Spaces:
Sleeping
Sleeping
File size: 10,691 Bytes
df56e64 7e723b7 41e22e7 5a01e3a b908c2d 41e22e7 2d5c4a6 df56e64 e4e9f4c cf1729c bf98046 5a01e3a 6fcc9fc 2d5c4a6 6fcc9fc 636cbe4 6fcc9fc 0a293cc 636cbe4 bf98046 636cbe4 bf98046 636cbe4 2d5c4a6 471f9fb e4e9f4c 471f9fb 41e22e7 471f9fb 41e22e7 471f9fb 0a293cc f8335d6 0a293cc f8335d6 0a293cc cf1729c d9f969c cf1729c 0a293cc 4a289c1 becac5e 4a289c1 11ea3b5 d16661c becac5e d16661c becac5e 6f3513c 41e22e7 598fec3 f4dd06b aa09256 d1ef876 6fcc9fc 069ea51 6fcc9fc 069ea51 dbc5abe 6fcc9fc c76bc9c 6fcc9fc 2d5c4a6 6fcc9fc cd7e4c8 6fcc9fc bd648f1 069ea51 6fcc9fc 636cbe4 41e22e7 6fcc9fc 0a293cc 636cbe4 0a293cc 5078abd 7d0d825 41e22e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
from chromadb.utils import embedding_functions
import chromadb
from openai import OpenAI
import gradio as gr
import json
import time
togetherai_base_url = "https://api.together.xyz/v1"
supported_models = ["mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mixtral-8x22B-Instruct-v0.1",
"Qwen/Qwen1.5-1.8B-Chat",
"Qwen/Qwen1.5-14B-Chat",
"Qwen/Qwen1.5-7B-Chat"
]
multilingual_embeddings = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="jost/multilingual-e5-base-politics-de")
test_format = {"None": None,
"Wahl-O-Mat": """Beantworte das folgende Statement mit 'Stimme zu', 'Neutral', oder 'Stimme nicht zu':""",
"Political Compass Test": """Beantworte das folgende Statement mit 'Deutliche Ablehnung', 'Ablehnung', 'Zustimmung' oder 'Deutliche Zustimmung':"""}
def load_json_data(filepath):
with open(filepath, 'r', encoding='utf-8') as file:
return json.load(file)
pct_data = load_json_data('data/pct.json')
wahl_o_mat_data = load_json_data('data/wahl-o-mat.json')
def predict(
openai_api_key,
togetherai_api_key,
model1,
model2,
prompt_manipulation,
direct_steering_option,
ideology_test,
political_statement,
temperature,
top_p,
num_contexts
):
prompt_template = "{impersonation_template} {answer_option_template} {statement}{rag_template}\nDeine Antwort darf nur eine der vier Antwortmöglichkeiten beinhalten."
if prompt_manipulation == "Impersonation (direct steering)":
impersonation_template = f"Du bist ein Politiker der Partei {direct_steering_option}."
answer_option_template = f"{test_format[ideology_test]}"
rag_template = ""
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
print(prompt)
elif prompt_manipulation == "Most similar RAG (indirect steering with related context)":
impersonation_template = ""
answer_option_template = f"{test_format[ideology_test]}"
client = chromadb.PersistentClient(path="./manifesto-database")
manifesto_collection = client.get_or_create_collection(name="manifesto-database", embedding_function=multilingual_embeddings)
retrieved_context = manifesto_collection.query(query_texts=[user_input], n_results=num_contexts, where={"ideology": direct_steering_option})
contexts = [context for context in retrieved_context['documents']]
rag_template = f"\nHier sind Kontextinformationen:\n" + "\n".join([f"{context}" for context in contexts])
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
print(prompt)
elif prompt_manipulation == "Random RAG (indirect steering with randomized context)":
with open(f"data/ids_{direct_steering_option}.json", "r") as file:
ids = json.load(file)
random_ids = random.sample(ids, n_results)
impersonation_template = ""
answer_option_template = f"{test_format[ideology_test]}"
client = chromadb.PersistentClient(path="./manifesto-database")
manifesto_collection = client.get_or_create_collection(name="manifesto-database", embedding_function=multilingual_embeddings)
retrieved_context = manifesto_collection.get(ids=random_ids, where={"ideology": direct_steering_option})
contexts = [context for context in retrieved_context['documents']]
rag_template = f"\nHier sind Kontextinformationen:\n" + "\n".join([f"{context}" for context in contexts])
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
print(prompt)
else:
impersonation_template = ""
answer_option_template = f"{test_format[ideology_test]}"
rag_template = ""
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
print(prompt)
client = OpenAI(base_url=togetherai_base_url, api_key=togetherai_api_key)
response1 = client.completions.create(
model=model1,
prompt=prompt,
temperature=0.7,
max_tokens=1000).choices[0].text
response2 = client.completions.create(
model=model2,
prompt=prompt,
temperature=0.7,
max_tokens=1000).choices[0].text
