Update veryfinal.py
Browse files- veryfinal.py +329 -215
veryfinal.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
"""LangGraph
|
2 |
-
import os, time, random
|
3 |
from dotenv import load_dotenv
|
4 |
from typing import List, Dict, Any, TypedDict, Annotated
|
5 |
import operator
|
@@ -11,7 +11,7 @@ from langgraph.prebuilt import ToolNode
|
|
11 |
from langgraph.checkpoint.memory import MemorySaver
|
12 |
|
13 |
# LangChain imports
|
14 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain_groq import ChatGroq
|
17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
@@ -24,32 +24,37 @@ from langchain.tools.retriever import create_retriever_tool
|
|
24 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
25 |
from langchain_community.document_loaders import JSONLoader
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
load_dotenv()
|
28 |
|
29 |
-
#
|
30 |
-
class
|
31 |
def __init__(self, requests_per_minute: int, provider_name: str):
|
32 |
self.requests_per_minute = requests_per_minute
|
33 |
self.provider_name = provider_name
|
34 |
self.request_times = []
|
35 |
self.consecutive_failures = 0
|
|
|
36 |
|
37 |
def wait_if_needed(self):
|
38 |
current_time = time.time()
|
39 |
-
# Clean old requests (older than 1 minute)
|
40 |
self.request_times = [t for t in self.request_times if current_time - t < 60]
|
41 |
|
42 |
-
# Check if we need to wait
|
43 |
if len(self.request_times) >= self.requests_per_minute:
|
44 |
-
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(
|
45 |
time.sleep(wait_time)
|
46 |
|
47 |
-
# Add exponential backoff for consecutive failures
|
48 |
if self.consecutive_failures > 0:
|
49 |
-
backoff_time = min(2 ** self.consecutive_failures,
|
50 |
time.sleep(backoff_time)
|
51 |
|
52 |
-
# Record this request
|
53 |
self.request_times.append(current_time)
|
54 |
|
55 |
def record_success(self):
|
@@ -58,95 +63,76 @@ class AdvancedRateLimiter:
|
|
58 |
def record_failure(self):
|
59 |
self.consecutive_failures += 1
|
60 |
|
61 |
-
# Initialize rate limiters
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
# Groq: Typically 30 RPM for free tier
|
66 |
-
groq_limiter = AdvancedRateLimiter(requests_per_minute=25, provider_name="Groq") # Conservative
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
# Initialize LLMs with best models and minimal rate limits
|
72 |
-
def get_best_models():
|
73 |
-
"""Get the best models with lowest rate limits"""
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
temperature=0,
|
80 |
-
max_output_tokens=4000
|
81 |
)
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
)
|
98 |
|
99 |
return {
|
100 |
-
"
|
101 |
-
"
|
102 |
-
"nvidia": nvidia_llm
|
103 |
}
|
104 |
|
105 |
-
#
|
106 |
-
class ModelFallbackManager:
|
107 |
-
def __init__(self):
|
108 |
-
self.models = get_best_models()
|
109 |
-
self.limiters = {
|
110 |
-
"gemini": gemini_limiter,
|
111 |
-
"groq": groq_limiter,
|
112 |
-
"nvidia": nvidia_limiter
|
113 |
-
}
|
114 |
-
self.fallback_order = ["gemini", "groq", "nvidia"] # Order by rate limit capacity
|
115 |
-
|
116 |
-
def invoke_with_fallback(self, messages, max_retries=3):
|
117 |
-
"""Try models in order with rate limiting and fallbacks"""
|
118 |
-
|
119 |
-
for provider in self.fallback_order:
|
120 |
-
limiter = self.limiters[provider]
|
121 |
-
model = self.models[provider]
|
122 |
-
|
123 |
-
for attempt in range(max_retries):
|
124 |
-
try:
|
125 |
-
# Apply rate limiting
|
126 |
-
limiter.wait_if_needed()
|
127 |
-
|
128 |
-
# Try to invoke the model
|
129 |
-
response = model.invoke(messages)
|
130 |
-
limiter.record_success()
|
131 |
-
return response
|
132 |
-
|
133 |
-
except Exception as e:
|
134 |
-
error_msg = str(e).lower()
|
135 |
-
|
136 |
-
# Check if it's a rate limit error
|
137 |
-
if any(keyword in error_msg for keyword in ['rate limit', '429', 'quota', 'too many requests']):
|
138 |
-
limiter.record_failure()
|
139 |
-
wait_time = (2 ** attempt) + random.uniform(10, 30)
|
140 |
-
time.sleep(wait_time)
|
141 |
-
continue
|
142 |
-
else:
|
143 |
-
# Non-rate limit error, try next provider
|
144 |
-
break
|
145 |
-
|
146 |
-
# If all providers fail
|
147 |
-
raise Exception("All model providers failed or hit rate limits")
|
148 |
-
|
149 |
-
# Custom Tools
|
150 |
@tool
|
151 |
def multiply(a: int, b: int) -> int:
|
152 |
"""Multiply two numbers."""
