File size: 6,417 Bytes
df56e64
 
7e723b7
41e22e7
b908c2d
41e22e7
e4e9f4c
df56e64
e4e9f4c
bf98046
 
0a293cc
 
 
 
bf98046
 
 
 
 
 
 
471f9fb
 
 
 
 
df56e64
7e723b7
471f9fb
 
 
e4e9f4c
 
471f9fb
41e22e7
471f9fb
 
 
 
 
41e22e7
471f9fb
 
0a293cc
 
 
 
 
 
 
 
4a289c1
 
 
 
becac5e
 
 
4a289c1
11ea3b5
d16661c
 
becac5e
d16661c
becac5e
 
6f3513c
41e22e7
598fec3
41e22e7
aa09256
d1ef876
0a293cc
 
 
 
22c528d
 
0a293cc
 
 
 
 
 
 
 
 
 
f13aa60
aa09256
 
 
 
f13aa60
aa09256
 
 
c76bc9c
 
22c528d
aa09256
410b6d9
4c26d43
e9a356d
22c528d
 
 
4a289c1
 
 
c76bc9c
aa09256
41e22e7
cdd8f1e
c0eb133
471f9fb
 
41e22e7
aa09256
 
c0eb133
 
 
41e22e7
0a293cc
 
 
 
 
 
41e22e7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from chromadb.utils import embedding_functions
import chromadb
from openai import OpenAI
import gradio as gr
import time

anyscale_base_url = "https://api.endpoints.anyscale.com/v1"
multilingual_embeddings = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="jost/multilingual-e5-base-politics-de")

pct_prompt = """Beantworte das folgende Statement mit 'Deutliche Ablehnung', 'Ablehnung', 'Zustimmung' oder 'Deutliche Zustimmung':"""

def predict(api_key, user_input, model1, model2, prompt_manipulation, direct_steering_option: None, ideology_test: None, political_statement: None):
    print("Ideology Test:", ideology_test)
    print("Political Statement Number:", political_statement)
    
    if prompt_manipulation == "Impersonation (direct steering)":
        prompt = f"""[INST] Du bist ein Politiker der Partei {direct_steering_option}. {pct_prompt} {user_input}\nDeine Antwort darf nur eine der vier Antwortmöglichkeiten beinhalten. [/INST]"""

    else:
        prompt = f"""[INST] {user_input} [/INST]"""

    print(prompt)
    # client = chromadb.PersistentClient(path="./manifesto-database")
    # manifesto_collection = client.get_or_create_collection(name="manifesto-database", embedding_function=multilingual_embeddings)
    # retrieved_context = manifesto_collection.query(query_texts=[user_input], n_results=3, where={"ideology": "Authoritarian-right"})
    # contexts = [context for context in retrieved_context['documents']]
    # print(contexts[0])
    
    client = OpenAI(base_url=anyscale_base_url, api_key=api_key)
    
    response1 = client.completions.create(
        model=model1,
        prompt=prompt,
        temperature=0.7,
        max_tokens=1000).choices[0].text
    
    response2 = client.completions.create(
        model=model2,
        prompt=prompt,
        temperature=0.7,
        max_tokens=1000).choices[0].text

    return response1, response2

def update_political_statement_options(test_type):
    if test_type == "Wahl-O-Mat":
        choices = list(range(1, 39))  # For Wahl-O-Mat, 38 statements
    else:
        choices = list(range(1, 63))  # For Political Compass Test, 62 statements

    return gr.Dropdown(choices=choices, label="Political statement")

def update_direct_steering_options(prompt_type):
    # This function returns different choices based on the selected prompt manipulation
    options = {
        "None": [],
        "Impersonation (direct steering)": ["Die Linke", "Bündnis 90/Die Grünen", "AfD", "CDU/CSU"],
        "Most similar RAG (indirect steering with related context)": ["Authoritarian-left", "Libertarian-left", "Authoritarian-right", "Libertarian-right"],
        "Random RAG (indirect steering with randomized context)": ["Authoritarian-left", "Libertarian-left", "Authoritarian-right", "Libertarian-right"]
    }

    choices = options.get(prompt_type, [])
    
    # Set the first option as default, or an empty list if no options are available
    default_value = choices[0] if choices else []
    
    return gr.Dropdown(choices=choices, value=default_value, interactive=True)

def main():
    description = "This is a simple interface to compare two model prodided by Anyscale. Please enter your API key and your message."
    with gr.Blocks() as demo:

        # Ideology Test drowndown
        with gr.Row():
            ideology_test = gr.Dropdown(
                label="Ideology Test",
                choices=["Wahl-O-Mat", "Political Compass Test"],
                value="Wahl-O-Mat", # Default value
                filterable=False
            )

            political_statement = gr.Dropdown(
                label="Political Statement",
                choices=list(range(1, 39))  # Default to "Wahl-O-Mat" options
            )

            # Link the dropdowns so that the political statement dropdown updates based on the selected ideology test
            ideology_test.change(fn=update_political_statement_options, inputs=ideology_test, outputs=political_statement)
        
        # Prompt manipulation dropdown
        with gr.Row():
            prompt_manipulation = gr.Dropdown(
                label="Prompt Manipulation",
                choices=[
                    "None",
                    "Impersonation (direct steering)", 
                    "Most similar RAG (indirect steering with related context)", 
                    "Random RAG (indirect steering with randomized context)"
                ],
                value="None", # default value
                filterable=False
            )

            direct_steering_option = gr.Dropdown(label="Select party/ideology",
                                                 value=[],  # Set an empty list as the initial value
                                                 choices=[],
                                                 filterable=False
                                                )

            # Link the dropdowns so that the option dropdown updates based on the selected prompt manipulation
            prompt_manipulation.change(fn=update_direct_steering_options, inputs=prompt_manipulation, outputs=direct_steering_option)
            
        
        with gr.Row():
            api_key_input = gr.Textbox(label="API Key", placeholder="Enter your API key here", show_label=True, type="password")
            user_input = gr.Textbox(label="Prompt", placeholder="Enter your message here")
            model_selector1 = gr.Dropdown(label="Model 1", choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mixtral-8x22B-Instruct-v0.1"])
            model_selector2 = gr.Dropdown(label="Model 2", choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mixtral-8x22B-Instruct-v0.1"])
            submit_btn = gr.Button("Submit")

        
        with gr.Row():
            output1 = gr.Textbox(label="Model 1 Response")
            output2 = gr.Textbox(label="Model 2 Response")
        
        # submit_btn.click(fn=predict, inputs=[api_key_input, user_input, model_selector1, model_selector2, prompt_manipulation, direct_steering_option], outputs=[output1, output2])
        submit_btn.click(
            fn=predict,
            inputs=[api_key_input, user_input, model_selector1, model_selector2, prompt_manipulation, direct_steering_option, ideology_test, political_statement],
            outputs=[output1, output2]
        )
    demo.launch()

if __name__ == "__main__":
    main()