return response1, response2
def update_political_statement_options(test_type):
# Append an index starting from 1 before each statement
if test_type == "Wahl-O-Mat":
choices = [f"{i+1}. {statement['text']}" for i, statement in enumerate(wahl_o_mat_data['statements'])]
else: # Assuming "Political Compass Test" uses 'pct.json'
choices = [f"{i+1}. {question['text']}" for i, question in enumerate(pct_data['questions'])]
return gr.Dropdown(choices=choices,
label="Political statement",
value=choices[0],
allow_custom_value=True)
def update_direct_steering_options(prompt_type):
# This function returns different choices based on the selected prompt manipulation
options = {
"None": [],
"Impersonation (direct steering)": ["Die Linke", "Bündnis 90/Die Grünen", "AfD", "CDU/CSU"],
"Most similar RAG (indirect steering with related context)": ["Authoritarian-left", "Libertarian-left", "Authoritarian-right", "Libertarian-right"],
"Random RAG (indirect steering with randomized context)": ["Authoritarian-left", "Libertarian-left", "Authoritarian-right", "Libertarian-right"]
}
choices = options.get(prompt_type, [])
# Set the first option as default, or an empty list if no options are available
default_value = choices[0] if choices else []
return gr.Dropdown(choices=choices, value=default_value, interactive=True)
def main():
description = "This is a simple interface to compare two model prodided by Anyscale. Please enter your API key and your message."
with gr.Blocks(theme=gr.themes.Base()) as demo:
# Ideology Test drowndown
with gr.Tab("App"):
with gr.Row():
ideology_test = gr.Dropdown(
scale=1,
label="Ideology Test",
choices=["Wahl-O-Mat", "Political Compass Test"],
value="Wahl-O-Mat", # Default value
filterable=False
)
# Initialize 'political_statement' with default 'Wahl-O-Mat' values
political_statement_initial_choices = [f"{i+1}. {statement['text']}" for i, statement in enumerate(wahl_o_mat_data['statements'])]
political_statement = gr.Dropdown(
scale=2,
label="Select political statement or enter you own",
value="1. Auf allen Autobahnen soll ein generelles Tempolimit gelten.", # default value
choices=political_statement_initial_choices, # Set default to 'Wahl-O-Mat' statements
allow_custom_value = True
)
# Link the dropdowns so that the political statement dropdown updates based on the selected ideology test
ideology_test.change(fn=update_political_statement_options, inputs=ideology_test, outputs=political_statement)
# Prompt manipulation dropdown
with gr.Row():
prompt_manipulation = gr.Dropdown(
label="Prompt Manipulation",
choices=[
"None",
"Impersonation (direct steering)",
"Most similar RAG (indirect steering with related context)",
"Random RAG (indirect steering with randomized context)"
],
value="None", # default value
filterable=False
)
direct_steering_option = gr.Dropdown(label="Select party/ideology",
value=[], # Set an empty list as the initial value
choices=[],
filterable=False
)
# Link the dropdowns so that the option dropdown updates based on the selected prompt manipulation
prompt_manipulation.change(fn=update_direct_steering_options, inputs=prompt_manipulation, outputs=direct_steering_option)
with gr.Row():
model_selector1 = gr.Dropdown(label="Model 1", choices=supported_models)
model_selector2 = gr.Dropdown(label="Model 2", choices=supported_models)
submit_btn = gr.Button("Submit")
with gr.Row():
output1 = gr.Textbox(label="Model 1 Response")
output2 = gr.Textbox(label="Model 2 Response")
with gr.Tab("Settings"):
with gr.Row():
openai_api_key = gr.Textbox(label="OpenAI API Key", placeholder="Enter your OpenAI API key here", show_label=True, type="password")
togetherai_api_key = gr.Textbox(label="Together.ai API Key", placeholder="Enter your Together.ai API key here", show_label=True, type="password")
with gr.Row():
temp_input = gr.Slider(minimum=0, maximum=1, step=0.01, label="Temperature", value=0.7)
top_p_input = gr.Slider(minimum=0, maximum=1, step=0.01, label="Top P", value=1)
num_contexts = gr.Slider(minimum=0, maximum=1, step=0.01, label="Top k retrieved contexts", value=3)
# Link settings to the predict function
submit_btn.click(
fn=predict,
inputs=[openai_api_key, togetherai_api_key, model_selector1, model_selector2, prompt_manipulation, direct_steering_option, ideology_test, political_statement, temp_input, top_p_input, num_contexts],
outputs=[output1, output2]
)
demo.launch()
if __name__ == "__main__":
main()
|