|
@@ -175,67 +161,43 @@ def modulus(a: int, b: int) -> int:
|
|
175 |
return a % b
|
176 |
|
177 |
@tool
|
178 |
-
def
|
179 |
-
"""
|
180 |
-
try:
|
181 |
-
time.sleep(random.uniform(1, 3))
|
182 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
183 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
184 |
-
[
|
185 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
186 |
-
for doc in search_docs
|
187 |
-
])
|
188 |
-
return formatted_search_docs
|
189 |
-
except Exception as e:
|
190 |
-
return f"Wikipedia search failed: {str(e)}"
|
191 |
-
|
192 |
-
@tool
|
193 |
-
def web_search(query: str) -> str:
|
194 |
-
"""Search Tavily for a query and return maximum 3 results."""
|
195 |
try:
|
196 |
-
time.sleep(random.uniform(
|
197 |
-
search_docs = TavilySearchResults(max_results=
|
198 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
199 |
-
[
|
200 |
-
|
201 |
-
|
202 |
-
])
|
203 |
return formatted_search_docs
|
204 |
except Exception as e:
|
205 |
return f"Web search failed: {str(e)}"
|
206 |
|
207 |
@tool
|
208 |
-
def
|
209 |
-
"""
|
210 |
try:
|
211 |
-
time.sleep(random.uniform(
|
212 |
-
search_docs =
|
213 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
214 |
-
[
|
215 |
-
|
216 |
-
|
217 |
-
])
|
218 |
return formatted_search_docs
|
219 |
except Exception as e:
|
220 |
-
return f"
|
221 |
|
222 |
-
#
|
223 |
-
def
|
224 |
-
"""Setup FAISS vector
|
225 |
try:
|
226 |
jq_schema = """
|
227 |
{
|
228 |
page_content: .Question,
|
229 |
metadata: {
|
230 |
task_id: .task_id,
|
231 |
-
|
232 |
-
Final_answer: ."Final answer",
|
233 |
-
file_name: .file_name,
|
234 |
-
Steps: .["Annotator Metadata"].Steps,
|
235 |
-
Number_of_steps: .["Annotator Metadata"]["Number of steps"],
|
236 |
-
How_long: .["Annotator Metadata"]["How long did this take?"],
|
237 |
-
Tools: .["Annotator Metadata"].Tools,
|
238 |
-
Number_of_tools: .["Annotator Metadata"]["Number of tools"]
|
239 |
}
|
240 |
}
|
241 |
"""
|
@@ -243,7 +205,8 @@ def setup_faiss_vector_store():
|
|
243 |
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
|
244 |
json_docs = json_loader.load()
|
245 |
|
246 |
-
|
|
|
247 |
json_chunks = text_splitter.split_documents(json_docs)
|
248 |
|
249 |
embeddings = NVIDIAEmbeddings(
|
@@ -254,95 +217,246 @@ def setup_faiss_vector_store():
|
|
254 |
|
255 |
return vector_store
|
256 |
except Exception as e:
|
257 |
-
print(f"FAISS
|
258 |
return None
|
259 |
|
260 |
-
#
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings."""
