File size: 14,367 Bytes
6413247
 
 
 
 
 
1e4a193
 
 
 
 
 
 
811754e
 
 
 
 
1e4a193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6413247
 
 
 
 
 
 
 
 
 
1e4a193
6413247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4a193
 
 
 
 
 
 
 
 
 
 
6413247
 
 
1e4a193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6413247
1e4a193
 
 
 
 
 
6413247
 
 
1e4a193
 
 
 
 
6413247
1e4a193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6413247
 
 
1e4a193
 
 
 
 
 
 
 
 
 
 
 
 
 
6413247
 
 
 
1e4a193
6413247
 
1e4a193
6413247
 
1e4a193
6413247
 
 
1e4a193
6413247
 
1e4a193
6413247
 
 
1e4a193
6413247
1e4a193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6413247
 
1e4a193
 
 
 
 
 
 
 
 
 
 
 
 
 
6413247
 
1e4a193
6413247
 
 
1e4a193
6413247
1e4a193
6413247
 
 
1e4a193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6413247
1e4a193
6413247
 
1e4a193
6413247
 
 
1e4a193
6413247
 
1e4a193
6413247
 
1e4a193
 
 
 
 
 
6413247
 
 
 
1e4a193
6413247
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import pandas as pd
from datetime import date
import gradio as gr
from pyvis.network import Network
import ast
from openai import OpenAI
import json
import string
from datetime import datetime
import random

EMM_RETRIEVERS_OPENAI_API_BASE_URL = "https://api-gpt.jrc.ec.europa.eu/v1"
#with open('./data/gpt_token.json', 'r') as file:
#    config = json.load(file)
#    EMM_RETRIEVERS_OPENAI_API_KEY = config['EMM_RETRIEVERS_OPENAI_API_KEY']
EMM_RETRIEVERS_OPENAI_API_KEY = os.environ['key_gptjrc']


client1 = OpenAI(
    api_key=EMM_RETRIEVERS_OPENAI_API_KEY,
    base_url="https://api-gpt.jrc.ec.europa.eu/v1",
)

df = pd.read_csv("https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/ETOHA/storylines/emdat2.csv", sep=',', header=0,
                 dtype=str, encoding='utf-8')


def gpt_story(storyline):
    prompt = (
        "Use the information provided to create a short, clear, and useful narrative about a disaster event. "
        "The goal is to help decision-makers (e.g. policy makers, disaster managers, civil protection) understand what happened, why, and what it caused. "
        "Keep it short and focused.\n\n"
        "Include all key information, but keep the text concise and easy to read. Avoid technical jargon.\n\n"
        "Steps to Follow:\n"
        "1. Start with what happened: Briefly describe the disaster event (what, where, when, who was affected).\n"
        "2. Explain why it happened: Use the evidence provided to describe possible causes or triggers (e.g. heavy rainfall, poor infrastructure, heatwave).\n"
        "3. Show the impacts: Highlight key impacts such as fatalities, displacement, health effects, or damage.\n"
        "4. Connect the dots: Show how different factors are linked. Use simple cause-effect language (e.g. drought led to crop failure, which caused food insecurity).\n"
        "5. Mention complexity if needed: If there were multiple contributing factors or reinforcing effects (e.g. climate + conflict), briefly explain them.\n"
        "6. Keep it useful: Write with a decision-maker in mind. Focus on what matters: drivers, impacts, and lessons for preparedness or response.\n\n"
        f"Information: {storyline}"
    )

    completion = client1.chat.completions.create(
        model='gpt-4o',
        messages=[
            {"role": "system", "content": "You are a disaster manager expert in risk dynamics."},
            {"role": "user", "content": prompt}
        ]
    )

    # Extract the content from the response
    message_content = completion.choices[0].message.content
    return message_content


# DataFrame to store evaluation data
evaluation_df = pd.DataFrame(columns=["DisNo.", "TPN", "TPL", "FPN", "FPL", "FNN", "FNL", "User ID"])


def try_parse_date(y, m, d):
    try:
        if not y or not m or not d:
            return None
        return date(int(float(y)), int(float(m)), int(float(d)))
    except (ValueError, TypeError):
        return None


def plot_cgraph_pyvis(grp):
    if not grp:
        return "<div>No data available to plot.</div>"

    net = Network(notebook=False, directed=True)
    edge_colors_dict = {"causes": "red", "prevents": "green"}

    for src, rel, tgt in grp:
        src = str(src)
        tgt = str(tgt)
        rel = str(rel)
        net.add_node(src, shape="circle", label=src)
        net.add_node(tgt, shape="circle", label=tgt)
        edge_color = edge_colors_dict.get(rel, 'black')
        net.add_edge(src, tgt, title=rel, label=rel, color=edge_color)

    net.repulsion(
        node_distance=200,
        central_gravity=0.2,
        spring_length=200,
        spring_strength=0.05,
        damping=0.09
    )
    net.set_edge_smooth('dynamic')

    html = net.generate_html()
    html = html.replace("'", "\"")

