josondev commited on
Commit
c5a2611
·
verified ·
1 Parent(s): 4256aa7

Update veryfinal.py

Browse files
Files changed (1) hide show
  1. veryfinal.py +5 -6
veryfinal.py CHANGED
@@ -15,9 +15,8 @@ from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
15
  from langchain_core.tools import tool
16
  from langchain_groq import ChatGroq
17
  from langchain_google_genai import ChatGoogleGenerativeAI
18
- from langchain_nvidia_ai_endpoints import ChatNVIDIA
19
  from langchain_community.tools.tavily_search import TavilySearchResults
20
- from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
21
  from langchain_community.vectorstores import FAISS
22
  from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
23
  from langchain.tools.retriever import create_retriever_tool
@@ -30,7 +29,7 @@ from agno.models.groq import Groq
30
  from agno.models.google import Gemini
31
  from agno.tools.duckduckgo import DuckDuckGoTools
32
  from agno.memory.agent import AgentMemory
33
- from agno.storage.agent import AgentStorage
34
 
35
  load_dotenv()
36
 
@@ -73,7 +72,7 @@ def create_agno_agents():
73
  """Create high-performance Agno agents"""
74
 
75
  # Storage for persistent memory
76
- storage = AgentStorage(
77
  table_name="agent_sessions",
78
  db_file="tmp/agent_storage.db"
79
  )
@@ -81,7 +80,7 @@ def create_agno_agents():
81
  # Math specialist using Groq (fastest)
82
  math_agent = Agent(
83
  name="MathSpecialist",
84
- model=GroqChat(
85
  model="llama-3.3-70b-versatile",
86
  api_key=os.getenv("GROQ_API_KEY"),
87
  temperature=0
@@ -105,7 +104,7 @@ def create_agno_agents():
105
  # Research specialist using Gemini (most capable)
106
  research_agent = Agent(
107
  name="ResearchSpecialist",
108
- model=GeminiChat(
109
  model="gemini-2.0-flash-lite",
110
  api_key=os.getenv("GOOGLE_API_KEY"),
111
  temperature=0
 
15
  from langchain_core.tools import tool
16
  from langchain_groq import ChatGroq
17
  from langchain_google_genai import ChatGoogleGenerativeAI
 
18
  from langchain_community.tools.tavily_search import TavilySearchResults
19
+ from langchain_community.document_loaders import WikipediaLoader
20
  from langchain_community.vectorstores import FAISS
21
  from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
22
  from langchain.tools.retriever import create_retriever_tool
 
29
  from agno.models.google import Gemini
30
  from agno.tools.duckduckgo import DuckDuckGoTools
31
  from agno.memory.agent import AgentMemory
32
+ from agno.storage.sqlite import SqliteStorage
33
 
34
  load_dotenv()
35
 
 
72
  """Create high-performance Agno agents"""
73
 
74
  # Storage for persistent memory
75
+ storage = SqliteStorage(
76
  table_name="agent_sessions",
77
  db_file="tmp/agent_storage.db"
78
  )
 
80
  # Math specialist using Groq (fastest)
81
  math_agent = Agent(
82
  name="MathSpecialist",
83
+ model=Groq(
84
  model="llama-3.3-70b-versatile",
85
  api_key=os.getenv("GROQ_API_KEY"),
86
  temperature=0
 
104
  # Research specialist using Gemini (most capable)
105
  research_agent = Agent(
106
  name="ResearchSpecialist",
107
+ model=Gemini(
108
  model="gemini-2.0-flash-lite",
109
  api_key=os.getenv("GOOGLE_API_KEY"),
110
  temperature=0