File size: 2,612 Bytes
bf6fb39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import langchain
from langchain.embeddings.openai import OpenAIEmbeddings
# from langchain.vectorstores import Chroma
from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.chains import RetrievalQA
from langchain.document_loaders import DirectoryLoader
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.evaluation.qa import QAGenerateChain
import magic
import os
import streamlit as st
from streamlit_chat import message

st.title("AI Chatbot")

if 'responses' not in st.session_state:
    st.session_state['responses'] = ["How can I assist you?"]

if 'requests' not in st.session_state:
    st.session_state['requests'] = []

openai_api_key = os.getenv("OPENAI_API_KEY", "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")    
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
new_db = FAISS.load_local("faiss_index_diagnostics_RCV_900", embeddings)
llm = OpenAI(openai_api_key=openai_api_key, temperature=0.0)

# if 'buffer_memory' not in st.session_state:
memory= ConversationBufferMemory(memory_key="chat_history", return_messages=True)
retriever = new_db.as_retriever()
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type="stuff", memory= memory,retriever=retriever, verbose=False)

# container for chat history
response_container = st.container()
# container for text box
textcontainer = st.container()


with textcontainer:
    query = st.text_input(label="Please Enter Your Prompt Here: ", placeholder="Ask me")
    if query:
        with st.spinner("Generating..."):
            # conversation_string = get_conversation_string()
            # st.code(conversation_string)
            # refined_query = query_refiner(conversation_string, query)
            # st.subheader("Refined Query:")
            # st.write(refined_query)
            # context = find_match(refined_query)
            # print(context)  
            response = chain.run(query)
        st.session_state.requests.append(query)
        st.session_state.responses.append(response) 
with response_container:
    if st.session_state['responses']:

        for i in range(len(st.session_state['responses'])):
            message(st.session_state['responses'][i],key=str(i))
            if i < len(st.session_state['requests']):
                message(st.session_state["requests"][i], is_user=True,key=str(i)+ '_user')

# with st.expander('Message history'):
#     st.info(memory.buffer)