import os
import gradio as gr
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from supabase import create_client, Client
# Load environment variables
load_dotenv()
# Tool definitions remain unchanged
@tool
def multiply(a: int, b: int) -> int:
return a * b
@tool
def add(a: int, b: int) -> int:
return a + b
@tool
def subtract(a: int, b: int) -> int:
return a - b
@tool
def divide(a: int, b: int) -> int:
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
return a % b
@tool
def wiki_search(query: str) -> str:
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[f'\n{doc.page_content}\n'
for doc in search_docs])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
search_docs = TavilySearchResults(max_results=3).invoke(query)
formatted_search_docs = "\n\n---\n\n".join(
[f'\n{doc.page_content}\n'
for doc in search_docs])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[f'\n{doc.page_content[:1000]}\n'
for doc in search_docs])
return {"arvix_results": formatted_search_docs}
# System prompt definition
SYSTEM_PROMPT = """You are a helpful assistant. For every question, reply with only the answer—no explanation,
no units, and no extra words. If the answer is a number, just return the number.
If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words.
Do not include any prefix, suffix, or explanation."""
sys_msg = SystemMessage(content=SYSTEM_PROMPT)
# Initialize vector store
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(
os.environ["SUPABASE_URL"],
os.environ["SUPABASE_SERVICE_KEY"]
)
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="documents",
)
tools = [multiply, add, subtract, divide, modulus,
wiki_search, web_search, arvix_search]
# Build graph function with multi-provider support
def build_graph(provider: str = "groq"):
# Provider selection
if provider == "google":
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0,
api_key=os.getenv("GOOGLE_API_KEY")
)
elif provider == "groq":
llm = ChatGroq(
model="llama3-70b-8192",
temperature=0,
api_key=os.getenv("GROQ_API_KEY")
)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2",
temperature=0,
api_key=os.getenv("HF_API_KEY")
)
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
# Graph nodes
def retriever(state: MessagesState):
similar_question = vector_store.similarity_search(state["messages"][-1].content, k=1)
if similar_question:
example_msg = HumanMessage(content=f"Similar reference: {similar_question[0].page_content[:200]}...")
return {"messages": state["messages"] + [example_msg]}
return {"messages": state["messages"]}
def assistant(state: MessagesState):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
# Build graph
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
return builder.compile()
# Gradio interface
def run_agent(question, provider):
try:
graph = build_graph(provider)
messages = [HumanMessage(content=question)]
result = graph.invoke({"messages": messages})
final_answer = result["messages"][-1].content
return final_answer
except Exception as e:
return f"Error: {str(e)}"
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## LangGraph Multi-Provider Agent")
provider = gr.Dropdown(
choices=["groq", "google", "huggingface"],
value="groq",
label="LLM Provider"
)
question = gr.Textbox(label="Your Question")
submit_btn = gr.Button("Run Agent")
output = gr.Textbox(label="Agent Response", interactive=False)
submit_btn.click(
fn=run_agent,
inputs=[question, provider],
outputs=output
)
if __name__ == "__main__":
demo.launch()