""" Enhanced Multi-LLM Agent System with Supabase FAISS Integration Complete system for document insertion, retrieval, and question answering """ import os import time import random import operator from typing import List, Dict, Any, TypedDict, Annotated, Optional from dotenv import load_dotenv from langchain_core.tools import tool from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langgraph.graph import StateGraph, END from langgraph.checkpoint.memory import MemorySaver from langchain_core.messages import SystemMessage, HumanMessage, AIMessage from langchain_groq import ChatGroq # Supabase and FAISS imports import faiss import numpy as np from sentence_transformers import SentenceTransformer from supabase import create_client, Client import pandas as pd import json import pickle load_dotenv() # Enhanced system prompt for question-answering ENHANCED_SYSTEM_PROMPT = ( "You are a helpful assistant tasked with answering questions using a set of tools. " "You must provide accurate, comprehensive answers based on available information. " "When answering questions, follow these guidelines:\n" "1. Use available tools to gather information when needed\n" "2. Provide precise, factual answers\n" "3. For numbers: don't use commas or units unless specified\n" "4. For strings: don't use articles or abbreviations, write digits in plain text\n" "5. For lists: apply above rules based on element type\n" "6. Always end with 'FINAL ANSWER: [YOUR ANSWER]'\n" "7. Be concise but thorough in your reasoning\n" "8. If you cannot find the answer, state that clearly" ) # ---- Tool Definitions ---- @tool def multiply(a: int, b: int) -> int: """Multiply two integers and return the product.""" return a * b @tool def add(a: int, b: int) -> int: """Add two integers and return the sum.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract the second integer from the first and return the difference.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide the first integer by the second and return the quotient.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Return the remainder when dividing the first integer by the second.""" return a % b @tool def optimized_web_search(query: str) -> str: """Perform an optimized web search using TavilySearchResults.""" try: time.sleep(random.uniform(0.7, 1.5)) search_tool = TavilySearchResults(max_results=3) docs = search_tool.invoke({"query": query}) return "\n\n---\n\n".join( f"{d.get('content','')[:800]}" for d in docs ) except Exception as e: return f"Web search failed: {e}" @tool def optimized_wiki_search(query: str) -> str: """Perform an optimized Wikipedia search and return content snippets.""" try: time.sleep(random.uniform(0.3, 1)) docs = WikipediaLoader(query=query, load_max_docs=2).load() return "\n\n---\n\n".join( f"{d.page_content[:1000]}" for d in docs ) except Exception as e: return f"Wikipedia search failed: {e}" # ---- Supabase FAISS Vector Database Integration ---- class SupabaseFAISSVectorDB: """Enhanced vector database combining FAISS with Supabase for persistent storage""" def __init__(self): # Initialize Supabase client self.supabase_url = os.getenv("SUPABASE_URL") self.supabase_key = os.getenv("SUPABASE_SERVICE_KEY") if self.supabase_url and self.supabase_key: self.supabase: Client = create_client(self.supabase_url, self.supabase_key) else: self.supabase = None print("Supabase credentials not found, running without vector database") # Initialize embedding model self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2') self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension() # Initialize FAISS index self.index = faiss.IndexFlatL2(self.embedding_dim) self.document_store = [] # Local cache for documents def insert_question_data(self, data: Dict[str, Any]) -> bool: """Insert question data into both Supabase and FAISS""" try: question_text = data.get("Question", "") embedding = self.embedding_model.encode([question_text])[0] # Insert into Supabase if available if self.supabase: question_data = { "task_id": data.get("task_id"), "question": question_text, "final_answer": data.get("Final answer"), "level": data.get("Level"), "file_name": data.get("file_name", ""), "embedding": embedding.tolist() } self.supabase.table("questions").insert(question_data).execute() # Add to local FAISS index self.index.add(embedding.reshape(1, -1).astype('float32')) self.document_store.append({ "task_id": data.get("task_id"), "question": question_text, "answer": data.get("Final answer"), "level": data.get("Level") }) return True except Exception as e: print(f"Error inserting data: {e}") return False def search_similar_questions(self, query: str, k: int = 3) -> List[Dict[str, Any]]: """Search for similar questions using vector similarity""" try: if self.index.ntotal == 0: return [] query_embedding = self.embedding_model.encode([query])[0] k = min(k, self.index.ntotal) distances, indices = self.index.search( query_embedding.reshape(1, -1).astype('float32'), k ) results = [] for i, idx in enumerate(indices[0]): if 0 <= idx < len(self.document_store): doc = self.document_store[idx] results.append({ "task_id": doc["task_id"], "question": doc["question"], "answer": doc["answer"], "similarity_score": 1 / (1 + distances[0][i]), "distance": float(distances[0][i]) }) return results except Exception as e: print(f"Error searching similar questions: {e}") return [] # ---- Enhanced Agent State ---- class EnhancedAgentState(TypedDict): """State structure for the enhanced multi-LLM agent system.""" messages: Annotated[List[HumanMessage | AIMessage], operator.add] query: str agent_type: str final_answer: str perf: Dict[str, Any] agno_resp: str tools_used: List[str] reasoning: str similar_questions: List[Dict[str, Any]] # ---- Enhanced Multi-LLM System ---- class HybridLangGraphMultiLLMSystem: """ Advanced question-answering system with multi-LLM support and vector database integration """ def __init__(self, provider="groq"): self.provider = provider self.tools = [ multiply, add, subtract, divide, modulus, optimized_web_search, optimized_wiki_search ] # Initialize vector database self.vector_db = SupabaseFAISSVectorDB() self.graph = self._build_graph() def _llm(self, model_name: str) -> ChatGroq: """Create a Groq LLM instance.""" return ChatGroq( model=model_name, temperature=0, api_key=os.getenv("GROQ_API_KEY") ) def _build_graph(self) -> StateGraph: """Build the LangGraph state machine with enhanced capabilities.""" # Initialize LLMs llama8_llm = self._llm("llama3-8b-8192") llama70_llm = self._llm("llama3-70b-8192") deepseek_llm = self._llm("deepseek-chat") def router(st: EnhancedAgentState) -> EnhancedAgentState: """Route queries to appropriate LLM based on complexity and content analysis.""" q = st["query"].lower() # Enhanced routing logic if any(keyword in q for keyword in ["calculate", "compute", "math", "multiply", "add", "subtract", "divide"]): t = "llama70" # Use more powerful model for calculations elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia", "information about"]): t = "search_enhanced" # Use search-enhanced processing elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]): t = "deepseek" elif "llama-8" in q: t = "llama8" elif len(q.split()) > 20: # Complex queries t = "llama70" else: t = "llama8" # Default for simple queries # Search for similar questions similar_questions = self.vector_db.search_similar_questions(st["query"], k=3) return {**st, "agent_type": t, "tools_used": [], "reasoning": "", "similar_questions": similar_questions} def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState: """Process query with Llama-3 8B model.""" t0 = time.time() try: # Add similar questions context if available context = "" if st.get("similar_questions"): context = "\n\nSimilar questions for reference:\n" for sq in st["similar_questions"][:2]: context += f"Q: {sq['question']}\nA: {sq['answer']}\n" enhanced_query = f""" Question: {st["query"]} {context} Please provide a direct, accurate answer to this question. """ sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) res = llama8_llm.invoke([sys, HumanMessage(content=enhanced_query)]) answer = res.content.strip() if "FINAL ANSWER:" in answer: answer = answer.split("FINAL ANSWER:")[-1].strip() return {**st, "final_answer": answer, "reasoning": "Used Llama-3 8B with similar questions context", "perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}} except Exception as e: return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} def llama70_node(st: EnhancedAgentState) -> EnhancedAgentState: """Process query with Llama-3 70B model.""" t0 = time.time() try: # Add similar questions context if available context = "" if st.get("similar_questions"): context = "\n\nSimilar questions for reference:\n" for sq in st["similar_questions"][:2]: context += f"Q: {sq['question']}\nA: {sq['answer']}\n" enhanced_query = f""" Question: {st["query"]} {context} Please provide a direct, accurate answer to this question. """ sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)]) answer = res.content.strip() if "FINAL ANSWER:" in answer: answer = answer.split("FINAL ANSWER:")[-1].strip() return {**st, "final_answer": answer, "reasoning": "Used Llama-3 70B for complex reasoning with context", "perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}} except Exception as e: return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState: """Process query with DeepSeek model.""" t0 = time.time() try: # Add similar questions context if available context = "" if st.get("similar_questions"): context = "\n\nSimilar