Update veryfinal.py
Browse files- veryfinal.py +5 -6
veryfinal.py
CHANGED
@@ -15,9 +15,8 @@ from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain_groq import ChatGroq
|
17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
18 |
-
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
19 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
20 |
-
from langchain_community.document_loaders import WikipediaLoader
|
21 |
from langchain_community.vectorstores import FAISS
|
22 |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
23 |
from langchain.tools.retriever import create_retriever_tool
|
@@ -30,7 +29,7 @@ from agno.models.groq import Groq
|
|
30 |
from agno.models.google import Gemini
|
31 |
from agno.tools.duckduckgo import DuckDuckGoTools
|
32 |
from agno.memory.agent import AgentMemory
|
33 |
-
from agno.storage.
|
34 |
|
35 |
load_dotenv()
|
36 |
|
@@ -73,7 +72,7 @@ def create_agno_agents():
|
|
73 |
"""Create high-performance Agno agents"""
|
74 |
|
75 |
# Storage for persistent memory
|
76 |
-
storage =
|
77 |
table_name="agent_sessions",
|
78 |
db_file="tmp/agent_storage.db"
|
79 |
)
|
@@ -81,7 +80,7 @@ def create_agno_agents():
|
|
81 |
# Math specialist using Groq (fastest)
|
82 |
math_agent = Agent(
|
83 |
name="MathSpecialist",
|
84 |
-
model=
|
85 |
model="llama-3.3-70b-versatile",
|
86 |
api_key=os.getenv("GROQ_API_KEY"),
|
87 |
temperature=0
|
@@ -105,7 +104,7 @@ def create_agno_agents():
|
|
105 |
# Research specialist using Gemini (most capable)
|
106 |
research_agent = Agent(
|
107 |
name="ResearchSpecialist",
|
108 |
-
model=
|
109 |
model="gemini-2.0-flash-lite",
|
110 |
api_key=os.getenv("GOOGLE_API_KEY"),
|
111 |
temperature=0
|
|
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain_groq import ChatGroq
|
17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
18 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
19 |
+
from langchain_community.document_loaders import WikipediaLoader
|
20 |
from langchain_community.vectorstores import FAISS
|
21 |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
22 |
from langchain.tools.retriever import create_retriever_tool
|
|
|
29 |
from agno.models.google import Gemini
|
30 |
from agno.tools.duckduckgo import DuckDuckGoTools
|
31 |
from agno.memory.agent import AgentMemory
|
32 |
+
from agno.storage.sqlite import SqliteStorage
|
33 |
|
34 |
load_dotenv()
|
35 |
|
|
|
72 |
"""Create high-performance Agno agents"""
|
73 |
|
74 |
# Storage for persistent memory
|
75 |
+
storage = SqliteStorage(
|
76 |
table_name="agent_sessions",
|
77 |
db_file="tmp/agent_storage.db"
|
78 |
)
|
|
|
80 |
# Math specialist using Groq (fastest)
|
81 |
math_agent = Agent(
|
82 |
name="MathSpecialist",
|
83 |
+
model=Groq(
|
84 |
model="llama-3.3-70b-versatile",
|
85 |
api_key=os.getenv("GROQ_API_KEY"),
|
86 |
temperature=0
|
|
|
104 |
# Research specialist using Gemini (most capable)
|
105 |
research_agent = Agent(
|
106 |
name="ResearchSpecialist",
|
107 |
+
model=Gemini(
|
108 |
model="gemini-2.0-flash-lite",
|
109 |
api_key=os.getenv("GOOGLE_API_KEY"),
|
110 |
temperature=0
|