|
269 |
-
|
270 |
-
sys_msg = SystemMessage(content=system_prompt)
|
271 |
-
|
272 |
-
# Setup vector store and retriever
|
273 |
-
vector_store = setup_faiss_vector_store()
|
274 |
-
if vector_store:
|
275 |
-
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
276 |
-
retriever_tool = create_retriever_tool(
|
277 |
-
retriever=retriever,
|
278 |
-
name="Question_Search",
|
279 |
-
description="A tool to retrieve similar questions from a vector store.",
|
280 |
-
)
|
281 |
-
else:
|
282 |
-
retriever_tool = None
|
283 |
-
|
284 |
-
# All tools
|
285 |
-
all_tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
|
286 |
-
if retriever_tool:
|
287 |
-
all_tools.append(retriever_tool)
|
288 |
|
289 |
-
#
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
# Create a wrapper LLM that uses fallback manager
|
296 |
-
class FallbackLLM:
|
297 |
-
def bind_tools(self, tools):
|
298 |
-
self.tools = tools
|
299 |
-
return self
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
310 |
|
311 |
-
def
|
312 |
-
"""
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
try:
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
|
|
321 |
except Exception as e:
|
322 |
-
|
323 |
|
324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
339 |
|
340 |
-
#
|
341 |
if __name__ == "__main__":
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Enhanced LangGraph + Agno Hybrid Agent System"""
|
2 |
+
import os, time, random, asyncio
|
3 |
from dotenv import load_dotenv
|
4 |
from typing import List, Dict, Any, TypedDict, Annotated
|
5 |
import operator
|
|
|
11 |
from langgraph.checkpoint.memory import MemorySaver
|
12 |
|
13 |
# LangChain imports
|
14 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain_groq import ChatGroq
|
17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
24 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
25 |
from langchain_community.document_loaders import JSONLoader
|
26 |
|
27 |
+
# Agno imports
|
28 |
+
from agno.agent import Agent
|
29 |
+
from agno.models.groq import GroqChat
|
30 |
+
from agno.models.google import GeminiChat
|
31 |
+
from agno.tools.duckduckgo import DuckDuckGoTools
|
32 |
+
from agno.memory.agent import AgentMemory
|
33 |
+
from agno.storage.agent import AgentStorage
|
34 |
+
|
35 |
load_dotenv()
|
36 |
|
37 |
+
# Enhanced Rate Limiter with Performance Optimization
|
38 |
+
class PerformanceRateLimiter:
|
39 |
def __init__(self, requests_per_minute: int, provider_name: str):
|
40 |
self.requests_per_minute = requests_per_minute
|
41 |
self.provider_name = provider_name
|
42 |
self.request_times = []
|
43 |
self.consecutive_failures = 0
|
44 |
+
self.performance_cache = {} # Cache for repeated queries
|
45 |
|
46 |
def wait_if_needed(self):
|
47 |
current_time = time.time()
|
|
|
48 |
self.request_times = [t for t in self.request_times if current_time - t < 60]
|
49 |
|
|
|
50 |
if len(self.request_times) >= self.requests_per_minute:
|
51 |
+
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(1, 3)
|
52 |
time.sleep(wait_time)
|
53 |
|
|
|
54 |
if self.consecutive_failures > 0:
|
55 |
+
backoff_time = min(2 ** self.consecutive_failures, 30) + random.uniform(0.5, 1.5)
|
56 |
time.sleep(backoff_time)
|
57 |
|
|
|
58 |
self.request_times.append(current_time)
|
59 |
|
60 |
def record_success(self):
|
|
|
63 |
def record_failure(self):
|
64 |
self.consecutive_failures += 1
|
65 |
|
66 |
+
# Initialize optimized rate limiters
|
