""" Enhanced Multi-LLM Agent System with Question-Answering Capabilities Supports Groq (Llama-3 8B/70B, DeepSeek), Google Gemini, NVIDIA NIM, and Agno-style agents """ import os import time import random import operator from typing import List, Dict, Any, TypedDict, Annotated, Optional from dotenv import load_dotenv from langchain_core.tools import tool from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langgraph.graph import StateGraph, END from langgraph.checkpoint.memory import MemorySaver from langchain_core.messages import SystemMessage, HumanMessage, AIMessage from langchain_groq import ChatGroq # Load environment variables load_dotenv() # Enhanced system prompt for question-answering tasks ENHANCED_SYSTEM_PROMPT = ( "You are a helpful assistant tasked with answering questions using a set of tools. " "You must provide accurate, comprehensive answers based on available information. " "When answering questions, follow these guidelines:\n" '1)You are a helpful assistant tasked with answering questions using a set of tools. '2)Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:' 'FINAL ANSWER: [YOUR FINAL ANSWER].' '3)YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.' '4)Your answer should only start with "FINAL ANSWER: ", then follows with the answer. ' ) # ---- Tool Definitions with Enhanced Docstrings ---- @tool def multiply(a: int | float, b: int | float) -> int | float: """Multiply two numbers. Args: a: first int | float b: second int | float """ return a * b @tool def add(a: int | float, b: int | float) -> int | float: """ Adds two integers and returns the sum. Args: a (int): First integer b (int): Second integer Returns: int: Sum of a and b """ return a + b @tool def subtract(a: int | float, b: int | float) -> int | float: """ Subtracts the second integer from the first and returns the difference. Args: a (int): First integer (minuend) b (int): Second integer (subtrahend) Returns: int: Difference of a and b """ return a - b @tool def divide(a: int | float, b: int | float) -> int | float: """ Divides the first integer by the second and returns the quotient. Args: a (int): Dividend b (int): Divisor Returns: float: Quotient of a divided by b Raises: ValueError: If b is zero """ if b == 0 or b==0.0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int | float, b: int | float) -> int | float: """ Returns the remainder when dividing the first integer by the second. Args: a (int): Dividend b (int): Divisor Returns: int: Remainder of a divided by b """ return a % b @tool def optimized_web_search(query: str) -> str: """ Performs an optimized web search using TavilySearchResults. Args: query (str): Search query string Returns: str: Concatenated search results with URLs and content snippets """ try: time.sleep(random.uniform(0.7, 1.5)) docs = TavilySearchResults(max_results=3).invoke(query=query) return "\n\n---\n\n".join( f"{d.get('content','')[:800]}" for d in docs ) except Exception as e: return f"Web search failed: {e}" @tool def optimized_wiki_search(query: str) -> str: """ Performs an optimized Wikipedia search and returns content snippets. Args: query (str): Wikipedia search query Returns: str: Wikipedia content with source attribution """ try: time.sleep(random.uniform(0.3, 1)) docs = WikipediaLoader(query=query, load_max_docs=2).load() return "\n\n---\n\n".join( f"{d.page_content[:1000]}" for d in docs ) except Exception as e: return f"Wikipedia search failed: {e}" # ---- LLM Provider Integrations ---- try: from langchain_nvidia_ai_endpoints import ChatNVIDIA NVIDIA_AVAILABLE = True except ImportError: NVIDIA_AVAILABLE = False try: import google.generativeai as genai from langchain_google_genai import ChatGoogleGenerativeAI GOOGLE_AVAILABLE = True except ImportError: GOOGLE_AVAILABLE = False # ---- Enhanced Agent State ---- class EnhancedAgentState(TypedDict): """ State structure for the enhanced multi-LLM agent system. Attributes: messages: List of conversation messages query: Current query string agent_type: Selected agent/LLM type final_answer: Generated response perf: Performance metrics agno_resp: Agno-style response metadata tools_used: List of tools used in processing reasoning: Step-by-step reasoning process """ messages: Annotated[List[HumanMessage | AIMessage], operator.add] query: str agent_type: str final_answer: str perf: Dict[str, Any] agno_resp: str tools_used: List[str] reasoning: str # ---- Enhanced Multi-LLM System ---- class EnhancedQuestionAnsweringSystem: """ Advanced question-answering system that routes queries to appropriate LLM providers and uses tools to gather information for comprehensive answers. Features: - Multi-LLM routing (Groq, Google, NVIDIA) - Tool integration for web search and calculations - Structured reasoning and answer formatting - Performance monitoring """ def __init__(self): """Initialize the enhanced question-answering system.""" self.tools = [ multiply, add, subtract, divide, modulus, optimized_web_search, optimized_wiki_search ] self.graph = self._build_graph() def _llm(self, model_name: str) -> ChatGroq: """ Create a Groq LLM instance. Args: model_name (str): Model identifier Returns: ChatGroq: Configured Groq LLM instance """ return ChatGroq( model=model_name, temperature=0, api_key=os.getenv("GROQ_API_KEY") ) def _build_graph(self) -> StateGraph: """ Build the LangGraph state machine with enhanced question-answering capabilities. Returns: StateGraph: Compiled graph with routing logic """ # Initialize LLMs llama8_llm = self._llm("llama3-8b-8192") llama70_llm = self._llm("llama3-70b-8192") deepseek_llm = self._llm("deepseek-chat") def router(st: EnhancedAgentState) -> EnhancedAgentState: """ Route queries to appropriate LLM based on complexity and content. Args: st (EnhancedAgentState): Current state Returns: EnhancedAgentState: Updated state with agent selection """ q = st["query"].lower() # Route based on query characteristics if any(keyword in q for keyword in ["calculate", "compute", "math", "number"]): t = "llama70" # Use more powerful model for calculations elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia"]): t = "search_enhanced" # Use search-enhanced processing elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]): t = "deepseek" elif len(q.split()) > 20: # Complex queries t = "llama70" else: t = "llama8" # Default for simple queries return {**st, "agent_type": t, "tools_used": [], "reasoning": ""} def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState: """Process query with Llama-3 8B model.""" t0 = time.time() try: sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) res = llama8_llm.invoke([sys, HumanMessage(content=st["query"])]) reasoning = "Used Llama-3 8B for efficient processing of straightforward query." return {**st, "final_answer": res.content, "reasoning": reasoning, "perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}} except Exception as e: return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} def llama70_node(st: EnhancedAgentState) -> EnhancedAgentState: """Process query with Llama-3 70B model.""" t0 = time.time() try: sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) res = llama70_llm.invoke([sys, HumanMessage(content=st["query"])]) reasoning = "Used Llama-3 70B for complex reasoning and detailed analysis." return {**st, "final_answer": res.content, "reasoning": reasoning, "perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}} except Exception as e: return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState: """Process query with DeepSeek model.""" t0 = time.time() try: sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) res = deepseek_llm.invoke([sys, HumanMessage(content=st["query"])]) reasoning = "Used DeepSeek for advanced reasoning and analytical tasks." return {**st, "final_answer": res.content, "reasoning": reasoning, "perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}} except Exception as e: return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState: """Process query with search enhancement.""" t0 = time.time() tools_used = [] reasoning_steps = [] try: # Determine if we need web search or Wikipedia query = st["query"] search_results = "" if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]): search_results = optimized_wiki_search.invoke({"query": query}) tools_used.append("wikipedia_search") reasoning_steps.append("Searched Wikipedia for relevant information") else: search_results = optimized_web_search.invoke({"query": query}) tools_used.append("web_search") reasoning_steps.append("Performed web search for current information") # Enhance query with search results enhanced_query = f""" Original Query: {query} Search Results: {search_results} Based on the search results above, please provide a comprehensive answer to the original query. """ sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)]) reasoning_steps.append("Used Llama-3 70B to analyze search results and generate comprehensive answer") reasoning = " -> ".join(reasoning_steps) return {**st, "final_answer": res.content, "tools_used": tools_used, "reasoning": reasoning, "perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}} except Exception as e: return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} # Build graph g = StateGraph(EnhancedAgentState) g.add_node("router", router) g.add_node("llama8", llama8_node) g.add_node("llama70", llama70_node) g.add_node("deepseek", deepseek_node) g.add_node("search_enhanced", search_enhanced_node) g.set_entry_point("router") g.add_conditional_edges("router", lambda s: s["agent_type"], { "llama8": "llama8", "llama70": "llama70", "deepseek": "deepseek", "search_enhanced": "search_enhanced" }) for node in ["llama8", "llama70", "deepseek", "search_enhanced"]: g.add_edge(node, END) return g.compile(checkpointer=MemorySaver()) def process_query(self, q: str) -> str: """ Process a query through the enhanced question-answering system. Args: q (str): Input query Returns: str: Generated response with proper formatting """ state = { "messages": [HumanMessage(content=q)], "query": q, "agent_type": "", "final_answer": "", "perf": {}, "agno_resp": "", "tools_used": [], "reasoning": "" } cfg = {"configurable": {"thread_id": f"qa_{hash(q)}"}} try: out = self.graph.invoke(state, cfg) answer = out.get("final_answer", "").strip() # Ensure proper formatting if not answer.startswith("FINAL ANSWER:"): # Extract the actual answer if it's buried in explanation if "FINAL ANSWER:" in answer: answer = answer.split("FINAL ANSWER:")[-1].strip() answer = f"FINAL ANSWER: {answer}" else: # Add FINAL ANSWER prefix if missing answer = f"FINAL ANSWER: {answer}" return answer except Exception as e: return f"FINAL ANSWER: Error processing query: {e}" def build_graph(provider: str | None = None) -> StateGraph: """ Build and return the graph for the enhanced question-answering system. Args: provider (str | None): Provider preference (optional) Returns: StateGraph: Compiled graph instance """ return EnhancedQuestionAnsweringSystem().graph # ---- Main Question-Answering Interface ---- class QuestionAnsweringAgent: """ Main interface for the question-answering agent system. """ def __init__(self): """Initialize the question-answering agent.""" self.system = EnhancedQuestionAnsweringSystem() def answer_question(self, question: str) -> str: """ Answer a question using the enhanced multi-LLM system. Args: question (str): The question to answer Returns: str: Formatted answer with FINAL ANSWER prefix """ return self.system.process_query(question) if __name__ == "__main__": # Initialize the question-answering system qa_agent = QuestionAnsweringAgent() # Test with sample questions test_questions = [ "How many studio albums were published by Mercedes Sosa between 2000 and 2009?", "What is 25 multiplied by 17?", "Find information about the capital of France on Wikipedia", "What is the population of Tokyo according to recent data?" ] print("=" * 80) print("Enhanced Question-Answering Agent System") print("=" * 80) for i, question in enumerate(test_questions, 1): print(f"\nQuestion {i}: {question}") print("-" * 60) answer = qa_agent.answer_question(question) print(answer) print()