josondev commited on
Commit
cab0d3f
·
verified ·
1 Parent(s): 5bf4cb1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -22
app.py CHANGED
@@ -7,18 +7,15 @@ from agno.agent import Agent
7
  from agno.tools.duckduckgo import DuckDuckGoTools
8
  from agno.models.nvidia import Nvidia
9
 
10
-
11
- # (Keep Constants as is)
12
  # --- Constants ---
13
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
14
 
15
  # --- Basic Agent Definition ---
16
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
17
  class BasicAgent:
18
  def __init__(self):
19
  agent=Agent(
20
- model=Nvidia(id="meta/llama-3.3-70b-instruct")
21
- ,instructions='''
22
  ## 🚀 Gaia Taskmaster: The Ultimate Agent Efficiency Prompt! 🌍
23
 
24
  You are a high-performance AI agent with a laser focus on completing Gaia tasks with maximum efficiency and precision. Think of yourself as a blend of a master strategist and a productivity guru—always optimizing, always delivering.
@@ -44,24 +41,15 @@ class BasicAgent:
44
  tools=[DuckDuckGoTools()])
45
  print("BasicAgent initialized.")
46
 
47
- def do_web_search(self,question:str)->str:
48
- """
49
- this would call an API or perform a search.
50
- """
51
- print(f"Performing web search for: {question}")
52
- # Example usage
53
- answer=agent.print_response(
54
- "Tell me about a breaking news story happening in Times Square.", stream=True
55
- )
56
- return {answer}
57
-
58
  def __call__(self, question: str) -> str:
59
  print(f"Agent received question (first 50 chars): {question[:50]}...")
60
- fixed_answer = "This is a default answer."
 
 
61
  print(f"Agent returning fixed answer: {fixed_answer}")
62
  return fixed_answer
63
 
64
- def run_and_submit_all( profile: gr.OAuthProfile | None):
65
  """
66
  Fetches all questions, runs the BasicAgent on them, submits all answers,
67
  and displays the results.
@@ -86,7 +74,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
86
  except Exception as e:
87
  print(f"Error instantiating agent: {e}")
88
  return f"Error initializing agent: {e}", None
89
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
90
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
91
  print(agent_code)
92
 
@@ -181,7 +169,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
181
  results_df = pd.DataFrame(results_log)
182
  return status_message, results_df
183
 
184
-
185
  # --- Build Gradio Interface using Blocks ---
186
  with gr.Blocks() as demo:
187
  gr.Markdown("# Basic Agent Evaluation Runner")
@@ -203,7 +190,6 @@ with gr.Blocks() as demo:
203
  run_button = gr.Button("Run Evaluation & Submit All Answers")
204
 
205
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
206
- # Removed max_rows=10 from DataFrame constructor
207
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
208
 
209
  run_button.click(
@@ -232,4 +218,5 @@ if __name__ == "__main__":
232
 
233
  print("-"*(60 + len(" App Starting ")) + "\n")
234
 
235
- print("Launching Gradio Interface for Basic Agent Evaluation...")
 
 
7
  from agno.tools.duckduckgo import DuckDuckGoTools
8
  from agno.models.nvidia import Nvidia
9
 
 
 
10
  # --- Constants ---
11
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
12
 
13
  # --- Basic Agent Definition ---
 
14
  class BasicAgent:
15
  def __init__(self):
16
  agent=Agent(
17
+ model=Nvidia(id="meta/llama-3.3-70b-instruct"),
18
+ instructions='''
19
  ## 🚀 Gaia Taskmaster: The Ultimate Agent Efficiency Prompt! 🌍
20
 
21
  You are a high-performance AI agent with a laser focus on completing Gaia tasks with maximum efficiency and precision. Think of yourself as a blend of a master strategist and a productivity guru—always optimizing, always delivering.
 
41
  tools=[DuckDuckGoTools()])
42
  print("BasicAgent initialized.")
43
 
 
 
 
 
 
 
 
 
 
 
 
44
  def __call__(self, question: str) -> str:
45
  print(f"Agent received question (first 50 chars): {question[:50]}...")
46
+ fixed_answer = agent.print_response(
47
+ question, stream=True
48
+ )
49
  print(f"Agent returning fixed answer: {fixed_answer}")
50
  return fixed_answer
51
 
52
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
53
  """
54
  Fetches all questions, runs the BasicAgent on them, submits all answers,
55
  and displays the results.
 
74
  except Exception as e:
75
  print(f"Error instantiating agent: {e}")
76
  return f"Error initializing agent: {e}", None
77
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( useful for others so please keep it public)
78
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
79
  print(agent_code)
80
 
 
169
  results_df = pd.DataFrame(results_log)
170
  return status_message, results_df
171
 
 
172
  # --- Build Gradio Interface using Blocks ---
173
  with gr.Blocks() as demo:
174
  gr.Markdown("# Basic Agent Evaluation Runner")
 
190
  run_button = gr.Button("Run Evaluation & Submit All Answers")
191
 
192
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
193
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
194
 
195
  run_button.click(
 
218
 
219
  print("-"*(60 + len(" App Starting ")) + "\n")
220
 
221
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
222
+ demo.launch(debug=True, share=False)