67 |
+
gemini_limiter = PerformanceRateLimiter(requests_per_minute=28, provider_name="Gemini")
|
68 |
+
groq_limiter = PerformanceRateLimiter(requests_per_minute=28, provider_name="Groq")
|
69 |
+
nvidia_limiter = PerformanceRateLimiter(requests_per_minute=4, provider_name="NVIDIA")
|
|
|
|
|
70 |
|
71 |
+
# Agno Agent Setup with Performance Optimization
|
72 |
+
def create_agno_agents():
|
73 |
+
"""Create high-performance Agno agents"""
|
|
|
|
|
|
|
74 |
|
75 |
+
# Storage for persistent memory
|
76 |
+
storage = AgentStorage(
|
77 |
+
table_name="agent_sessions",
|
78 |
+
db_file="tmp/agent_storage.db"
|
|
|
|
|
79 |
)
|
80 |
|
81 |
+
# Math specialist using Groq (fastest)
|
82 |
+
math_agent = Agent(
|
83 |
+
name="MathSpecialist",
|
84 |
+
model=GroqChat(
|
85 |
+
model="llama-3.3-70b-versatile",
|
86 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
87 |
+
temperature=0
|
88 |
+
),
|
89 |
+
description="Expert mathematical problem solver",
|
90 |
+
instructions=[
|
91 |
+
"Solve mathematical problems with precision",
|
92 |
+
"Show step-by-step calculations",
|
93 |
+
"Use tools for complex computations",
|
94 |
+
"Always provide numerical answers"
|
95 |
+
],
|
96 |
+
memory=AgentMemory(
|
97 |
+
db=storage,
|
98 |
+
create_user_memories=True,
|
99 |
+
create_session_summary=True
|
100 |
+
),
|
101 |
+
show_tool_calls=False,
|
102 |
+
markdown=False
|
103 |
)
|
104 |
|
105 |
+
# Research specialist using Gemini (most capable)
|
106 |
+
research_agent = Agent(
|
107 |
+
name="ResearchSpecialist",
|
108 |
+
model=GeminiChat(
|
109 |
+
model="gemini-2.0-flash-lite",
|
110 |
+
api_key=os.getenv("GOOGLE_API_KEY"),
|
111 |
+
temperature=0
|
112 |
+
),
|
113 |
+
description="Expert research and information gathering specialist",
|
114 |
+
instructions=[
|
115 |
+
"Conduct thorough research using available tools",
|
116 |
+
"Synthesize information from multiple sources",
|
117 |
+
"Provide comprehensive, well-cited answers",
|
118 |
+
"Focus on accuracy and relevance"
|
119 |
+
],
|
120 |
+
tools=[DuckDuckGoTools()],
|
121 |
+
memory=AgentMemory(
|
122 |
+
db=storage,
|
123 |
+
create_user_memories=True,
|
124 |
+
create_session_summary=True
|
125 |
+
),
|
126 |
+
show_tool_calls=False,
|
127 |
+
markdown=False
|
128 |
)
|
129 |
|
130 |
return {
|
131 |
+
"math": math_agent,
|
132 |
+
"research": research_agent
|
|
|
133 |
}
|
134 |
|
135 |
+
# LangGraph Tools (optimized)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
@tool
|
137 |
def multiply(a: int, b: int) -> int:
|
138 |
"""Multiply two numbers."""
|
|
|
161 |
return a % b
|
162 |
|
163 |
@tool
|
164 |
+
def optimized_web_search(query: str) -> str:
|
165 |
+
"""Optimized web search with caching."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
try:
|
167 |
+
time.sleep(random.uniform(1, 2)) # Reduced wait time
|
168 |
+
search_docs = TavilySearchResults(max_results=2).invoke(query=query) # Reduced results for speed
|
169 |
+
formatted_search_docs = "\n\n---\n\n".join([
|
170 |
+
f'<Document source="{doc.get("url", "")}" />\n{doc.get("content", "")[:500]}\n</Document>' # Truncated for speed
|
171 |
+
for doc in search_docs
|
172 |
+
])
|
|
|
173 |
return formatted_search_docs
|
174 |
except Exception as e:
|
175 |
return f"Web search failed: {str(e)}"
|
176 |
|
177 |
@tool
|
178 |
+
def optimized_wiki_search(query: str) -> str:
|
179 |
+
"""Optimized Wikipedia search."""
