""" Working Multi-LLM Agent Evaluation Runner""" import os import gradio as gr import requests import pandas as pd from langchain_core.messages import HumanMessage # Import from veryfinal.py from veryfinal import UnifiedAgnoEnhancedSystem # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Working Agent Definition --- class WorkingMultiLLMAgent: """A working multi-LLM agent that actually answers questions""" def __init__(self): print("Working Multi-LLM Agent initialized.") try: self.system = UnifiedAgnoEnhancedSystem() print("✅ Working system built successfully.") except Exception as e: print(f"❌ Error building system: {e}") self.system = None def __call__(self, question: str) -> str: print(f"Processing: {question[:100]}...") if self.system is None: return "Error: System not initialized" try: answer = self.system.process_query(question) # Validation if not answer or answer == question or len(answer.strip()) == 0: return "Information not available" return answer.strip() except Exception as e: return f"Error: {str(e)}" def run_and_submit_all(profile: gr.OAuthProfile | None): """Run evaluation with working agent""" space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Working Agent try: agent = WorkingMultiLLMAgent() if agent.system is None: return "Error: Failed to initialize working agent", None except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID" # 2. Fetch Questions try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "No questions fetched", None print(f"✅ Fetched {len(questions_data)} questions") except Exception as e: return f"Error fetching questions: {e}", None # 3. Process Questions results_log = [] answers_payload = [] for i, item in enumerate(questions_data): task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue print(f"Processing {i+1}/{len(questions_data)}: {task_id}") try: answer = agent(question_text) # Prevent question repetition if answer == question_text or answer.startswith(question_text): answer = "Information not available" answers_payload.append({"task_id": task_id, "submitted_answer": answer}) results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, "Submitted Answer": answer[:200] + "..." if len(answer) > 200 else answer }) except Exception as e: error_msg = f"ERROR: {e}" answers_payload.append({"task_id": task_id, "submitted_answer": error_msg}) results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, "Submitted Answer": error_msg }) if not answers_payload: return "No answers generated", pd.DataFrame(results_log) # 4. Submit Results submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"✅ Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'Success')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"❌ Submission Failed: {e}", pd.DataFrame(results_log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# Working Multi-LLM Agent System") gr.Markdown( """ **✅ This is a WORKING system that will actually answer questions!** **Features:** - **Groq Llama-3 70B**: High-quality responses - **Smart Routing**: Math, search, wiki, and general queries - **Web Search**: Tavily integration for current information - **Wikipedia**: Encyclopedic knowledge access - **Robust Error Handling**: Fallbacks and validation **Instructions:** 1. Log in with your Hugging Face account 2. Click 'Run Evaluation & Submit All Answers' 3. Wait for processing to complete 4. View your results and score **Requirements:** - GROQ_API_KEY in your environment variables - TAVILY_API_KEY (optional, for web search) """ ) gr.LoginButton() run_button = gr.Button("🚀 Run Evaluation & Submit All Answers", variant="primary") status_output = gr.Textbox(label="Status", lines=5, interactive=False) results_table = gr.DataFrame(label="Results", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("🚀 Starting Working Multi-LLM Agent System") demo.launch(debug=True, share=False)