"""LangGraph Agent with Best Free Models and Minimal Rate Limits""" import os, time, random from dotenv import load_dotenv from typing import List, Dict, Any, TypedDict, Annotated import operator # LangGraph imports from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langgraph.checkpoint.memory import MemorySaver # LangChain imports from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain_groq import ChatGroq from langchain_google_genai import ChatGoogleGenerativeAI from langchain_nvidia_ai_endpoints import ChatNVIDIA from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.vectorstores import FAISS from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings from langchain.tools.retriever import create_retriever_tool from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.document_loaders import JSONLoader load_dotenv() # Advanced Rate Limiter with Exponential Backoff class AdvancedRateLimiter: def __init__(self, requests_per_minute: int, provider_name: str): self.requests_per_minute = requests_per_minute self.provider_name = provider_name self.request_times = [] self.consecutive_failures = 0 def wait_if_needed(self): current_time = time.time() # Clean old requests (older than 1 minute) self.request_times = [t for t in self.request_times if current_time - t < 60] # Check if we need to wait if len(self.request_times) >= self.requests_per_minute: wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8) time.sleep(wait_time) # Add exponential backoff for consecutive failures if self.consecutive_failures > 0: backoff_time = min(2 ** self.consecutive_failures, 60) + random.uniform(1, 3) time.sleep(backoff_time) # Record this request self.request_times.append(current_time) def record_success(self): self.consecutive_failures = 0 def record_failure(self): self.consecutive_failures += 1 # Initialize rate limiters based on search results # Gemini 2.0 Flash-Lite: 30 RPM (highest free tier) gemini_limiter = AdvancedRateLimiter(requests_per_minute=25, provider_name="Gemini") # Conservative # Groq: Typically 30 RPM for free tier groq_limiter = AdvancedRateLimiter(requests_per_minute=25, provider_name="Groq") # Conservative # NVIDIA: Typically 5 RPM for free tier nvidia_limiter = AdvancedRateLimiter(requests_per_minute=4, provider_name="NVIDIA") # Very conservative # Initialize LLMs with best models and minimal rate limits def get_best_models(): """Get the best models with lowest rate limits""" # Gemini 2.0 Flash-Lite - Best rate limit (30 RPM) with good performance gemini_llm = ChatGoogleGenerativeAI( model="gemini-2.0-flash-lite", # Best rate limit from search results api_key=os.getenv("GOOGLE_API_KEY"), temperature=0, max_output_tokens=4000 ) # Groq Llama 3.3 70B - Fast and capable groq_llm = ChatGroq( model="llama-3.3-70b-versatile", api_key=os.getenv("GROQ_API_KEY"), temperature=0, max_tokens=4000 ) # NVIDIA Llama 3.1 70B - Good for specialized tasks nvidia_llm = ChatNVIDIA( model="meta/llama-3.1-70b-instruct", api_key=os.getenv("NVIDIA_API_KEY"), temperature=0, max_tokens=4000 ) return { "gemini": gemini_llm, "groq": groq_llm, "nvidia": nvidia_llm } # Fallback strategy with rate limit handling class ModelFallbackManager: def __init__(self): self.models = get_best_models() self.limiters = { "gemini": gemini_limiter, "groq": groq_limiter, "nvidia": nvidia_limiter } self.fallback_order = ["gemini", "groq", "nvidia"] # Order by rate limit capacity def invoke_with_fallback(self, messages, max_retries=3): """Try models in order with rate limiting and fallbacks""" for provider in self.fallback_order: limiter = self.limiters[provider] model = self.models[provider] for attempt in range(max_retries): try: # Apply rate limiting limiter.wait_if_needed() # Try to invoke the model response = model.invoke(messages) limiter.record_success() return response except Exception as e: error_msg = str(e).lower() # Check if it's a rate limit error if any(keyword in error_msg for keyword in ['rate limit', '429', 'quota', 'too many requests']): limiter.record_failure() wait_time = (2 ** attempt) + random.uniform(10, 30) time.sleep(wait_time) continue else: # Non-rate limit error, try next provider break # If all providers fail raise Exception("All model providers failed or hit rate limits") # Custom Tools @tool def multiply(a: int, b: int) -> int: """Multiply two numbers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two numbers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide two numbers.