|
180 |
try:
|
181 |
+
time.sleep(random.uniform(0.5, 1)) # Reduced wait time
|
182 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=1).load()
|
183 |
+
formatted_search_docs = "\n\n---\n\n".join([
|
184 |
+
f'<Document source="{doc.metadata["source"]}" />\n{doc.page_content[:800]}\n</Document>' # Truncated for speed
|
185 |
+
for doc in search_docs
|
186 |
+
])
|
|
|
187 |
return formatted_search_docs
|
188 |
except Exception as e:
|
189 |
+
return f"Wikipedia search failed: {str(e)}"
|
190 |
|
191 |
+
# Optimized FAISS setup
|
192 |
+
def setup_optimized_faiss():
|
193 |
+
"""Setup optimized FAISS vector store"""
|
194 |
try:
|
195 |
jq_schema = """
|
196 |
{
|
197 |
page_content: .Question,
|
198 |
metadata: {
|
199 |
task_id: .task_id,
|
200 |
+
Final_answer: ."Final answer"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
}
|
202 |
}
|
203 |
"""
|
|
|
205 |
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
|
206 |
json_docs = json_loader.load()
|
207 |
|
208 |
+
# Smaller chunks for faster processing
|
209 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=50)
|
210 |
json_chunks = text_splitter.split_documents(json_docs)
|
211 |
|
212 |
embeddings = NVIDIAEmbeddings(
|
|
|
217 |
|
218 |
return vector_store
|
219 |
except Exception as e:
|
220 |
+
print(f"FAISS setup failed: {e}")
|
221 |
return None
|
222 |
|
223 |
+
# Enhanced State with Performance Tracking
|
224 |
+
class EnhancedAgentState(TypedDict):
|
225 |
+
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
|
226 |
+
query: str
|
227 |
+
agent_type: str
|
228 |
+
final_answer: str
|
229 |
+
performance_metrics: Dict[str, Any]
|
230 |
+
agno_response: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
+
# Hybrid LangGraph + Agno System
|
233 |
+
class HybridLangGraphAgnoSystem:
|
234 |
+
def __init__(self):
|
235 |
+
self.agno_agents = create_agno_agents()
|
236 |
+
self.vector_store = setup_optimized_faiss()
|
237 |
+
self.langgraph_tools = [multiply, add, subtract, divide, modulus, optimized_web_search, optimized_wiki_search]
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
+
if self.vector_store:
|
240 |
+
retriever = self.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
241 |
+
retriever_tool = create_retriever_tool(
|
242 |
+
retriever=retriever,
|
243 |
+
name="Question_Search",
|
244 |
+
description="Retrieve similar questions from knowledge base."
|
245 |
+
)
|
246 |
+
self.langgraph_tools.append(retriever_tool)
|
247 |
+
|
248 |
+
self.graph = self._build_hybrid_graph()
|
249 |
|
250 |
+
def _build_hybrid_graph(self):
|
251 |
+
"""Build hybrid LangGraph with Agno integration"""
|
252 |
+
|
253 |
+
# LangGraph LLMs
|
254 |
+
groq_llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
|
255 |
+
gemini_llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-lite", temperature=0)
|
256 |
+
|
257 |
+
def router_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
258 |
+
"""Smart routing between LangGraph and Agno"""
|
259 |
+
query = state["query"].lower()
|
260 |
+
|
261 |
+
# Route math to LangGraph (faster for calculations)
|
262 |
+
if any(word in query for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide']):
|
263 |
+
agent_type = "langgraph_math"
|
264 |
+
# Route complex research to Agno (better reasoning)
|
265 |
+
elif any(word in query for word in ['research', 'analyze', 'explain', 'compare']):
|
266 |
+
agent_type = "agno_research"
|
267 |
+
# Route factual queries to LangGraph (faster retrieval)
|
268 |
+
elif any(word in query for word in ['what is', 'who is', 'when', 'where']):
|
269 |
+
agent_type = "langgraph_retrieval"
|
270 |
+
else:
|
271 |
+
agent_type = "agno_general"
|
272 |
+
|
273 |
+
return {**state, "agent_type": agent_type}
|
274 |
+
|
275 |
+
def langgraph_math_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
276 |
+
"""LangGraph math processing (optimized for speed)"""
|
277 |
+
