
@@ -52,7 +81,7 @@ class EnhancedMultiLLMAgent:
|
|
52 |
return error_msg
|
53 |
|
54 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
55 |
-
"""Fetch questions, run enhanced agent, and submit answers."""
|
56 |
space_id = os.getenv("SPACE_ID")
|
57 |
|
58 |
if profile:
|
@@ -66,11 +95,11 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
66 |
questions_url = f"{api_url}/questions"
|
67 |
submit_url = f"{api_url}/submit"
|
68 |
|
69 |
-
# 1. Instantiate Agent
|
70 |
try:
|
71 |
agent = EnhancedMultiLLMAgent()
|
72 |
-
if agent.
|
73 |
-
return "Error: Failed to initialize agent properly", None
|
74 |
except Exception as e:
|
75 |
print(f"Error instantiating agent: {e}")
|
76 |
return f"Error initializing agent: {e}", None
|
@@ -92,10 +121,10 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
92 |
print(f"Error fetching questions: {e}")
|
93 |
return f"Error fetching questions: {e}", None
|
94 |
|
95 |
-
# 3. Run Enhanced Agent
|
96 |
results_log = []
|
97 |
answers_payload = []
|
98 |
-
print(f"Running Enhanced Multi-LLM agent
|
99 |
|
100 |
for i, item in enumerate(questions_data):
|
101 |
task_id = item.get("task_id")
|
@@ -136,7 +165,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
136 |
|
137 |
# 4. Prepare Submission
|
138 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
139 |
-
status_update = f"Enhanced Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
140 |
print(status_update)
|
141 |
|
142 |
# 5. Submit
|
@@ -163,7 +192,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
163 |
|
164 |
# --- Build Gradio Interface ---
|
165 |
with gr.Blocks() as demo:
|
166 |
-
gr.Markdown("# Enhanced Multi-LLM Agent with
|
167 |
gr.Markdown(
|
168 |
"""
|
169 |
**Instructions:**
|
@@ -171,25 +200,32 @@ with gr.Blocks() as demo:
|
|
171 |
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
172 |
|
173 |
**Enhanced Agent Features:**
|
174 |
-
- **
|
175 |
-
- **
|
176 |
-
- **
|
177 |
-
- **
|
178 |
-
- **
|
179 |
-
- **
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
**Routing Examples:**
|
183 |
-
-
|
184 |
-
-
|
185 |
-
-
|
186 |
-
-
|
|
|
187 |
|
188 |
-
**
|
189 |
-
-
|
190 |
-
-
|
191 |
-
-
|
192 |
-
- FAISS for fast vector similarity search
|
193 |
"""
|
194 |
)
|
195 |
|
@@ -206,5 +242,20 @@ with gr.Blocks() as demo:
|
|
206 |
)
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
-
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
""" Enhanced Multi-LLM Agent Evaluation Runner with Agno Integration"""
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
+
|
8 |
+
# Import the enhanced classes from veryfinal.py in the same directory
|
9 |
+
try:
|
10 |
+
from veryfinal import (
|
11 |
+
build_graph,
|
12 |
+
UnifiedAgnoEnhancedSystem,
|
13 |
+
AgnoEnhancedAgentSystem,
|
14 |
+
AgnoEnhancedModelManager
|
15 |
+
)
|
16 |
+
VERYFINAL_AVAILABLE = True
|
17 |
+
except ImportError as e:
|
18 |
+
print(f"Error importing from veryfinal.py: {e}")
|
19 |
+
VERYFINAL_AVAILABLE = False
|
20 |
|
21 |
# --- Constants ---
|
22 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
23 |
|
24 |
# --- Enhanced Agent Definition ---
|
25 |
class EnhancedMultiLLMAgent:
|
26 |
+
"""A multi-provider Agno agent with NVIDIA + open-source model integration."""
|
27 |
def __init__(self):
|
28 |
+
print("Enhanced Multi-LLM Agent with Agno Integration initialized.")
|
29 |
+
|
30 |
+
if not VERYFINAL_AVAILABLE:
|
31 |
+
print("Error: veryfinal.py not properly imported")
|
32 |
+
self.system = None
|
33 |
+
self.graph = None
|
34 |
+
return
|
35 |
+
|
36 |
try:
|
37 |
+
# Use the unified Agno enhanced system
|
38 |
+
self.system = UnifiedAgnoEnhancedSystem()
|
39 |
self.graph = self.system.graph
|
40 |
|
41 |
+
# Display system information
|
42 |
+
if self.system.agno_system:
|
43 |
+
info = self.system.get_system_info()
|
44 |
+
print(f"System initialized with {info.get('total_models', 0)} models")
|
45 |
+
if info.get('nvidia_available'):
|
46 |
+
print("β
NVIDIA NIM models available")
|
47 |
+
print(f"Active agents: {info.get('active_agents', [])}")
|
48 |
|
49 |
+
print("Enhanced Agno Multi-LLM System built successfully.")
|
50 |
except Exception as e:
|
51 |
+
print(f"Error building enhanced system: {e}")
|
52 |
self.graph = None
|
53 |
self.system = None
|
54 |
|
55 |
def __call__(self, question: str) -> str:
|
56 |
print(f"Agent received question: {question[:100]}...")
