Spaces:
Sleeping
Sleeping
Delete streamlit_base.py
Browse files- streamlit_base.py +0 -77
streamlit_base.py
DELETED
@@ -1,77 +0,0 @@
|
|
1 |
-
import langchain
|
2 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
3 |
-
# from langchain.vectorstores import Chroma
|
4 |
-
from langchain.vectorstores import FAISS
|
5 |
-
from langchain.text_splitter import CharacterTextSplitter
|
6 |
-
from langchain.llms import OpenAI
|
7 |
-
from langchain.chains import VectorDBQA
|
8 |
-
from langchain.chains import RetrievalQA
|
9 |
-
from langchain.document_loaders import DirectoryLoader
|
10 |
-
from langchain.chains import ConversationalRetrievalChain
|
11 |
-
from langchain.memory import ConversationBufferMemory
|
12 |
-
from langchain.evaluation.qa import QAGenerateChain
|
13 |
-
import magic
|
14 |
-
import os
|
15 |
-
import streamlit as st
|
16 |
-
from streamlit_chat import message
|
17 |
-
|
18 |
-
st.title("AI Chatbot")
|
19 |
-
|
20 |
-
if 'responses' not in st.session_state:
|
21 |
-
st.session_state['responses'] = ["How can I assist you?"]
|
22 |
-
|
23 |
-
if 'requests' not in st.session_state:
|
24 |
-
st.session_state['requests'] = []
|
25 |
-
|
26 |
-
openai_api_key = os.getenv("OPENAI_API_KEY", "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")
|
27 |
-
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
28 |
-
new_db = FAISS.load_local("faiss_index_diagnostics_RCV", embeddings)
|
29 |
-
llm = OpenAI(openai_api_key=openai_api_key, temperature=0.0)
|
30 |
-
|
31 |
-
# if 'buffer_memory' not in st.session_state:
|
32 |
-
memory= ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
33 |
-
retriever = new_db.as_retriever()
|
34 |
-
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type="stuff", memory= memory,retriever=retriever, verbose=False)
|
35 |
-
|
36 |
-
# container for chat history
|
37 |
-
response_container = st.container()
|
38 |
-
# container for text box
|
39 |
-
textcontainer = st.container()
|
40 |
-
|
41 |
-
|
42 |
-
with textcontainer:
|
43 |
-
query = st.text_input(label="Please Enter Your Prompt Here: ", placeholder="Ask me")
|
44 |
-
if query:
|
45 |
-
with st.spinner("Generating..."):
|
46 |
-
# conversation_string = get_conversation_string()
|
47 |
-
# st.code(conversation_string)
|
48 |
-
# refined_query = query_refiner(conversation_string, query)
|
49 |
-
# st.subheader("Refined Query:")
|
50 |
-
# st.write(refined_query)
|
51 |
-
# context = find_match(refined_query)
|
52 |
-
# print(context)
|
53 |
-
response = chain.run(query)
|
54 |
-
st.session_state.requests.append(query)
|
55 |
-
st.session_state.responses.append(response)
|
56 |
-
with response_container:
|
57 |
-
if st.session_state['responses']:
|
58 |
-
|
59 |
-
for i in range(len(st.session_state['responses'])):
|
60 |
-
message(st.session_state['responses'][i],key=str(i))
|
61 |
-
if i < len(st.session_state['requests']):
|
62 |
-
message(st.session_state["requests"][i], is_user=True,key=str(i)+ '_user')
|
63 |
-
|
64 |
-
# with st.expander('Message history'):
|
65 |
-
# st.info(memory.buffer)
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|