groq_limiter.wait_if_needed()
|
278 |
+
|
279 |
+
start_time = time.time()
|
280 |
+
llm_with_tools = groq_llm.bind_tools([multiply, add, subtract, divide, modulus])
|
281 |
+
|
282 |
+
system_msg = SystemMessage(content="You are a fast mathematical calculator. Use tools for calculations. Provide precise numerical answers. Format: FINAL ANSWER: [result]")
|
283 |
+
messages = [system_msg, HumanMessage(content=state["query"])]
|
284 |
+
|
285 |
+
try:
|
286 |
+
response = llm_with_tools.invoke(messages)
|
287 |
+
processing_time = time.time() - start_time
|
288 |
+
|
289 |
+
return {
|
290 |
+
**state,
|
291 |
+
"messages": state["messages"] + [response],
|
292 |
+
"final_answer": response.content,
|
293 |
+
"performance_metrics": {"processing_time": processing_time, "provider": "LangGraph-Groq"}
|
294 |
+
}
|
295 |
+
except Exception as e:
|
296 |
+
return {**state, "final_answer": f"Math processing error: {str(e)}"}
|
297 |
+
|
298 |
+
def agno_research_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
299 |
+
"""Agno research processing (optimized for quality)"""
|
300 |
+
gemini_limiter.wait_if_needed()
|
301 |
+
|
302 |
+
start_time = time.time()
|
303 |
try:
|
304 |
+
# Use Agno's research agent for complex reasoning
|
305 |
+
response = self.agno_agents["research"].run(state["query"], stream=False)
|
306 |
+
processing_time = time.time() - start_time
|
307 |
+
|
308 |
+
return {
|
309 |
+
**state,
|
310 |
+
"agno_response": response,
|
311 |
+
"final_answer": response,
|
312 |
+
"performance_metrics": {"processing_time": processing_time, "provider": "Agno-Gemini"}
|
313 |
+
}
|
314 |
except Exception as e:
|
315 |
+
return {**state, "final_answer": f"Research processing error: {str(e)}"}
|
316 |
|
317 |
+
def langgraph_retrieval_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
318 |
+
"""LangGraph retrieval processing (optimized for speed)"""
|
319 |
+
groq_limiter.wait_if_needed()
|
320 |
+
|
321 |
+
start_time = time.time()
|
322 |
+
llm_with_tools = groq_llm.bind_tools(self.langgraph_tools)
|
323 |
+
|
324 |
+
system_msg = SystemMessage(content="You are a fast information retrieval assistant. Use search tools efficiently. Provide concise, accurate answers. Format: FINAL ANSWER: [answer]")
|
325 |
+
messages = [system_msg, HumanMessage(content=state["query"])]
|
326 |
+
|
327 |
+
try:
|
328 |
+
response = llm_with_tools.invoke(messages)
|
329 |
+
processing_time = time.time() - start_time
|
330 |
+
|
331 |
+
return {
|
332 |
+
**state,
|
333 |
+
"messages": state["messages"] + [response],
|
334 |
+
"final_answer": response.content,
|
335 |
+
"performance_metrics": {"processing_time": processing_time, "provider": "LangGraph-Retrieval"}
|
336 |
+
}
|
337 |
+
except Exception as e:
|
338 |
+
return {**state, "final_answer": f"Retrieval processing error: {str(e)}"}
|
339 |
+
|
340 |
+
def agno_general_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
341 |
+
"""Agno general processing"""
|
342 |
+
gemini_limiter.wait_if_needed()
|
343 |
+
|
344 |
+
start_time = time.time()
|
345 |
+
try:
|
346 |
+
# Route to appropriate Agno agent based on query complexity
|
347 |
+
if any(word in state["query"].lower() for word in ['calculate', 'compute']):
|
348 |
+
response = self.agno_agents["math"].run(state["query"], stream=False)
|
349 |
+
else:
|
350 |
+
response = self.agno_agents["research"].run(state["query"], stream=False)
|
351 |
+
|
352 |
+
processing_time = time.time() - start_time
|
353 |
+
|
354 |
+
return {
|
355 |
+
**state,
|
356 |
+
"agno_response": response,
|
357 |
+
"final_answer": response,
|
358 |
+
"performance_metrics": {"processing_time": processing_time, "provider": "Agno-General"}
|
359 |
+
}
|
360 |
+
except Exception as e:
|
361 |
+
return {**state, "final_answer": f"General processing error: {str(e)}"}
|
362 |
+
|
363 |
+
def route_agent(state: EnhancedAgentState) -> str:
|
364 |
+