questions for reference:\n" for sq in st["similar_questions"][:2]: context += f"Q: {sq['question']}\nA: {sq['answer']}\n" enhanced_query = f""" Question: {st["query"]} {context} Please provide a direct, accurate answer to this question. """ sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) res = deepseek_llm.invoke([sys, HumanMessage(content=enhanced_query)]) answer = res.content.strip() if "FINAL ANSWER:" in answer: answer = answer.split("FINAL ANSWER:")[-1].strip() return {**st, "final_answer": answer, "reasoning": "Used DeepSeek for advanced reasoning and analysis", "perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}} except Exception as e: return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState: """Process query with search enhancement.""" t0 = time.time() tools_used = [] try: # Determine search strategy query = st["query"] search_results = "" if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]): search_results = optimized_wiki_search.invoke({"query": query}) tools_used.append("wikipedia_search") else: search_results = optimized_web_search.invoke({"query": query}) tools_used.append("web_search") # Add similar questions context context = "" if st.get("similar_questions"): context = "\n\nSimilar questions for reference:\n" for sq in st["similar_questions"][:2]: context += f"Q: {sq['question']}\nA: {sq['answer']}\n" enhanced_query = f""" Original Question: {query} Search Results: {search_results} {context} Based on the search results and similar questions above, provide a direct answer to the original question. """ sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)]) answer = res.content.strip() if "FINAL ANSWER:" in answer: answer = answer.split("FINAL ANSWER:")[-1].strip() return {**st, "final_answer": answer, "tools_used": tools_used, "reasoning": "Used search enhancement with similar questions context", "perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}} except Exception as e: return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} # Build graph g = StateGraph(EnhancedAgentState) g.add_node("router", router) g.add_node("llama8", llama8_node) g.add_node("llama70", llama70_node) g.add_node("deepseek", deepseek_node) g.add_node("search_enhanced", search_enhanced_node) g.set_entry_point("router") g.add_conditional_edges("router", lambda s: s["agent_type"], { "llama8": "llama8", "llama70": "llama70", "deepseek": "deepseek", "search_enhanced": "search_enhanced" }) for node in ["llama8", "llama70", "deepseek", "search_enhanced"]: g.add_edge(node, END) return g.compile(checkpointer=MemorySaver()) def process_query(self, q: str) -> str: """Process a query through the enhanced multi-LLM system.""" state = { "messages": [HumanMessage(content=q)], "query": q, "agent_type": "", "final_answer": "", "perf": {}, "agno_resp": "", "tools_used": [], "reasoning": "", "similar_questions": [] } cfg = {"configurable": {"thread_id": f"enhanced_qa_{hash(q)}"}} try: out = self.graph.invoke(state, cfg) answer = out.get("final_answer", "").strip() # Ensure we don't return the question as the answer if answer == q or answer.startswith(q): return "Information not available" return answer if answer else "No answer generated" except Exception as e: return f"Error processing query: {e}" def load_metadata_from_jsonl(self, jsonl_file_path: str) -> int: """Load question metadata from JSONL file into vector database""" success_count = 0 try: with open(jsonl_file_path, 'r', encoding='utf-8') as file: for line_num, line in enumerate(file, 1): try: data = json.loads(line.strip()) if self.vector_db.insert_question_data(data): success_count += 1 if line_num % 10 == 0: print(f"Processed {line_num} records, {success_count} successful") except json.JSONDecodeError as e: print(f"JSON decode error on line {line_num}: {e}") except Exception as e: print(f"Error processing line {line_num}: {e}") except FileNotFoundError: print(f"File not found: {jsonl_file_path}") print(f"Loaded {success_count} questions into vector database") return success_count def build_graph(provider: str | None = None) -> StateGraph: """Build and return the graph for the enhanced agent system.""" return HybridLangGraphMultiLLMSystem(provider or "groq").graph if __name__ == "__main__": # Initialize and test the system system = HybridLangGraphMultiLLMSystem() # Load metadata if available if os.path.exists("metadata.jsonl"): system.load_metadata_from_jsonl("metadata.jsonl") # Test queries test_questions = [ "How many studio albums were published by Mercedes Sosa between 2000 and 2009?", "What is 25 multiplied by 17?", "Find information about artificial intelligence on Wikipedia" ] for question in test_questions: print(f"Question: {question}") answer = system.process_query(question) print(f"Answer: {answer}") print("-" * 50)