    # Adjust the iframe style to center the graph and fit the container
    html_s = f"""
    <div style="display: flex; justify-content: center; align-items: center;">
        <iframe style="width: 90%; height: 800px; margin: 0 auto;" name="result" allow="midi; geolocation; microphone; camera; 
        display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
        allow-scripts allow-same-origin allow-popups 
        allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
        allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>
    </div>
    """

    return html_s


def generate_unique_user_id():
    # Generate a timestamp string
    timestamp_str = datetime.now().strftime("%Y%m%d%H%M%S")
    # Generate a random string of 5 letters
    random_str = ''.join(random.choices(string.ascii_letters, k=5))
    # Combine both to form a unique User ID
    return f"{timestamp_str}_{random_str}"


def save_data_to_csv():
    # Save the evaluation DataFrame to a CSV file
    evaluation_df.to_csv("evaluation_data.csv", index=False)
    print("Data saved to CSV successfully.")


def save_data(dis_no, tpn, tpl, fp_node, fp_link, fn_node, fn_link):
    global evaluation_df

    # Debug: Print input values to ensure they're being received correctly
    print(
        f"Inputs received - DisNo: {dis_no}, TPN: {tpn}, TPL: {tpl}, FPN: {fp_node}, FPL: {fp_link}, FNN: {fn_node}, FNL: {fn_link}")

    # Check if a valid disaster number has been selected
    if not dis_no or dis_no == "Select a Disaster Event":
        print("Invalid input. Ensure a disaster event is selected.")
        return  # Ensure no output is returned

    # Generate a unique User ID
    user_id = generate_unique_user_id()

    # Append the new data to the DataFrame
    new_data = pd.DataFrame([[dis_no, tpn, tpl, fp_node, fp_link, fn_node, fn_link, user_id]],
                            columns=["DisNo.", "TPN", "TPL", "FPN", "FPL", "FNN", "FNL", "User ID"])
    evaluation_df = pd.concat([evaluation_df, new_data], ignore_index=True)

    # Debug: Print the updated DataFrame to verify the new row addition
    print("Updated DataFrame:")
    print(evaluation_df)

    # Save the DataFrame to a CSV file
    save_data_to_csv()

    print(
        f"Data saved: DisNo: {dis_no}, TPN: {tpn}, TPL: {tpl}, FPN: {fp_node}, FPL: {fp_link}, FNN: {fn_node}, FNL: {fn_link}, User ID: {user_id}")


def update_row_dropdown(disaster_type=None, country=None):
    # Start with the entire dataframe
    filtered_df = df

    # Step 1: Filter by Disaster Type
    if disaster_type:
        filtered_df = filtered_df[filtered_df['Disaster Type'] == disaster_type]

    # Step 2: Further filter by Country
    if country:
        filtered_df = filtered_df[filtered_df['Country'] == country]

    # Step 3: Generate the DisNo. choices based on the filtered DataFrame
    choices = filtered_df['DisNo.'].tolist() if not filtered_df.empty else []

    # Add a placeholder option at the beginning
    choices = ["Select a Disaster Event"] + choices

    print(f"Available DisNo. for {disaster_type} in {country}: {choices}")

    # Return the update for the dropdown, defaulting to the placeholder
    return gr.update(choices=choices, value=choices[0] if choices else None)


def display_info(selected_row_str, country):
    if not selected_row_str or selected_row_str == 'Select a Disaster Event':
        print("No valid disaster event selected.")
        return ('No valid event selected.', '<div>No graph available.</div>', '', '')

    print(f"Selected Country: {country}, Selected Row: {selected_row_str}")

    # Filter the dataframe for the selected disaster number
    row_data = df[df['DisNo.'] == selected_row_str].squeeze()

    if not row_data.empty:
        print(f"Row data: {row_data}")

        # Combine the relevant columns into a single storyline with labels
        storyline_parts = [
            f"Key Information: {row_data.get('key information', '')}",
            f"Severity: {row_data.get('severity', '')}",
            f"Key Drivers: {row_data.get('key drivers', '')}",
            f"Main Impacts, Exposure, and Vulnerability: {row_data.get('main impacts, exposure, and vulnerability', '')}",
            f"Likelihood of Multi-Hazard Risks: {row_data.get('likelihood of multi-hazard risks', '')}",
            f"Best Practices for Managing This Risk: {row_data.get('best practices for managing this risk', '')}",
            f"Recommendations and Supportive Measures for Recovery: {row_data.get('recommendations and supportive measures for recovery', '')}"
        ]
        storyline = "\n\n".join(part for part in storyline_parts if part.split(': ')[1])  # Include only non-empty parts
        cleaned_storyline = gpt_story(storyline)
        causal_graph_caption = row_data.get('llama graph', '')
        grp = ast.literal_eval(causal_graph_caption) if causal_graph_caption else []
        causal_graph_html = plot_cgraph_pyvis(grp)