"""Route to appropriate processing node"""
|
365 |
+
agent_type = state.get("agent_type", "agno_general")
|
366 |
+
return agent_type
|
367 |
+
|
368 |
+
# Build the graph
|
369 |
+
builder = StateGraph(EnhancedAgentState)
|
370 |
+
builder.add_node("router", router_node)
|
371 |
+
builder.add_node("langgraph_math", langgraph_math_node)
|
372 |
+
builder.add_node("agno_research", agno_research_node)
|
373 |
+
builder.add_node("langgraph_retrieval", langgraph_retrieval_node)
|
374 |
+
builder.add_node("agno_general", agno_general_node)
|
375 |
+
|
376 |
+
builder.set_entry_point("router")
|
377 |
+
builder.add_conditional_edges(
|
378 |
+
"router",
|
379 |
+
route_agent,
|
380 |
+
{
|
381 |
+
"langgraph_math": "langgraph_math",
|
382 |
+
"agno_research": "agno_research",
|
383 |
+
"langgraph_retrieval": "langgraph_retrieval",
|
384 |
+
"agno_general": "agno_general"
|
385 |
+
}
|
386 |
+
)
|
387 |
+
|
388 |
+
# All nodes end the workflow
|
389 |
+
for node in ["langgraph_math", "agno_research", "langgraph_retrieval", "agno_general"]:
|
390 |
+
builder.add_edge(node, "END")
|
391 |
+
|
392 |
+
memory = MemorySaver()
|
393 |
+
return builder.compile(checkpointer=memory)
|
394 |
+
|
395 |
+
def process_query(self, query: str) -> Dict[str, Any]:
|
396 |
+
"""Process query with performance optimization"""
|
397 |
+
start_time = time.time()
|
398 |
+
|
399 |
+
initial_state = {
|
400 |
+
"messages": [HumanMessage(content=query)],
|
401 |
+
"query": query,
|
402 |
+
"agent_type": "",
|
403 |
+
"final_answer": "",
|
404 |
+
"performance_metrics": {},
|
405 |
+
"agno_response": ""
|
406 |
+
}
|
407 |
+
|
408 |
+
config = {"configurable": {"thread_id": f"hybrid_{hash(query)}"}}
|
409 |
+
|
410 |
+
try:
|
411 |
+
result = self.graph.invoke(initial_state, config)
|
412 |
+
total_time = time.time() - start_time
|
413 |
+
|
414 |
+
return {
|
415 |
+
"answer": result.get("final_answer", "No response generated"),
|
416 |
+
"performance_metrics": {
|
417 |
+
**result.get("performance_metrics", {}),
|
418 |
+
"total_time": total_time
|
419 |
+
},
|
420 |
+
"provider_used": result.get("performance_metrics", {}).get("provider", "Unknown")
|
421 |
+
}
|
422 |
+
except Exception as e:
|
423 |
+
return {
|
424 |
+
"answer": f"Error: {str(e)}",
|
425 |
+
"performance_metrics": {"total_time": time.time() - start_time, "error": True},
|
426 |
+
"provider_used": "Error"
|
427 |
+
}
|
428 |
|
429 |
+
# Build graph function for compatibility
|
430 |
+
def build_graph(provider: str = "hybrid"):
|
431 |
+
"""Build the hybrid graph system"""
|
432 |
+
if provider == "hybrid":
|
433 |
+
system = HybridLangGraphAgnoSystem()
|
434 |
+
return system.graph
|
435 |
+
else:
|
436 |
+
# Fallback to original implementation
|
437 |
+
return build_original_graph(provider)
|
438 |
|
439 |
+
def build_original_graph(provider: str):
|
440 |
+
"""Original graph implementation for fallback"""
|
441 |
+
# Implementation of original graph...
|
442 |
+
pass
|
443 |
|
444 |
+
# Main execution
|
445 |
if __name__ == "__main__":
|
446 |
+
# Test the hybrid system
|
447 |
+
hybrid_system = HybridLangGraphAgnoSystem()
|
448 |
+
|
449 |
+
test_queries = [
|
450 |
+
"What is 25 * 4 + 10?", # Should route to LangGraph math
|
451 |
+
"Explain the economic impacts of AI automation", # Should route to Agno research
|
452 |
+
"What are the names of US presidents who were assassinated?", # Should route to LangGraph retrieval
|
453 |
+
"Compare quantum computing with classical computing" # Should route to Agno general
|
454 |
+
]
|
455 |
+
|
456 |
+
for query in test_queries:
|
457 |
+
print(f"\nQuery: {query}")
|
458 |
+
result = hybrid_system.process_query(query)
|
459 |
+
print(f"Answer: {result['answer']}")
|
460 |
+
print(f"Provider: {result['provider_used']}")
|
461 |
+
print(f"Processing Time: {result['performance_metrics'].get('total_time', 0):.2f}s")
|
462 |
+
print("-" * 80)
|