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers.""" return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results.""" try: time.sleep(random.uniform(1, 3)) search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return formatted_search_docs except Exception as e: return f"Wikipedia search failed: {str(e)}" @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results.""" try: time.sleep(random.uniform(2, 5)) search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.get("content", "")}\n' for doc in search_docs ]) return formatted_search_docs except Exception as e: return f"Web search failed: {str(e)}" @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result.""" try: time.sleep(random.uniform(1, 4)) search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return formatted_search_docs except Exception as e: return f"ArXiv search failed: {str(e)}" # Setup FAISS vector store def setup_faiss_vector_store(): """Setup FAISS vector database from JSONL metadata""" try: jq_schema = """ { page_content: .Question, metadata: { task_id: .task_id, Level: .Level, Final_answer: ."Final answer", file_name: .file_name, Steps: .["Annotator Metadata"].Steps, Number_of_steps: .["Annotator Metadata"]["Number of steps"], How_long: .["Annotator Metadata"]["How long did this take?"], Tools: .["Annotator Metadata"].Tools, Number_of_tools: .["Annotator Metadata"]["Number of tools"] } } """ json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False) json_docs = json_loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200) json_chunks = text_splitter.split_documents(json_docs) embeddings = NVIDIAEmbeddings( model="nvidia/nv-embedqa-e5-v5", api_key=os.getenv("NVIDIA_API_KEY") ) vector_store = FAISS.from_documents(json_chunks, embeddings) return vector_store except Exception as e: print(f"FAISS vector store setup failed: {e}") return None # Load system prompt try: with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() except FileNotFoundError: system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.""" sys_msg = SystemMessage(content=system_prompt) # Setup vector store and retriever vector_store = setup_faiss_vector_store() if vector_store: retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3}) retriever_tool = create_retriever_tool( retriever=retriever, name="Question_Search", description="A tool to retrieve similar questions from a vector store.", ) else: retriever_tool = None # All tools all_tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search] if retriever_tool: all_tools.append(retriever_tool) # Build graph function with fallback manager def build_graph(provider="groq"): """Build the LangGraph with rate limiting and fallbacks""" fallback_manager = ModelFallbackManager() # Create a wrapper LLM that uses fallback manager class FallbackLLM: def bind_tools(self, tools): self.tools = tools return self def invoke(self, messages): return fallback_manager.invoke_with_fallback(messages) llm_with_tools = FallbackLLM().bind_tools(all_tools) # Node functions def assistant(state: MessagesState): """Assistant node with fallback handling""" return {"messages": [llm_with_tools.invoke(state["messages"])]} def retriever_node(state: MessagesState): """Retriever node""" if vector_store and len(state["messages"]) > 0: try: similar_questions = vector_store.similarity_search(state["messages"][-1].content, k=1) if similar_questions: example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_questions[0].page_content}", ) return {"messages": [sys_msg] + state["messages"] + [example_msg]} except Exception as e: print(f"Retriever error: {e}") return {"messages": [sys_msg] + state["messages"]} # Build graph builder = StateGraph(MessagesState) builder.add_node("retriever", retriever_node) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(all_tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") # Compile graph with memory memory = MemorySaver() return builder.compile(checkpointer=memory) # Test if __name__ == "__main__": question = "What are the names of the US presidents who were assassinated?" graph = build_graph() messages = [HumanMessage(content=question)] config = {"configurable": {"thread_id": "test_thread"}} result = graph.invoke({"messages": messages}, config) for m in result["messages"]: m.pretty_print()