|
57 |
|
58 |
+
if self.system is None:
|
59 |
return "Error: Agent not properly initialized"
|
60 |
|
61 |
try:
|
|
|
65 |
# Additional validation
|
66 |
if not answer or answer == question or len(answer.strip()) == 0:
|
67 |
return "Information not available"
|
68 |
+
|
69 |
+
# Clean up the answer
|
70 |
+
answer = answer.strip()
|
71 |
+
|
72 |
+
# Ensure proper formatting for evaluation
|
73 |
+
if "FINAL ANSWER:" in answer:
|
74 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
75 |
+
|
76 |
+
return answer
|
77 |
|
78 |
except Exception as e:
|
79 |
error_msg = f"Error: {str(e)}"
|
|
|
81 |
return error_msg
|
82 |
|
83 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
84 |
+
"""Fetch questions, run enhanced Agno agent, and submit answers."""
|
85 |
space_id = os.getenv("SPACE_ID")
|
86 |
|
87 |
if profile:
|
|
|
95 |
questions_url = f"{api_url}/questions"
|
96 |
submit_url = f"{api_url}/submit"
|
97 |
|
98 |
+
# 1. Instantiate Enhanced Agent
|
99 |
try:
|
100 |
agent = EnhancedMultiLLMAgent()
|
101 |
+
if agent.system is None:
|
102 |
+
return "Error: Failed to initialize enhanced agent properly", None
|
103 |
except Exception as e:
|
104 |
print(f"Error instantiating agent: {e}")
|
105 |
return f"Error initializing agent: {e}", None
|
|
|
121 |
print(f"Error fetching questions: {e}")
|
122 |
return f"Error fetching questions: {e}", None
|
123 |
|
124 |
+
# 3. Run Enhanced Agno Agent
|
125 |
results_log = []
|
126 |
answers_payload = []
|
127 |
+
print(f"Running Enhanced Agno Multi-LLM agent on {len(questions_data)} questions...")
|
128 |
|
129 |
for i, item in enumerate(questions_data):
|
130 |
task_id = item.get("task_id")
|
|
|
165 |
|
166 |
# 4. Prepare Submission
|
167 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
168 |
+
status_update = f"Enhanced Agno Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
169 |
print(status_update)
|
170 |
|
171 |
# 5. Submit
|
|
|
192 |
|
193 |
# --- Build Gradio Interface ---
|
194 |
with gr.Blocks() as demo:
|
195 |
+
gr.Markdown("# Enhanced Multi-LLM Agent with Agno + NVIDIA Integration")
|
196 |
gr.Markdown(
|
197 |
"""
|
198 |
**Instructions:**
|
|
|
200 |
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
201 |
|
202 |
**Enhanced Agent Features:**
|
203 |
+
- **NVIDIA NIM Models**: Enterprise-grade optimized models for maximum accuracy
|
204 |
+
- **Open-Source Models**: Groq, Ollama, Together AI, Anyscale, Hugging Face
|
205 |
+
- **Specialized Agents**: Enterprise research, advanced math, coding, fast response
|
206 |
+
- **Intelligent Routing**: Automatically selects best model/agent for each task
|
207 |
+
- **Advanced Tools**: DuckDuckGo search, Wikipedia, calculator, reasoning tools
|
208 |
+
- **Agno Framework**: Professional agent framework with memory and tool integration
|
209 |
+
|
210 |
+
**Available Model Providers:**
|
211 |
+
- **NVIDIA NIM**: meta/llama3-70b-instruct, meta/codellama-70b-instruct, etc.
|
212 |
+
- **Groq (Free)**: llama3-70b-8192, llama3-8b-8192, mixtral-8x7b-32768
|
213 |
+
- **Ollama (Local)**: llama3, mistral, phi3, codellama, gemma, qwen
|
214 |
+
- **Together AI**: Meta-Llama models, Mistral, Qwen
|
215 |
+
- **Anyscale**: Enterprise hosting for open-source models
|
216 |
+
- **Hugging Face**: Direct model access
|
217 |
|
218 |
**Routing Examples:**
|
219 |
+
- Enterprise: "Enterprise analysis of quantum computing" β NVIDIA NIM
|
220 |
+
- Math: "Calculate 25 Γ 17" β Advanced Math Agent
|
221 |
+
- Code: "Write Python factorial function" β Advanced Coding Agent
|
222 |
+
- Research: "Find Mercedes Sosa discography" β Enterprise Research Agent
|
223 |
+
- Quick: "Capital of France?" β Fast Response Agent
|
224 |
|
225 |
+
**Setup Requirements:**
|
226 |
+
- NVIDIA_API_KEY for enterprise models (optional)
|
227 |
+
- GROQ_API_KEY for free tier models
|
228 |
+
- Other API keys optional for additional providers
|
|
|
229 |
"""
|
230 |
)
|
231 |
|
|
|
242 |
)
|
243 |
|
244 |
if __name__ == "__main__":
|
245 |
+
print("\n" + "-"*30 + " Enhanced Agno Multi-LLM Agent Starting " + "-"*30)
|
246 |
+
|
247 |
+
# Display system status
|
248 |
+
if VERYFINAL_AVAILABLE:
|
249 |
+
try:
|
250 |
+
test_system = UnifiedAgnoEnhancedSystem()
|
251 |
+
info = test_system.get_system_info()
|
252 |
+
print(f"β
System ready with {info.get('total_models', 0)} models")
|
253 |
+
print(f"π Model breakdown: {len(info.get('model_breakdown', {}).get('nvidia_models', []))} NVIDIA, "
|
254 |
+
f"{len(info.get('model_breakdown', {}).get('groq_models', []))} Groq, "
|
255 |
+
f"{len(info.get('model_breakdown', {}).get('ollama_models', []))} Ollama")
|
256 |
+
except Exception as e:
|
257 |
+
print(f"β οΈ System initialization warning: {e}")
|
258 |
+
else:
|
259 |
+
print("β veryfinal.py not properly imported")
|
260 |
+
|
261 |
demo.launch(debug=True, share=False)
|