        # Parse and format the start date
        start_date_str = f"{row_data['Start Year']}-{row_data['Start Month']}-{row_data['Start Day']}"

        # Parse and format the end date
        end_date_str = f"{row_data['End Year']}-{row_data['End Month']}-{row_data['End Day']}"

        return (
            cleaned_storyline,
            causal_graph_html,
            start_date_str,
            end_date_str
        )
    else:
        print("No valid data found for the selection.")
        return ('No valid data found.', '<div>No graph available.</div>', '', '')


def build_interface():
    with gr.Blocks() as interface:
        gr.Markdown(
            """
            # From Complexity to Clarity: Leveraging AI to Decode Interconnected Risks
    
            Welcome to our Gradio application, developed and maintained by [JRC](https://joint-research-centre.ec.europa.eu/index_en/) Units: **E1**, **F7**, and **T5**. This is part of the **EMBRACE Portfolio on Risks**. <br><br>
    
            **Overview**:  
            This application employs advanced AI techniques like Retrieval-Augmented Generation (RAG) on [EMM](https://emm.newsbrief.eu/) news. It extracts relevant media content on disaster events recorded in [EM-DAT](https://www.emdat.be/), including floods, wildfires, droughts, epidemics, and disease outbreaks. <br><br>
    
            **How It Works**:  
            For each selected event (filterable by Disaster Type, Country, and Disaster Number), the app:
            - Retrieves pertinent news chunks via the EMM RAG service.
            - Uses multiple LLMs from the [GPT@JRC](https://gpt.jrc.ec.europa.eu/) portfolio to:
                - Extract critical impact data (e.g., fatalities, affected populations).
                - Transform unstructured news into coherent, structured storylines.
                - Build causal knowledge graphs — *impact chains* — highlighting drivers, impacts, and interactions. <br><br>
    
            **Explore Events**:  
            Use the selectors below to explore events by **Disaster Type**, **Country**, and **Disaster Number (DisNo)**. <br>
            Once an event is selected, the app will display the **causal impact-chain graph**, illustrating key factors and their interrelationships. <br>
            Below the graph, you'll find the **AI-generated narrative**, presenting a structured storyline of the event based on relevant news coverage. <br><br>
    
            **Outcome**:  
            These outputs offer a deeper understanding of disaster dynamics, supporting practitioners, disaster managers, and policy-makers in identifying patterns, assessing risks, and enhancing preparedness and response strategies.
            """
        )

        # Create dropdowns for Disaster Type, Country, and Disaster Event #
        disaster_type_dropdown = gr.Dropdown(
            choices=[''] + df['Disaster Type'].unique().tolist(),
            label="Select Disaster Type"
        )
        country_dropdown = gr.Dropdown(
            choices=[''],  # Initially empty; will be populated based on disaster type
            label="Select Country"
        )
        row_dropdown = gr.Dropdown(
            choices=[],
            label="Select Disaster Event #",
            interactive=True
        )

        with gr.Column():
            disaster_type_dropdown
            country_dropdown
            row_dropdown

            gr.Markdown("### AI-Generated Storyline:")  # Title
            outputs = [
                gr.Textbox(label="Storyline", interactive=False, lines=10),
                gr.HTML(label="Causal Graph")  # Change from gr.Plot to gr.HTML
            ]

            # Inputs for evaluation metrics, placed after the graph
            with gr.Row():
                tpn_input = gr.Number(label="Num of Correct Nodes (TPN)", value=0, interactive=True)
                tpl_input = gr.Number(label="Num of Correct Links (TPL)", value=0, interactive=True)
                fp_node_input = gr.Number(label="False Positive Nodes (FPN)", value=0, interactive=True)
                fp_link_input = gr.Number(label="False Positive Links (FPL)", value=0, interactive=True)
                fn_node_input = gr.Number(label="False Negative Nodes (FNN)", value=0, interactive=True)
                fn_link_input = gr.Number(label="False Negative Links (FNL)", value=0, interactive=True)

            # Button to save the data
            save_button = gr.Button("Save Data")

        # Update country choices based on selected disaster type
        disaster_type_dropdown.change(
            fn=lambda disaster_type: gr.update(
                choices=[''] + df[df['Disaster Type'] == disaster_type]['Country'].unique().tolist(),
                value=''
            ),
            inputs=disaster_type_dropdown,
            outputs=country_dropdown
        )

        # Update DisNo. choices based on selected disaster type and country
        country_dropdown.change(
            fn=update_row_dropdown,
            inputs=[disaster_type_dropdown, country_dropdown],
            outputs=row_dropdown
        )

        # Display information based on selected DisNo.
        row_dropdown.change(
            fn=display_info,
            inputs=[row_dropdown, country_dropdown],
            outputs=outputs
        )

        # Handle saving data on button click
        save_button.click(
            fn=save_data,
            inputs=[row_dropdown, tpn_input, tpl_input, fp_node_input, fp_link_input, fn_node_input, fn_link_input],
            outputs=[]
        )

    return interface


app = build_interface()
app.launch()