jpxkqx commited on
Commit
1efc93d
1 Parent(s): e2c03ea

Implement logic

Browse files
Files changed (2) hide show
  1. signal_to_reconstrution_error.py +50 -47
  2. tests.py +6 -11
signal_to_reconstrution_error.py CHANGED
@@ -11,13 +11,20 @@
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
- """TODO: Add a description here."""
15
 
16
  import evaluate
17
  import datasets
 
 
 
 
 
 
 
 
18
 
19
 
20
- # TODO: Add BibTeX citation
21
  _CITATION = """\
22
  @InProceedings{huggingface:module,
23
  title = {A great new module},
@@ -26,70 +33,66 @@ year={2020}
26
  }
27
  """
28
 
29
- # TODO: Add description of the module here
30
- _DESCRIPTION = """\
31
- This new module is designed to solve this great ML task and is crafted with a lot of care.
32
- """
33
-
34
 
35
- # TODO: Add description of the arguments of the module here
36
  _KWARGS_DESCRIPTION = """
37
- Calculates how good are predictions given some references, using certain scores
38
  Args:
39
- predictions: list of predictions to score. Each predictions
40
- should be a string with tokens separated by spaces.
41
- references: list of reference for each prediction. Each
42
- reference should be a string with tokens separated by spaces.
43
  Returns:
44
- accuracy: description of the first score,
45
- another_score: description of the second score,
46
  Examples:
47
- Examples should be written in doctest format, and should illustrate how
48
- to use the function.
49
-
50
- >>> my_new_module = evaluate.load("my_new_module")
51
- >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
52
- >>> print(results)
53
- {'accuracy': 1.0}
54
  """
55
 
56
- # TODO: Define external resources urls if needed
57
- BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
58
 
 
 
 
59
 
60
  @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
61
  class SignaltoReconstrutionError(evaluate.Metric):
62
- """TODO: Short description of my evaluation module."""
63
-
64
  def _info(self):
65
- # TODO: Specifies the evaluate.EvaluationModuleInfo object
66
  return evaluate.MetricInfo(
67
- # This is the description that will appear on the modules page.
68
  module_type="metric",
69
  description=_DESCRIPTION,
70
  citation=_CITATION,
71
  inputs_description=_KWARGS_DESCRIPTION,
72
- # This defines the format of each prediction and reference
73
- features=datasets.Features({
74
- 'predictions': datasets.Value('int64'),
75
- 'references': datasets.Value('int64'),
76
- }),
77
- # Homepage of the module for documentation
78
- homepage="http://module.homepage",
79
- # Additional links to the codebase or references
80
- codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
81
- reference_urls=["http://path.to.reference.url/new_module"]
82
  )
83
 
84
- def _download_and_prepare(self, dl_manager):
85
- """Optional: download external resources useful to compute the scores"""
86
- # TODO: Download external resources if needed
87
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
- def _compute(self, predictions, references):
90
  """Returns the scores"""
91
- # TODO: Compute the different scores of the module
92
- accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
93
  return {
94
- "accuracy": accuracy,
95
- }
 
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
+ """Signal-to-Reconstruction Error (SRE) metric."""
15
 
16
  import evaluate
17
  import datasets
18
+ import numpy as np
19
+
20
+
21
+ _DESCRIPTION = """\
22
+ Compute the Signal-to-Reconstruction Error (SRE) metric. This metric is commonly used to
23
+ asses the performance of denoising, super-resolution and style transfer algorithms in
24
+ audio and image processing.
25
+ """
26
 
27
 
 
28
  _CITATION = """\
29
  @InProceedings{huggingface:module,
30
  title = {A great new module},
 
33
  }
34
  """
35
 
 
 
 
 
 
36
 
 
37
  _KWARGS_DESCRIPTION = """
 
38
  Args:
39
+ predictions (`list` of `np.array`): Predicted labels.
40
+ references (`list` of `np.array`): Ground truth labels.
41
+ sample_weight (`list` of `float`): Sample weights Defaults to None.
 
42
  Returns:
43
+ sre (`float`): Signal-to-Reconstruction Error (SRE) metric. The SRE values are
44
+ positive and they are expressed in decibels (dB). The higher the SRE value, the better.
45
  Examples:
46
+ Example 1-A simple example
47
+ >>> sre = evaluate.load("jpxkqx/signal_to_reconstruction_error")
48
+ >>> results = sre.compute(references=[[0, 0], [-1, -1]], predictions=[[0, 1], [0, 0]])
49
+ >>> print(results)
50
+ {"Signal-to-Reconstruction Error": 23.01}
 
 
51
  """
52
 
 
 
53
 
54
+ def signal_reconstruction_error(y_true: np.array, y_hat: np.array) -> np.array:
55
+ return 10 * np.log10(np.sum(y_true ** 2) / np.sum((y_true - y_hat) ** 2))
56
+
57
 
58
  @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
59
  class SignaltoReconstrutionError(evaluate.Metric):
 
 
60
  def _info(self):
 
61
  return evaluate.MetricInfo(
 
62
  module_type="metric",
63
  description=_DESCRIPTION,
64
  citation=_CITATION,
65
  inputs_description=_KWARGS_DESCRIPTION,
66
+ features=datasets.Features(self._get_feature_types()),
67
+ homepage="https://huggingface.co/spaces/jpxkqx/signal_to_reconstrution_error",
 
 
 
 
 
 
 
 
68
  )
69
 
70
+ def _get_feature_types(self):
71
+ if self.config_name == "multilist":
72
+ return {
73
+ # 1st Seq - num_samples, 2nd Seq - Height, 3rd Seq - Width
74
+ "predictions": datasets.Sequence(
75
+ datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
76
+ ),
77
+ "references": datasets.Sequence(
78
+ datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
79
+ ),
80
+ }
81
+ else:
82
+ return {
83
+ # 1st Seq - Height, 2rd Seq - Width
84
+ "predictions": datasets.Sequence(
85
+ datasets.Sequence(datasets.Value("float32"))
86
+ ),
87
+ "references": datasets.Sequence(
88
+ datasets.Sequence(datasets.Value("float32"))
89
+ ),
90
+ }
91
 
92
+ def _compute(self, predictions, references, sample_weight=None):
93
  """Returns the scores"""
94
+ samples = zip(np.array(references), np.array(predictions))
95
+ psnrs = list(map(lambda args: signal_reconstruction_error(*args), samples))
96
  return {
97
+ "Signal-to-Reconstruction Error": np.average(psnrs, weights=sample_weight)
98
+ }
tests.py CHANGED
@@ -1,17 +1,12 @@
1
  test_cases = [
2
  {
3
- "predictions": [0, 0],
4
- "references": [1, 1],
5
- "result": {"metric_score": 0}
6
  },
7
  {
8
- "predictions": [1, 1],
9
- "references": [1, 1],
10
- "result": {"metric_score": 1}
11
- },
12
- {
13
- "predictions": [1, 0],
14
- "references": [1, 1],
15
- "result": {"metric_score": 0.5}
16
  }
17
  ]
 
1
  test_cases = [
2
  {
3
+ "predictions": [[0.1, 0.1], [1.0, 0.1]],
4
+ "references": [[0.1, 0.1], [0.9, 0.1]],
5
+ "result": 23.010298856486173
6
  },
7
  {
8
+ "predictions": [[0, 1], [0, 0]],
9
+ "references": [[0, 0], [-1, -1]],
10
+ "result": 1.2493873660829993
 
 
 
 
 
11
  }
12
  ]